首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chang IF 《Proteomics》2006,6(23):6158-6166
In recent years, MS has been widely used to study protein complex in eukaryotes. The identification of interacting proteins of a particular target protein may help defining protein-protein interaction and proteins of unknown functions. To isolate protein complexes, high-speed ultracentrifugation, sucrose density-gradient centrifugation, and coimmunoprecipitation have been widely used. However, the probability of getting nonspecific binding is comparatively high. Alternatively, by use of one- or two-step (tandem affinity purification) epitope-tag affinity purification, protein complexes can be isolated by affinity or immunoaffinity columns. These epitope-tags include protein A, hexahistidine (His), c-Myc, hemaglutinin (HA), calmodulin-binding protein, FLAG, maltose-binding protein, Strep, etc. The isolated protein complex can then be subjected to protease (i.e., trypsin) digestion followed by an MS analysis for protein identification. An example, the epitope-tag purification of the Arabidopsis cytosolic ribosomes, is addressed in this article to show the success of the application. Several representative protein complexes in eukaryotes been isolated and characterized by use of this approach are listed. In this review, the comparison among different tag systems, validation of interacting relationship, and choices of MS analysis method are addressed. The successful rate, advantages, limitations, and challenges of the epitope-tag purification are also discussed.  相似文献   

3.
In Mycobacterium tuberculosis (Mtb), regulatory phosphorylation of proteins at serine and/or threonine residues by serine/threonine protein kinases (STPKs) is an emerging theme connected with the involvement of these enzymes in virulence mechanisms. The identification of phosphorylation sites in proteins provides a powerful tool to study signal transduction pathways and to identify the corresponding interaction networks. Detection of phosphorylated proteins as well as assignment of the phosphorylated sites in STPKs is a major challenge in proteomics since some of these enzymes might be interesting therapeutical targets. Using different strategies to identify phosphorylated residues, we report, in the present work, MS studies of the entire intracellular regions of recombinant protein kinases PknA, PknD, PknE, and PknH from Mtb. The on-target dephosphorylation/MALDI-TOF for identification of phosphorylated peptides was used in combination with LC-ESI/MS/MS for localization of phosphorylation sites. By doing so, seven and nine phosphorylated serine and/or threonine residues were identified as phosphorylation sites in the recombinant intracellular regions of PknA and PknH, respectively. The same technique led also to the identification of seven phosphorylation sites in each of the two recombinant kinases, PknD and PknE.  相似文献   

4.
Cha T  Guo A  Zhu XY 《Proteomics》2005,5(2):416-419
We compare the catalytic activities of enzymes immobilized on silicon surfaces with and without orientation. While oriented sulfotransferases selectively immobilized on an otherwise zero-background surface via 6xHis tags faithfully reflect activities of solution phase enzymes, those with random orientation on the surface do not. This finding demonstrates that controlling the orientation of immobilized protein molecules and designing an ideal local chemical environment on the solid surface are both essential if protein microarrays are to be used as quantitative tools in biomedical research.  相似文献   

5.
A series of silica-based bifunctional adsorbents containing both metal-chelating groups and epoxy groups for the concomitant purification and immobilization of His-tagged protein switch RG13, a potential bioreceptor for developing maltose biosensors, were prepared by controlling the ratio of iminodiacetic acid-conjugated silane (GLYMO-IDA) and silane (GLYMO) used for surface modification. The bifunctional adsorbent prepared with a [GLYMO-IDA]/[GLYMO] ratio of 0.2, containing a [metal chelating group]/[epoxy group] ratio of 1.42, was shown to exhibit a metal chelating capacity of 88.42 ± 15.91 μmole Cu2+/g, a protein adsorption capacity of 1.81 ± 0.19 mg/g and a superior selectivity over the other bifunctional adsorbents. Results of kinetic studies showed that selective adsorption and covalent bond formation at 4 °C were achieved in 1 h and 15 h, respectively, which allowed the sequential adsorption and covalent immobilization of protein switch RG13. A protein immobilization yield of 94.6 % and a global activity yield of 63.4 % were obtained, giving an immobilized protein switch RG13 with an enzymatic activity of 4.57 ± 0.19 U/g, under optimal conditions at pH 8.0 and 40 °C. In the repeated-batch operation, the bifunctional adsorbent-immobilized RG13 retained 91 % of the original activity after 20 cycles, 39 % higher than the counterpart prepared with monofunctional metal chelate adsorbent mediated solely by coordinate linkages.  相似文献   

