首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
ABSTRACT A monoclonal antibody (mAb) IR-2-1 was raised against a 67-kDa protein purified from the macronucleus-specific bacterial symbiont Holospora obtusa of Paramecium caudatum. The mAb was found to react with two bands (31 and 67-kDa) on gels of H. obtusa. Indirect immunofluorescence microscopy showed that these antigens were distributed inside the cells. However, unexpectedly, this mAb also cross reacted with the radial arms of the contractile vacuole in P. caudatum, P. tetraurelia, P. multimicronucleatum, P. jenningsi and P. bursaria as well as with their cytoplasm. Immunoelectron microscopy showed that the antigens were located on the decorated spongiome of the radial arms. In immunoblots, mAb IR-2-1 reacted with a band of 67 kDa in all Paramecium species examined. However, no band appeared in the immunoblot of isolated macronuclei of H. obtusa-free P. caudatum and no label was seen in the nuclear matrix of the macronucleus of air-dried P. caudatum. These results suggest that the 67-kDa antigen found in H. obtusa was not imported from the host macronucleus and the same antigen in the host contractile vacuoles and cytoplasm were not derived from the symbiont. These results also showed that an epitope on the decorated spongiome of the Paramecium species is shared by its bacterial symbiont. In contrast to the decorated tubule-specific mAb, DS-1, the antigens for IR-2-1 appeared to be loosely membrane bound as they were lost in paraformaldehyde fixed and acetone permeabilized Paramecium. Supplementary key words. Contractile vacuole complexes, Holospora obtusa, monoclonal antibody, Paramecium.  相似文献   

2.
SYNOPSIS. A spiral, rod- or crescent-shaped symbiont here designated alpha, is present in the macronucleus of killer stock 562, syngen 2 of Paramecium aurelia. This stock has a cytoplasmic symbiont, kappa, as well as alpha. Lines were obtained which had only alpha, others which had only kappa, and some which had neither. It was possible to purify and separate both kinds of symbiont from homogenates of stock 562 using an ECTEOLA column. The killing action of this stock is due to kappa, not alpha. Observations on the structure of alpha with the electron microscope indicate that alpha, like the cytoplasmic symbionts in this species, is a bacterium. Alpha is never seen in the micronucleus, is rarely found in the cytoplasm, but abounds in the macronucleus. If paramecia are allowed to grow slowly after autogamy, alpha passes from the old macronuclear fragments, infects the new macronucleus, and all animals retain alpha. In exautogamous paramecia growing at maximum fission rate, however, alpha often does not infect the new macronucleus and is lost from many lines when the old macronuclear fragments disappear. In mixed cultures containing alpha-bearing and alphafree paramecia, it has been found that alpha readily invades the macronucleus of paramecia of susceptible stocks. Homogenates of alpha-bearing cultures are also infective. Infection is highly specific, occurring in only 6 of the 44 stocks of P. aurelia in which infection was attempted, and these 6 are all syngen 2. It is suggested that the short rod or crescent form of alpha is the reproductive form, while the elongated spiral form is probably the invasive motile form.  相似文献   

3.
Paramecium strains with the ability to kill other paramecia often harbour intracellular bacteria belonging to the genera Caedibacter or Caedimonas. Central structures of this killer trait are refractile bodies (R-bodies) produced by the endosymbionts. Once ingested by a sensitive Paramecium, R-bodies presumably act as delivery system for an unidentified toxin which causes the death of endosymbiont-free paramecia while those infected gain resistance from their symbionts. The killer trait is therefore considered as competitive advantage for the hosts of R-body producers. While its effectiveness against paramecia is well documented, the effects on other aquatic ciliates are much less studied.In order to address the broadness of the killer trait, a reproducible killer test assay considering the effects on predatory ciliates (Climacostomum virens and Dileptus jonesi) as well as potential bacterivorous Paramecium competitors (Dexiostoma campyla, Euplotes aediculatus, Euplotes woodruffi, and Spirostomum teres) as possibly susceptible species was established. All used organisms were molecularly characterized to increase traceability and reproducibility. The absence of any lethal effects in both predators and competitors after exposure to killer paramecia strongly suggests a narrow action range for the killer trait. Thus, R-body producing bacteria provide their host with a complex, costly strategy to outcompete symbiont-free congeners only.  相似文献   

