首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMP deaminase (AMPD) converts AMP to IMP and is a diverse and highly regulated enzyme that is a key component of the adenylate catabolic pathway. In this report, we identify the high affinity interaction between AMPD and phosphoinositides as a mechanism for regulation of this enzyme. We demonstrate that endogenous rat brain AMPD and the human AMPD3 recombinant enzymes specifically bind inositide-based affinity probes and to mixed lipid micelles that contain phosphatidylinositol 4,5-bisphosphate. Moreover, we show that phosphoinositides specifically inhibit AMPD catalytic activity. Phosphatidylinositol 4,5-bisphosphate is the most potent inhibitor, effecting pure noncompetitive inhibition of the wild type human AMPD3 recombinant enzyme with a K(i) of 110 nM. AMPD activity can be released from membrane fractions by in vitro treatment with neomycin, a phosphoinositide-binding drug. In addition, in vivo modulation of phosphoinositide levels leads to a change in the soluble and membrane-associated pools of AMPD activity. The predicted human AMPD3 sequence contains pleckstrin homology domains and (R/K)X(n)(R/K)XKK sequences, both of which are characterized phosphoinositide-binding motifs. The interaction between AMPD and phosphoinositides may mediate membrane localization of the enzyme and function to modulate catalytic activity in vivo.  相似文献   

2.
Mahnke DK  Sabina RL 《Biochemistry》2005,44(14):5551-5559
Erythrocyte AMP deaminase [isoform E (AMPD3)] is activated in response to increased intracellular calcium levels in Tarui's disease, following exposure of ionophore-treated cells to extracellular calcium, and by the addition of calcium to freshly prepared hemolysates. However, the assumption that Ca(2+) is a positive effector of isoform E is inconsistent with the loss of sensitivity to this divalent cation following dilution of erythrocyte lysates or enzyme purification. Ca(2+) regulation of isoform E was studied by examining in vitro effects of calmodulin (CaM) on this enzyme and by monitoring the influence of CaM antagonists on purine catabolic flow in freshly prepared erythrocytes under various conditions of energy imbalance. Erythrocyte and recombinant isoform E both adsorb to immobilized Ca(2+)-CaM, and relative adsorption across a series of N-truncated recombinant enzymes localizes CaM binding determinants to within residues 65-89 of the AMPD3 polypeptide. Ca(2+)-CaM directly stimulates isoform E catalytic activity through a K(mapp) effect and also antagonizes the protein-lipid interaction between this enzyme and intracellular membranes that inhibits catalytic activity. AMP is the predominant purine catabolite in erythrocytes deprived of glucose or exposed to A23187 ionophore alone, whereas IMP accumulates when Ca(2+) is included under the latter conditions and also during autoincubation at 37 degrees C. Preincubation with a CaM antagonist significantly slows the accumulation of erythrocyte IMP under both conditions. The combined results reveal a protein-protein interaction between Ca(2+)-CaM and isoform E and identify a mechanism that advances our understanding of erythrocyte purine metabolism. Ca(2+)-CaM overcomes potent isoform E inhibitory mechanisms that function to maintain the total adenine nucleotide pool in mature erythrocytes, which are unable to synthesize AMP from IMP because of a developmental loss of adenylosuccinate synthetase. This may also explain why Tarui's disease erythrocytes exhibit accelerated adenine nucleotide depletion in response to an increase in intracellular Ca(2+) concentration. This regulatory mechanism could also play an important role in purine metabolism in other human tissues and cells where the AMPD3 gene is expressed.  相似文献   