6.
AMP-activated protein kinase (AMPK) is responsible for sensing of the cell’s energetic status and it phosphorylates numerous substrates involved in anabolic and catabolic processes as well as interacting with signaling cascades. Mutations in the gene encoding the γ2 regulatory subunit have been shown to cause hypertrophic cardiomyopathy (HCM) with conduction abnormalities. As part of a study to examine the role of AMPK in the heart, we tested whether specific domains of the thick filament component cardiac myosin binding protein-C (cMyBP-C) were good in vitro AMPK substrates. The commercially available pET28a expression vector was used to generate a recombinant form of the cMyBP-C C8 domain as a fusion protein with a hexahistidine tag. In vitro phosphorylation with activated kinase showed that the purified fusion protein was a good AMPK substrate, phosphorylated at a similar rate to the control SAMS peptide and with phosphate incorporation specifically in serine residues. However, subsequent analysis of alanine replacement mutants and thrombin digestion revealed that the strong AMPK phosphorylation site was contained within the thrombin cleavage sequence encoded by the vector. As this sequence is common to many commercial pET vectors, caution is advised in the mapping of AMPK phosphorylation sites when this sequence is present.  相似文献   

7.
Over the past 10 years, the baculovirus-insect cell system has become a powerful and versatile tool for the expression of a variety of heterologous proteins. In order to simplify separation of a cloned protein from the baculovirus-insect expression system, we have cloned a gene encoding for the protein of interest, a structural protein (VP2) of a strain (E/DEL) of infectious bursal disease virus (IBDV), with a metal ion binding site (His)(5) at its C-terminus. This chimeric protein (VP2H) has been expressed and one-step affinity purified with immobilized metal ions (Ni(+2)). With antigen capture-enzyme-linked immunosorbent assay (AC-ELISA), we determined that the conformation of this chimeric protein was no different from the recombinant wild-type VP2 protein. However, the two proteins (VP2 and VP2H) can be distinguished and resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and detected immunologically following Western blotting. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
9.
Tristetraprolin (TTP) is an mRNA-binding protein, but studies of this interaction have been difficult due to problems with the purification of recombinant TTP. In the present study, we expressed human and mouse TTP as glutathione S-transferase and maltose-binding protein (MBP) fusion proteins in Escherichia coli, and purified them by affinity resins and Mono Q chromatography. TTP cleaved from the fusion protein was identified by immunoblotting, MALDI-MS, and protein sequencing, and was further purified to homogeneity by continuous-elution SDS-gel electrophoresis. Purified recombinant TTP bound to the AU-rich element of tumor necrosis factor-alpha (TNFalpha) mRNA and this binding was dependent on Zn(2+). Results from sizing columns suggested that the active species might be in the form of an oligomer of MBP-TTP. Recombinant TTP was phosphorylated by three members of the mitogen-activated protein (MAP) kinase family, p42, p38, and JNK, with half-maximal phosphorylation occurring at approximately 0.5, 0.25, and 0.25 microM protein, respectively. Phosphorylation by these kinases did not appear to affect the ability of TTP to bind to TNFalpha mRNA under the assay conditions. This study describes a procedure for purifying nonfusion protein TTP to homogeneity, demonstrates that TTP's RNA-binding activity is zinc dependent, and that TTP can be phosphorylated by JNK as well as by the other members of the greater MAP kinase family.  相似文献   