4.
Summary. Holospora obtusa is a Gram-negative bacterium inhabiting the macronucleus of the ciliate Paramecium caudatum. Experimental infection with H. obtusa was carried out under nocodazole treatment. Nocodazole has been shown to cause disassembly of the cytoplasmic microtubules radiating from the cytopharynx and postoral fibers in P. caudatum. Treatment with this drug did not prevent the ingestion of both prey bacteria and H. obtusa, but it reduced the phagosome number and affected cyclosis. In situ hybridization revealed infectious forms of this endobiont very close to the macronucleus, but never inside it. These results indicate that disassembly of microtubules does not impair transportation of the infectious forms of H. obtusa in the cytoplasm, but that it completely blocks the invasion of the nucleus by the bacteria. Correspondence and reprints: Department of Cytology and Histology, Faculty of Biology and Soil Sciences, Saint Petersburg State University, Universitetskaya naberezhnaya 7/9, 199034 Saint Petersburg, Russia.  相似文献   

5.
The ultrastructure of the symbiont Holospora caryophila found in the macronucleus of Paramecium biaurelia has been studied in the electron microscope following preparation by thin sections, negative staining and shadow-casting techniques. Holospora were identified by their characteristic morphology of slender elongated cells when seen in whole mounts in negative stain or contrasted with shadowing. The long forms were seen to possess a helical configuration, also an asymmetrical shape.Thin sections of Holospora revealed the cell envelope structure consistent with a Gram-negative organism. A complex network of internal membranes, together with a relatively electron transparent region at one end of the cytoplasm, was frequently observed.  相似文献   

6.
ABSTRACT. The bacterium Holospora is an endonuclear symbiont of the ciliate Paramecium. Previously, we reported that paramecia bearing the macronuclear‐specific symbiont Holospora obtusa survived better than symbiont‐free paramecia, even under high temperatures unsuitable for growth. The paramecia with symbionts expressed high levels of hsp70 mRNAs even at 25 °C, a usual growth temperature. We report herein that paramecia bearing the micronuclear‐specific symbiont Holospora elegans also acquire the heat‐shock resistance. Even after the removal of the bacteria from the hosts by treatment with penicillin, the resulting aposymbiotic paramecia nevertheless maintained their heat shock‐resistant nature for over 1 yr. Like symbiotic paramecia, these aposymbiotic paramecia also expressed high levels of both hsp60 and hsp70 mRNAs even at 25 °C. Moreover, analysis by fluorescent in situ hybridization with a probe specific for Holospora 16S rRNA revealed that the 16S rRNA of H. elegans was expressed around the nucleoli of the macronucleus in the aposymbiotic cells. This result suggests the possible transfer of Holospora genomic DNA from the micronucleus into the macronucleus in symbiotic paramecia. Perhaps this exogenous DNA could trigger the aposymbiotic paramecia to induce a stress response, inducing higher expression of Hsp60 and Hsp70, and thus conferring heat‐shock resistance.  相似文献   

7.
SYNOPSIS. Some of the serotypes in Paramecium caudatum are described in this paper. Immobilization antigens of P. caudatum have been obtained by extracting paramecia in a dilute salt solution containing 15% alcohol. Immobilization antigen F from stock 162 has been isolated and has a sedimentation coefficient of 9.3 Svedbergs, diffusion coefficient of 2.3 × 10-7 cm/sec, and molecular weight of approximately 340,000.  相似文献   