3.
Adenosine monophosphate deaminase (AMPD; EC 3.5.4.6) catalyses the hydrolysis of adenosine monophosphate (AMP) to commensurate amounts of inosine monophosphate (IMP) and ammonia. The production of AMP deaminase in Candida albicans was measured in Lee's medium grown cultures. The highest AMPD activity was observed at 24 h of growth. The enzyme had an optimum pH and temperature at 6-7 and 28 degrees C, respectively. This enzyme was inhibited under iron-limited growth conditions as well as by protease inhibitors. The AMPD of C. albicans showed a moderate increase in activity when cultures were grown in the presence of the divalent cations Mg2+, Ca2+, and Zn2+. Moreover, ADP, ATP, adenine, adenosine, deoxyribose and hypoxanthine increased the enzyme activity. Cultures grown in trypticase soy broth exhibited maximum AMPD activity compared with those grown in Sabouraud dextrose broth or Lee's medium.  相似文献   

4.
AMP deaminase (AMPD) and adenylate kinase (AK) were purified from skeletal muscle of the white-tailed prairie dog, Cynomus leucurus, and enzyme properties were assayed at temperatures characteristic of euthermia (37 degrees C) and hibernation (5 degrees C) to analyze their role in adenylate metabolism during hibernation. Total adenylates decreased in muscle of torpid individuals from 6.97 +/- 0. 31 to 4.66 +/- 0.58 micromol/g of wet weight due to a significant drop in ATP but ADP, AMP, IMP, and energy charge were unchanged. The affinity of prairie dog AMPD for AMP was not affected by temperature and did not differ from that of rabbit muscle AMPD, used for comparison. However, both prairie dog and rabbit AMPD showed much stronger inhibition by ions and GTP at 5 degrees C, versus 37 degrees C, and inhibition by inorganic phosphate, NH(4)Cl, and (NH(4))(2)SO(4) was much stronger at 5 degrees C for the prairie dog enzyme. Furthermore, ATP and ADP, which activated AMPD at 37 degrees C, were strong inhibitors of prairie dog AMPD at 5 degrees C, with I(50) values of 1 and 14 microM, respectively. ATP also inhibited rabbit AMPD at 5 degrees C (I(50) = 103 microM). Strong inhibition of AMPD at 5 degrees C by several effectors suggests that enzyme function is specifically suppressed in muscle of hibernating animals. By contrast, AK showed properties that would maintain or even enhance its function at low temperature. K(m) values for substrates (ATP, ADP, AMP) decreased with decreasing temperature, the change in K(m) ATP paralleling the decrease in muscle ATP concentration. AK inhibition by ions was also reduced at 5 degrees C. The data suggest that adenylate degradation via AMPD is blocked during hibernation but that AK maintains its function in stabilizing energy charge.  相似文献   

5.
6.
The responses of macrophages to Bacillus anthracis infection are important for the survival of the host, since macrophages are required for the germination of B. anthracis spores in lymph nodes, and macrophage death exacerbates anthrax lethal toxin (LeTx)-induced organ collapse. To elucidate the mechanism of macrophage cell death induced by LeTx, we performed a genetic screen to search for genes associated with LeTx-induced macrophage cell death. RAW 264.7 cells, a macrophage-like cell line sensitive to LeTx-induced death, were randomly mutated and LeTx-resistant mutant clones were selected. AMP deaminase 3 (AMPD3), an enzyme that converts AMP to IMP, was identified to be mutated in one of the resistant clones. The requirement of AMPD3 in LeTx-induced cell death of RAW 264.7 cells was confirmed by the restoration of LeTx sensitivity with ectopic reconstitution of AMPD3 expression. AMPD3 deficiency does not affect LeTx entering cells and the cleavage of mitogen-activated protein kinase kinase (MKK) by lethal factor inside cells, but does impair an unknown downstream event that is linked to cell death. Our data provides new information regarding LeTx-induced macrophage death and suggests that there is a key regulatory site downstream of or parallel to MKK cleavage that controls the cell death in LeTx-treated macrophages.  相似文献   