10.
Although Mycobacterium tuberculosis (M. tb) comprises 11 serine/threonine protein kinases, the mechanisms of regulation of these kinases and the nature of their endogenous substrates remain largely unknown. Herein, we characterized the M. tb kinase PknL by demonstrating that it expresses autophosphorylation activity and phosphorylates Rv2175c. On-target dephosphorylation/MALDI-TOF for identification of phosphorylated peptides was used in combination with LC-ESI/MS/MS for localization of phosphorylation sites. By doing so, five phosphorylated threonine residues were identified in PknL. Among them, we showed that the activation loop phosphorylated residues Thr173 and Thr175 were essential for the autophosphorylation activity of PknL. Phosphorylation of the activation loop Thr173 residue is also required for optimal PknL-mediated phosphorylation of Rv2175c. Together, our results indicate that phosphorylation of the PknL activation loop Thr residues not only controls PknL kinase activity but is also required for recruitment and phosphorylation of its substrate. Rv2175c was found to be phosphorylated when overexpressed and purified from Mycobacterium smegmatis as 2-DE indicated the presence of different phosphorylated isoforms. Given the presence of the dcw gene cluster in the close vicinity of the pknL/Rv2175c locus, and its conservation in all mycobacterial species, we propose that PknL/Rv2175c may represent a functional pair in the regulation of mycobacterial cell division and cell envelope biosynthesis.  相似文献   

11.
This work combines two well-established technologies to generate a breakthrough in protein production and purification. The first is the production of polyhydroxybutyrate (PHB) granules in engineered strains of Escherichia coli. The second is a recently developed group of self-cleaving affinity tags based on protein splicing elements known as inteins. By combining these technologies with a PHB-specific binding protein, a self-contained protein expression and purification system has been developed. In this system, the PHB-binding protein effectively acts as an affinity tag for desired product proteins. The tagged product proteins are expressed in E. coli strains that also produce intracellular PHB granules, where they bind to the granules via the PHB-binding tag. The granules and attached proteins can then be easily recovered following cell lysis by simple mechanical means. Once purified, the product protein is self-cleaved from the granules and released into solution in a substantially purified form. This system has been successfully used at laboratory scale to purify several active test proteins at reasonable yield. By allowing the bacterial cells to effectively produce both the affinity resin and tagged target protein, the cost associated with the purification of recombinant proteins could be greatly reduced. It is expected that this combination of improved economics and simplicity will constitute a significant breakthrough in both large-scale production of purified proteins and enzymes and high-throughput proteomics studies of peptide libraries.  相似文献   

12.
To extend the (strept)avidin-biotin technology for affinity purification of proteins, development of reusable biochips and immobilized enzyme bioreactors, selective immobilization of a protein of interest from a crude sample to a protein array without protein purification and many other possible applications, the (strept)avidin-biotin interaction is better when reversible. A gentle enzymatic method to introduce a biotin analog, desthiobiotin, in a site-specific manner to recombinant proteins carrying a biotinylation tag has been developed. The optimal condition for efficient in vitro desthiobiotinylation catalyzed by Escherichia coli biotin ligase (BirA) in 1-4h has been established by systematically varying the substrate concentrations, reaction time, and pH. Real desthiobiotinylation in the absence of any significant biotinylation using this enzymatic method was confirmed by mass spectrometric analysis of the desthiobiotinylated tag. This approach was applied to affinity purify desthiobiotinylated staphylokinase secreted by recombinant Bacillus subtilis to high purity and with good recovery using streptavidin-agarose. The matrix can be regenerated for reuse. This study represents the first successful application of E. coli BirA to incorporate biotin analog to recombinant proteins in a site-specific manner.  相似文献   