8.
Parasites frequently share their host populations with other parasites. However, little is known about how different parasites respond to competition with diverse competitor species in the within‐host and between‐host environments. We explored the repeatability of competition by simultaneously exposing microcosm populations of the ciliate Paramecium caudatum to pairs of parasites from the Holospora species complex (H. undulata, H. caryophila and H. obtusa). We measured how competition affected the persistence and prevalence of each compared to single infections, across three host genotypes. Three weeks post‐inoculation we identified the presence of each parasite using fluorescence in situ hybridisation (FISH). Competitive exclusion (62/72) was more common than co‐existence (10/72) in populations inoculated with two parasites. There was a clear pattern of competitive superiority, with H. caryophila persisting in all doubly inoculated populations (with either H. undulata or H. obtusa), and H. undulata tending to exclude H. obtusa. This mirrored infection success in single infections, with H. caryophila having a higher infection prevalence in single inoculations, followed by H. undulata then H. obtusa. The probability of persistence in co‐inoculations did not change across the different host genotypes, and prevalence was the same as in single infections. Our results are consistent with superinfection models, which assume the competitive exclusion of parasites upon contact within the same host. Furthermore, such non‐random competitive epidemiological dynamics, where one parasite always wins, may be of interest for public health management, especially if the winning parasite is avirulent, as is seemingly the case here.  相似文献   

9.
Aphidicolin, a selective inhibitor of DNA polymerase, totally blocks DNA replication in the micronucleus but not in the macronucleus of Paramecium caudatum. The ciliates no longer divide and after 4 days the DNA content of the macronucleus has increased by 64%. Concomitantly the cell volume has increased by 53%.  相似文献   

10.
We obtained a monoclonal antibody (MA-1) specific for macronuclei of the ciliate Paramecium caudotum and P. dubosqui. Immunoblotting showed that the antigen was a poly-peptide of 50 kilodalton (kDa). During the process of nuclear differentiation in P. caudatum, the MA-1 antigens appeared in the macronuclear anlagen immediately after four out of eight post zygotic nuclei differentiated morphologically into the macro-nuclear anlagen. Afterwards, the antigens could be detected in the macronucleus through the cell cycle, and disappeared when the macronucleus began to degenerate in exconjugant cells. These results suggest that the antigens may play a role in the differentiation and function of the macronucleus. © 1992 Wiley-Liss, Inc.  相似文献   

11.
12.
Kazuyuki Mikami 《Chromosoma》1979,73(1):131-142
An exconjugant cell of Paramecium caudatum has two kinds of macronuclei, fragmented prezygotic macronuclei and postzygotic new macronuclei (anlagen). Although the DNA synthesis in the fragmented prezygotic macronucleus continues until the third cell cycle after conjugation, selective suppression of the DNA synthesis in the prezygotic macronucleus takes place at the fourth cell cycle. The inhibition of DNA synthesis in prezygotic fragmented macronuclei is due to the presence of a postzygotic macronucleus (anlage) in the same cytoplasm because the inhibition does not occur when the postzygotic macronucleus (anlage) is removed by micromanipulation during the third or fourth cell cycle. Well-developed postzygotic macronuclei (anlagen) with full ability to divide have the ability to depress the DNA synthesis of prezygotic macronuclear fragments. The suppression of DNA synthesis in prezygotic macronuclear fragments seems to be irreversible. Competition for the limited amount of DNA precursors also plays an important role in the onset of the selective suppression of the DNA synthesis.  相似文献   

13.
Parasites with exclusive vertical transmission from host parent to offspring are an evolutionary puzzle. With parasite fitness entirely linked to host reproduction, any fitness cost for infected hosts risks their selective elimination. Environmental conditions likely influence parasite impact and thereby the success of purely vertical transmission strategies. We tested for temperature‐dependent virulence of Caedibacter taeniospiralis, a vertically transmitted bacterial symbiont of the protozoan Paramecium tetraurelia. We compared growth of infected and cured host populations at five temperatures (16–32 °C). Infection reduced host density at all temperatures, with a peak of ?30% at 28 °C. These patterns were largely consistent across five infected Paramecium strains. Similar to Wolbachia symbionts, C. taeniospiralis may compensate fitness costs by conferring to the host a ‘killer trait’, targeting uninfected competitors. Considerable loss of infection at 32 °C suggests that killer efficacy is not universal and that limited heat tolerance restricts the conditions for persistence of C. taeniospiralis.  相似文献   