7.
AMP deaminase (AMPD) is a multigene family in higher eukaryotes whose three members encode tetrameric isoforms that catalyze the deamination of AMP to IMP. AMPD polypeptides share conserved C-terminal catalytic domains of approximately 550 amino acids, whereas divergent N-terminal domains of approximately 200-330 amino acids may confer isoform-specific properties to each enzyme. However, AMPD polypeptides are subject to limited N-terminal proteolysis during purification and subsequent storage at 4 degrees C. This presents a technical challenge to studies aimed at determining the structural and functional significance of these divergent sequences. This study describes the recombinant overexpression of three naturally occurring human AMPD2 proteins, 1A/2, 1B/2, and 1B/3, that differ by N-terminal extensions of 47-128 amino acids, resulting from the use of multiple promoters and alternative splicing events. A survey of protease inhibitors reveals that E-64 and leupeptin are able to maintain the subunit structure of each AMPD2 protein when they are included in extraction and storage buffers. Gel filtration chromatography of these three purified AMPD2 enzymes comprised of intact subunits reveals that each migrates faster than expected, resulting in observed molecular masses significantly greater than those predicted for native tetrameric structures. However, chemical crosslinking analysis indicates four subunits per AMPD2 molecule, confirming that these enzymes have a native tetrameric structure. These combined results suggest that AMPD2 N-terminal extensions may exist as extended structures in solution.  相似文献   

8.
The interplay between ATP generating and utilizing pathways in a cell is responsible for maintaining cellular ATP/energy homeostasis that is reflected by Adenylate Energy Charge (AEC) ratio. Adenylate kinase (AK), that catalyzes inter‐conversion of ADP, ATP and AMP, plays a major role in maintaining AEC and is regulated by cellular AMP levels. Hence, the enzymes AMP deaminase (AMPD) and nucleotidases, which catabolize AMP, indirectly regulate AK activity and in‐turn affect AEC. Here, we present the first report on AMPD from Plasmodium, the causative agent of malaria. The recombinant enzyme expressed in Saccharomyces cerevisiae was studied using functional complementation assay and residues vital for enzyme activity have been identified. Similarities and differences between Plasmodium falciparum AMPD (PfAMPD) and its homologs from yeast, Arabidopsis and humans are also discussed. The AMPD gene was deleted in the murine malaria parasite P. berghei and was found to be dispensable during all stages of the parasite life cycle. However, when episomal expression was attempted, viable parasites were not obtained, suggesting that perturbing AMP homeostasis by over‐expressing AMPD might be lethal. As AMPD is known to be allosterically modulated by ATP, GTP and phosphate, allosteric activators of PfAMPD could be developed as anti‐parasitic agents.  相似文献   

9.
BackgroundSkeletal muscle AMP deaminase (AMPD1) regulates the concentration of adenine nucleotides during muscle contraction. We previously provided evidence that rabbit AMPD1 is composed by two HPRG 73 kDa subunits and two 85 kDa catalytic subunits with a dinuclear zinc site with an average of two histidine residues at each metal site. AMPD1 is mainly expressed in fast twitching fibers and is inhibited by ATP. The limited trypsinization of the 95-residue N-terminal domain of rabbit AMPD1 desensitizes the enzyme towards ATP inhibition at the optimal pH 6.5, but not at pH 7.1.MethodsThe modified residues of rabbit AMPD1 after incubation with radioactive diethyl pyrocarbonate ([14C]DEP) causing the desensitization to inhibition by ATP at pH 7.1 have been identified by sequence analysis and MS analysis of the radioactive peptides liberated from the carbethoxylated enzyme by limited proteolysis with trypsin.ResultsThe study confirms the presence of a dinuclear zinc site in rabbit AMPD1 and shows that carbethoxylation of His-51 at the N-terminus of the catalytic subunit removes the inhibition of the enzyme by ATP at pH 7.1.ConclusionsThe desensitization to ATP is due to the modification of His-51 of the Zn2 coordination sphere which is transduced in a conformational change of the enzyme C-terminus, where an ATP-binding site has been localized.General significanceThe progress in the study of the complex regulation of rabbit AMPD1 that shares an identical amino acid sequence with the human enzyme is important in relation to the role of the enzyme during mammalian evolution.  相似文献   