13.
The recombinant expression of eukaryotic proteins in Escherichia coli often results in protein aggregation. Several articles report on improved solubility and increased purification yields of individual proteins upon over-expression of E. coli chaperones but this effect might potentially be protein-specific. To find out whether chaperone over-expression is a generally applicable strategy for the production of human protein kinases in E. coli, we analyzed 10 kinases, mainly as catalytic domain constructs. The kinases studied, namely c-Src, c-Abl, Hck, Lck, Igf1R, InsR, KDR, c-Met, b-Raf and Irak4, belong to the tyrosine and tyrosine kinase-like groups of kinases. Upon over-expression of the E. coli chaperones DnaK/DnaJ/GrpE and GroEL/GroES, the yields of 7 from 10 polyhistidine-tagged kinases were increased up to 5-fold after nickel-affinity purification (IMAC). Additive over-expression of the chaperones ClpB and/or trigger factor showed no further improvement. Co-purification of DnaJ and GroEL indicated incomplete kinase folding, therefore, the oligomerization state of the kinases was determined by size-exclusion chromatography. In our study, kinases behave in three different ways. Kinases where yields are not affected by E. coli chaperone over-expression e.g. c-Src elute in the monomeric fraction (category I). Although IMAC yields increase upon chaperone over-expression, InsR and b-Raf kinase are present as soluble aggregates (category II). Igf1R and c-Met kinase catalytic domains are partially complexed with E. coli chaperones upon over-expression; however, they show 2-fold increased yields of monomer (category III). Together, our results suggest that the benefits of chaperone over-expression on the production of protein kinases in E. coli are indeed case-specific.  相似文献   

14.
Adenosine 5′‐O‐(3‐thiotriphosphate) (ATPγS) has been widely used as a phosphoryl donor to trace protein kinase activities. However, the question remains whether particular kinases accept ATPγS as readily as they accept natural ATP. We investigated the characteristics of several kinase reactions in the presence of ATPγS by using Phos‐tag affinity electrophoresis. The Phos‐tag gel permitted quantitative analysis of thiophosphorylated proteins produced by kinase reactions in vitro and it identified differences in the efficiencies of utilization of ATPγS and ATP in these reactions. Using the method, we evaluated the utility of ATPγS as a phosphoryl donor in studies on bacterial two‐component systems. Histidine kinases accepted ATPγS as readily as they accepted ATP in autophosphorylation reactions. However, downstream phosphotransfer reactions with ATPγS were markedly slower than the corresponding reactions with ATP. In an analysis of the sluggish thiophosphate transfer, we found that detergent‐denatured thiophosphorylated histidine kinases gradually hydrolyzed at the P–N bond, even at neutral pH, during incubation for 24 h, whereas the native form of the thiophosphorylated enzymes were much more stable. Profiling of protein thiophosphorylation by using Phos‐tag affinity electrophoresis might provide new insights into the characteristics of various types of kinase reactions with ATPγS.  相似文献   

15.
Proteolytic cleavage of protein kinase C (PKC) under cell-free conditions generates a co-factor independent, free catalytic subunit (PKM). However, the difficulty in visualizing PKM in intact cells has generated controversy regarding its physiological relevance. In the present study, treatment of SH-SY-5Y cells with 2-O-tetradecanoylphorbol 13-acetate resulted in complete down-regulation of PKC within 24 h without detection of PKM. By contrast, low levels of PKM were transiently detected following ionophore-mediated calcium influx under conditions which induced no detectable PKC loss. PKM was not detected during rapid cell-free degradation of partially purified SH-SY-5Y PKCα by purified human brain mM calpain. However, when the kinetics of PKC degradation were slowed by lowering levels of calpain, PKM was transiently detected. PKM was also only transiently observed following calpain-mediated degradation of purified rat brain PKCα. Densitometric analyses indicated that, once formed, PKM was degraded approximately 10 times faster than PKC. These data provide an explanation as to why PKM is difficult to observe in situ, and indicate that PKM should not be considered as an ‘unregulated’ kinase, since its persistence is apparently strictly regulated by proteolysis.  相似文献   

16.
The chemical modification of amino acid side-chains followed by mass spectrometric detection can reveal at least partial information about the 3-D structure of proteins. In this work we tested diethylpyrocarbonate, as a common histidyl modification agent, for this purpose. Appropriate conditions for the reaction and detection of modified amino acids were developed using angiotensin II as a model peptide. We studied the modification of several model proteins with a known spatial arrangement (insulin, cytochrome c, lysozyme and human serum albumin). Our results revealed that the surface accessibility of residues is a necessary, although in itself insufficient, condition for their reactivity; the microenvironment of side-chains and the dynamics of protein structure also affect the ability of residues to react. However the detection of modified residues can be taken as proof of their surface accessibility, and of direct contact with solvent molecules.  相似文献   