14.
Intracellular bacteria of the genus Caedibacter limit the reproduction of their host, the freshwater ciliate Paramecium. Reproduction rates of infected strains of paramecia were significantly lower than those of genetically identical strains that had lost their parasites after treatment with an antibiotic. Interference competition occurs when infected paramecia release a toxic form of the parasitic bacterium that kills uninfected paramecia. In mixed cultures of infected and uninfected strains of either P tetraurelia or of P novaurelia, the infected strains outcompeted the uninfected strains. Infection of new host paramecia seems to be rare. Infection of new hosts was not observed in either mixtures of infected with uninfected strains, or after incubation of paramecia with isolated parasites. The competitive advantages of the host paramecia, in combination with their vegetative reproduction, makes infection of new hosts by the bacterial parasites unnecessary, and could be responsible for the continued existence of "killer paramecia" in nature. Caedibacter parasites are not a defensive adaptation. Feeding rates and reproduction of the predators Didinium nasutum (Ciliophora) and Amoeba proteus (Amoebozoa, Gymnamoebia) were not influenced by whether or not their paramecia prey were infected. Infection of the predators frequently occurred when they preyed on infected paramecia. Caedibacter-infected predators may influence competition between Paramecium strains by release of toxic parasites into the environment that are harmful to uninfected strains.  相似文献   

15.
Wada S  Watanabe T 《Genetica》2007,131(3):307-314
Mitogen-activated protein (MAP) kinases, a closely related family of protein kinases, are involved in cell cycle regulation and differentiation in yeast and human cells. They have not been documented in ciliates. We used PCR to amplify DNA sequences of a ciliated protozoan—Paramecium caudatum—using primers corresponding to amino acid sequences that are common to MAP kinases. We isolated and sequenced one putative MAP kinase-like serine/threonine kinase cDNA from P. caudatum. This cDNA, called pcstk1 (Paramecium caudatum Serine/Threonine Kinase 1) shared approximately 35% amino acid identity with MAP kinases from yeast. MAP kinases are activated by phosphorylation of specific threonine and tyrosine residues. These two amino acid residues are conserved in the PCSTK1 sequence at positions Thr 159 and Tyr 161. The PSTAIRE motif, which is characteristic of the CDK2 gene family, cannot be found in ORF of PCSTK1. The highest homology score was to human STK9, which contains MAP type kinase domains. Comparisons of expression level have shown that pcstk1 is expressed equally in cells at different stages (sexual and asexual). We discussed the possibility, as in other organisms, that a family of MAP kinase genes exists in P. caudatum.  相似文献   

16.
Paramecium novaurelia Beale and Schneller, 1954, was first found in Scotland and is known to occur mainly in Europe, where it is the most common species of the P. aurelia complex. In recent years, two non-European localities have been described: Turkey and the United States of America. This article presents the analysis of intraspecific variability among 25 strains of P. novaurelia with the application of ribosomal and mitochondrial loci (ITS1-5.8S-ITS2, 5′ large subunit rDNA (5′LSU rDNA) and cytochrome c oxidase subunit 1 (COI) mtDNA). The mean distance observed for all of the studied P. novaurelia sequence pairs was p = 0.008/0.016/0.092 (ITS1-5.8S-ITS2/5′LSU rDNA/COI). Phylogenetic trees (NJ/MP/BI) based on a comparison of all of the analysed sequences show that the studied strains of P. novaurelia form a distinct clade, separate from the P. caudatum outgroup, and are divided into two clusters (A and B) and two branches (C and D). The occurrence of substantial genetic differentiation within P. novaurelia, confirmed by the analysed DNA fragments, indicates a rapid evolution of particular species within the Paramecium genus.  相似文献   

17.
Summary New intracellular bacteria were detected in the cytoplasm ofParamecium calkinsi andP. putrinum. Some of the bacteria were not evenly distributed in the cytoplasm of the host but were found in the center of the cell, eventually near the nuclei, but not in the cortex area, whereas another species was found in the cortex area. These peculiarities of intracellular bacteria localization in the host suggest that the conditions in various parts of the cytoplasm favor bacterial maintenance to different extent. Due to the results obtained by transmission electron microscopy and in situ hybridization using appropriate oligonucleotide probes, the bacteria, three or possibly four species, are Gram-negative and belong to the alpha-subgroup of proteobacteria. Bacteria from one stock ofP. calkinsi were found to be infectious for bacteria-free cells ofP. calkinsi andP. nephridiatum.  相似文献   