10.
The reversible association of AMP deaminase (AMPD, EC 3.5.4.6) with elements of the contractile apparatus is an identified mechanism of enzyme regulation in mammalian skeletal muscle. All three members of the human AMPD multigene family contain coding information for polypeptides with divergent N-terminal and conserved C-terminal domains. In this study, serial N-terminal deletion mutants of up to 111 (AMPD1), 214 (AMPD2), and 126 (AMPD3) residues have been constructed without significant alteration of catalytic function or protein solubility. The entire sets of active enzymes are used to extend our understanding of the contractile protein binding of AMPD. Analysis of the most truncated active enzymes demonstrates that all three isoforms can associate with skeletal muscle actomyosin and suggests that a primary binding domain is located within the C-terminal 635-640 residues of each polypeptide. However, discrete stretches of N-terminal sequence alter this behavior. Residues 54-83 in the AMPD1 polypeptide contribute to a high actomyosin binding capacity of both isoform M spliceoforms, although the exon 2- enzyme exhibits significantly greater association compared to its exon 2+ counterpart. Conversely, residues 129-183 in the AMPD2 polypeptide reduce actomyosin binding of isoform L. In addition, residues 1-48 in the AMPD3 polypeptide dramatically suppress contractile protein binding of isoform E, thus allowing this enzyme to participate in other intracellular interactions.  相似文献   

11.
The enzyme adenosine 5′-monophosphate deaminase (AMPD, EC 3.5.4.6) catalyzes the conversion of adenosine 5′-monophosphate to inosine 5′-mononucleotide (IMP). IMP is generally known as the compound responsible for the umami taste of the edible red alga Porphyra yezoensis Ueda that is known in Japan as nori. Therefore, we suspect that AMPD plays a key role in providing a favorable nori taste. In this study, we undertake the molecular characterization of nori-derived AMPD. The nori AMPD protein has a molecular mass of 55 kDa as estimated from both gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The calculated molecular mass from the amino acid sequence deduced from cDNA is 57.1 kDa. The isoelectric point is 5.71. The coding region of AMPD consists of 1,566 bp encoding 522 amino acids and possesses a transmembrane domain and two N-glycosylation sites. The sequence identity of nori AMPD in human and yeast AMPDs was found to be less than 50% and 20% in DNA and amino acid sequences, respectively. Proline in the conserved motif of [SA]-[LIVM]-[NGS]-[STA]-D-D-P was found to be converted to glutamate. These results indicate that nori AMPD is a novel type of AMPD.  相似文献   

12.
Control of AMP deaminase 1binding to myosin heavy chain   总被引:4,自引:0,他引:4  
AMP deaminase (AMPD) plays a central role in preserving theadenylate energy charge in myocytes following exercise and in producingintermediates for the citric acid cycle in muscle. Prior studies havedemonstrated that AMPD1 binds to myosin heavy chain (MHC)in vitro; binding to the myofibril varies with the state of musclecontraction in vivo, and binding of AMPD1 to MHC is required foractivation of this enzyme in myocytes. The present study has identifiedthree domains in AMPD1 that influence binding of this enzyme to MHCusing a cotransfection model that permits assessment of mutationsintroduced into the AMPD1 peptide. One domain that encompasses residues178-333 of this 727-amino acid peptide is essential for binding ofAMPD1 to MHC. This region of AMPD1 shares sequence similarity withseveral regions of titin, another MHC binding protein. Two additionaldomains regulate binding of this peptide to MHC in response tointracellular and extracellular signals. A nucleotide binding site,which is located at residues 660-674, controls binding of AMPD1 toMHC in response to changes in intracellular ATP concentration. Deletionanalyses demonstrate that the amino-terminal 65 residues of AMPD1 playa critical role in modulating the sensitivity to ATP-induced inhibitionof MHC binding. Alternative splicing of the AMPD1 gene product, which alters the sequence of residues 8-12, produces two AMPD1 isoforms that exhibit different MHC binding properties in the presence of ATP.These findings are discussed in the context of the various rolesproposed for AMPD in energy production in the myocyte.