17.
Protein phosphorylation is a major mode of regulation of metabolism, gene expression, and cell architecture. A combination of phosphopeptide enrichment strategies based on TiO2 and IMAC in addition to our MudPIT strategy revealed the detection of 181 phosphorylation sites which are located on 125 potentially plastidic proteins predicted by GoMiner, TargetP/Predotar in Arabidopsis thaliana. In our study phosphorylation on serine is favored over threonine and this in turn over phosphorylation on tyrosine residues, showing a percentage of 67.4% to 24.3% to 8.3% for pS:pT:pY. Four phosphorylated residues (S208, Y239, T246 and T330), identified by our approach have been fitted to the structure of the activated form of spinach RuBisCO, which are located in close proximity to the substrate binding site for ribulosebisphosphate. Potentially, these phosphorylation sites exert a direct influence on the catalytic activity of the enzyme. Such examples show nicely the value of the presented mass spectrometric dataset for further biochemical applications, since alternative mutation analysis often turns out to be unsuccessful, caused by mutations in essential proteins which result in lethal phenotypes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Since Svf1 is phosphoprotein, we investigated whether it was a substrate for protein kinase CK2. According to the amino acid sequence Svf1 harbours 20 putative CK2 phosphorylation sites. Here, we have reported cloning, overexpression, purification and characterization of yeast Svf1 as a substrate for three forms of yeast CK2. Svf1 serves as a substrate for both the recombinant CK2α (K m 0.35 μM) and CK2α′ (K m 0.18 μM) as well as CK2 holoenzyme (K m 1.1 μM). Different K m values argue that CK2β(β′) subunit has an inhibitory effect on the activity of both CK2α and CK2α′ towards surviving factor Svf1. Reconstitution of α′2ββ′ isoform of CK2 holoenzyme shows that β/β′ subunits have regulatory effect depending on the kind of CK2 catalytic subunit. This effect was not observed in the case of α2ββ′ isoform, which may be due to interaction between Svf1 and regulatory CK2β subunit (shown by co-immunoprecipitation experiments). Interactions between CK2 subunits and Svf1 protein may have influence on ATP as well as ATP-competitive inhibitors (TBBt and TBBz) binding. CK2 phosphorylates up to six serine residues in highly acidic peptide K199EVIPESDEEESSADEDDNEDEDEESGDSEEESGSEEESDSEEVEITYED248 of the Svf1 protein in vitro. Presented data may help to elucidate the role of protein kinase CK2 and Svf1 in the regulation of cell survival pathways.  相似文献   

19.
To characterize the role of Cx31 phosphorylation, serine residues 263 and 266 (Cx31Delta263,266) or 266 (Cx31Delta266) alone were exchanged for amino acids that cannot be phosphorylated. HeLa cells, which were stably transfected with wild type and the two different mutant Cx31-cDNA constructs, were analyzed for expression, phosphorylation, localization, formation of functional gap junction channels, and degradation of mutant Cx31 protein. Both mutant proteins showed similar reduced phosphorylation levels compared to Cx31 wild type, indicating a pivotal role of serine residue 266 for Cx31 phosphorylation. None of these mutations did interfere with correct intracellular trafficking of gap junction proteins. Pulse chase experiments with the different transfectants revealed an increased turnover of both mutated Cx31 proteins. They showed decreased intercellular communication as shown by dye transfer to neighboring cells and measurement of total conductance (mutant Cx31Delta263,266). Mutated Cx31 protein (Cx31Delta263,266) diminished the function of the Cx31 wild-type protein dependent on the amount of the mutated protein, indicating a dominant-negative effect of the mutated protein in HeLa cells.  相似文献   

20.
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG‐binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin‐binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three‐tag system comprised of CBP, streptavidin‐binding peptide (SBP) and hexa‐histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP‐His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号