18.
1. Irradiation with three short ultraviolet (UV) wave lengths, 226, 233, and 239 mµ rapidly immobilizes Paramecium caudatum, the dosage required being smaller the shorter the wave length. 85 per cent of paramecia immobilized with wave length 226 mµ recover completely. Recovery from immobilizing doses is less the longer the wave length. 2. Irradiation continued after immobilization kills the paramecia in a manner which is markedly different for very short (226, 233, and 239 mµ) and longer (267 mµ) wave lengths. 3. An action spectrum for immobilization in P. caudatum was determined for the wave lengths 226, 233, 239, 248, and 267 mµ, and found to resemble the absorption of protein and lipide in the wave length region below 248 mµ. Addition of these data to those of Giese (1945 b) gives an action spectrum resembling the absorption by albumin-like protein. 4. Division of P. caudatum is delayed by doses of wave lengths 226, 233, and 239 mµ which cause immobilization, the longest wave length being most effective. 5. Immobilization at any of the wave lengths tested (226, 233, 239, 248, 267 mµ) is not photoreversible when UV-treated paramecia are concurrently illuminated. 6. Division delay resulting from immobilizing doses of 226, 233, and 239 mµ is photoreversible by exposure to visible light concurrently with the UV. 7. Division delay induced by exposure to wave length 267 mµ is reduced by exposure to visible light applied concurrently with UV or immediately afterwards. 8. The data suggest that the shortest UV wave length tested (226 mµ) affects the cytoplasm selectively, because it is absorbed superficially as indicated by unilateral fluorescence in UV. Consequently it immobilizes paramecia rapidly but has little effect on the division rate because little radiation reaches the nucleus. 9. The data support the view that nuclear effects of UV are readily photoreversed but cytoplasmic effects are not.  相似文献   

19.
A single cell of the green paramecia (Paramecium bursaria) harbors several hundreds of endo-symbiotic Chlorella-like algae in its cytoplasm. Removal of algae from the host organism and re-association of ex-symbiotic host paramecia with ex-symbiotic algae can be experimentally demonstrated in the laboratory. However, the mechanism precisely governing the alga-protozoan association is not fully understood, and the origin of symbiosis in the evolutionary view has not been given. Here, we propose the possible biochemical models (models 1 and 2) explaining the co-evolution between Paramecium species and algal symbionts by pointing out that algal photosynthesis in the host paramecia plays a dual role providing the energy source and the risk of oxidative damage to the host. Model 1 lays stress on the correlation between the (re)greening ability of the paramecia and the tolerance to oxidative stress whereas model 2 emphasizes the cause of evolutionary selection leading to the emergence of Paramecium species tolerant against reactive oxygen species.  相似文献   

20.
Obligate bacterial endosymbionts of paramecia able to form refractile inclusion bodies (R bodies), thereby conferring a killer trait upon their ciliate hosts, have traditionally been grouped into the genus CAEDIBACTER: Of the six species described to date, only the Paramecium caudatum symbiont Caedibacter caryophilus has been phylogenetically characterized by its 16S rRNA gene sequence, and it was found to be a member of the Alphaproteobacteria related to the RICKETTSIALES: In this study, the Caedibacter taeniospiralis type strain, an R-body-producing cytoplasmatic symbiont of Paramecium tetraurelia strain 51k, was investigated by comparative 16S rRNA sequence analysis and fluorescence in situ hybridization with specific oligonucleotide probes. C. taeniospiralis is not closely related to C. caryophilus (80% 16S rRNA sequence similarity) but forms a novel evolutionary lineage within the Gammaproteobacteria with the family Francisellaceae as a sister group (87% 16S rRNA sequence similarity). These findings demonstrate that the genus Caedibacter is polyphyletic and comprises at least two phylogenetically different bacterial species belonging to two different classes of the PROTEOBACTERIA: Comparative phylogenetic analysis of C. caryophilus, five closely related Acanthamoeba endosymbionts (including one previously uncharacterized amoebal symbiont identified in this study), and their hosts suggests that the progenitor of the alphaproteobacterial C. caryophilus lived within acanthamoebae prior to the infection of paramecia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号