  相似文献   

13.
Fatty liver (hepatic steatosis) is associated with nucleotide turnover, loss of ATP and generation of adenosine monophosphate (AMP). It is well known that in fatty liver, activity of the AMP-activated kinase (AMPK) is reduced and that its stimulation can prevent hepatic steatosis by both enhancing fat oxidation and reducing lipogenesis. Here we show that another AMP dependent enzyme, AMPD2, has opposing effects on fatty acid oxidation when compared to AMPK. In human hepatocytres, AMPD2 activation –either by overexpression or by lowering intracellular phosphate levels with fructose- is associated with a significant reduction in AMPK activity. Likewise, silencing of AMPK spontaneously increases AMPD activity, demonstrating that these enzymes counter-regulate each other. Furthermore, we show that a downstream product of AMP metabolism through AMPD2, uric acid, can inhibit AMPK activity in human hepatocytes. Finally, we show that fructose-induced fat accumulation in hepatocytes is due to a dominant stimulation of AMPD2 despite stimulating AMPK. In this regard, AMPD2-deficient hepatocytes demonstrate a further activation of AMPK after fructose exposure in association with increased fatty acid oxidation, and conversely silencing AMPK enhances AMPD-dependent fat accumulation. In vivo, we show that sucrose fed rats also develop fatty liver that is blocked by metformin in association with both a reduction in AMPD activity and an increase in AMPK activity. In summary, AMPD and AMPK are both important in hepatic fat accumulation and counter-regulate each other. We present the novel finding that uric acid inhibits AMPK kinase activity in fructose-fed hepatocytes thus providing new insights into the pathogenesis of fatty liver.  相似文献   

14.
Changes in AMP deaminase (AMPD) activity influence heart function and progression of heart disease, but the underlying mechanism is unknown. We evaluated the effect of purine riboside (Purr) on the activity of AMPD in perfused rat hearts and in isolated rat cardiomyocytes. Brief perfusion of the pre-ischemic heart with 200 μ M Purr resulted in activation of AMPD, more pronounced degradation of the adenine nucleotides, and reduced recovery of the adenine nucleotide pool during reperfusion. Brief incubation of rat cardiomyocytes with 200 μ M Purr also activated AMPD, while prolonged exposure resulted in enzyme inhibition. We conclude that Purr activates AMPD, whereas metabolites of this compound may inhibit the enzyme.  相似文献   

15.
Changes in AMP deaminase (AMPD) activity influence heart function and progression of heart disease, but the underlying mechanism is unknown. We evaluated the effect of purine riboside (Purr) on the activity of AMPD in perfused rat hearts and in isolated rat cardiomyocytes. Brief perfusion of the pre-ischemic heart with 200 micro M Purr resulted in activation of AMPD, more pronounced degradation of the adenine nucleotides, and reduced recovery of the adenine nucleotide pool during reperfusion. Brief incubation of rat cardiomyocytes with 200 micro M Purr also activated AMPD, while prolonged exposure resulted in enzyme inhibition. We conclude that Purr activates AMPD, whereas metabolites of this compound may inhibit the enzyme.  相似文献   

16.
Because mutation of AMP deaminase 1 gene leading to reduced AMP deaminase activity may result in protection of cardiac function in patients with heart disease, inhibitors of AMP deaminase (AMPD) may have therapeutic applications. This study evaluated the effect of a specific inhibitor of AMP deaminase 3-[2-(3-carboxy-4-bromo-5,6,7,8-tetrahydronaphthyl)ethyl]-3,6,7,8-tetrahydroimidazo [4,5-d][1,3]diazepin-8-ol (AMPDI) on the isolated human enzyme and on nucleotide catabolism in rat cardiomyocytes. AMPDI effectively inhibited isolated human AMPD with an IC(50) = 0.5 micro M. AMPDI was much less effective with isolated cardiomyocytes (IC(50) = 0.5 mM). AMPDI is a very effective inhibitor of AMPD that despite lower efficiency in the cell system examined could be useful for in vivo studies.  相似文献   

17.
Fusion of the egg and the sperm cells in plants produces a zygote that develops into an embryo. Screening of ethyl methanesulfonate-mutagenized populations of Arabidopsis led to the identification of EMBRYONIC FACTOR 1 (FAC1), a locus that gives a zygote-lethal phenotype when mutated. The FAC1 gene was identified by positional cloning and confirmed by a genetic complementation test against a T-DNA insertion allele. It encodes an AMP deaminase (AMPD) that is known in human and yeast to convert AMP to IMP to maintain the energy potential. Expression of FAC1 in a yeast AMPD mutant after removal of its N-terminal putative transmembrane domain complemented the mutant phenotype, suggesting a functional conservancy but a structural divergence through evolution. Although a low level of FAC1 expression was observed in all organs tested, using a reporter construct we observed a significantly increased FAC1 expression in the zygote, early embryo and endosperm. Furthermore, during somatic embryogenesis, a high level of FAC1 expression was observed in developing embryos including putative embryogenic cells. FAC1, therefore, represents one of the earliest expressed genes known in plants. It may act through AMP depletion to provide sufficient energy for the zygote to proceed through development.  相似文献   

18.
AMPD1 genotype,relative fiber type composition, training status, and gender wereevaluated as contributing factors to the reported variation in AMPdeaminase enzyme activity in healthy skeletal muscle. Multifactorialcorrelative analyses demonstrate thatAMPD1 genotype has the greatest effecton enzyme activity. An AMPD1 mutantallele frequency of 13.7 and a 1.7% incidence of enzyme deficiency wasfound across 175 healthy subjects. Homozygotes for theAMPD1 normal allele have high enzymeactivities, and heterozygotes display intermediate activities. Whenexamined according to genotype, other factors were found to affectvariability as follows: AMP deaminase activity in homozygotes for thenormal allele exhibits a negative correlation with the relativepercentage of type I fibers and training status. Conversely, residualAMP deaminase activity in homozygotes for the mutant allele displays apositive correlation with the relative percentage of type I fibers.Opposing correlations in different homozygousAMPD1 genotypes are likely due torelative fiber-type differences in the expression ofAMPD1 andAMPD3 isoforms. Gender alsocontributes to variation in total skeletal muscle AMP deaminaseactivity, with normal homozygous and heterozygous women showing only85-88% of the levels observed in genotype-matched men.

  相似文献   

19.
Mammalian AMP deaminase 3 (AMPD3) enzymes reportedly bind to intracellular membranes, plasma lipid vesicles, and artificial lipid bilayers with associated alterations in enzyme conformation and function. However, proteolytic sensitivity of AMPD polypeptides makes it likely that prior studies were performed with N-truncated enzymes. This study uses erythrocyte ghosts to characterize the reversible cytoplasmic membrane association of human full-sized recombinant isoform E (AMPD3). Membrane-bound isoform E exhibits diminished catalytic activity whereas low micromolar concentrations of the cationic antibiotic, neomycin, disrupt this protein-lipid interaction and relieve catalytic inhibition. The cytoplasmic membrane association of isoform E also displays an inverse correlation with pH in the physiological range. Diethyl pyrocarbonate (DEPC) modification of isoform E nearly abolishes its cytoplasmic membrane binding capacity, and this effect can be reversed by hydroxylamine. Difference spectra reveal that 18 of 29 histidine residues in each isoform E subunit are N-carbethoxylated by DEPC. These combined data demonstrate that protonated imidazole rings of histidine residues mediate a pH-responsive association of isoform E with anionic charges on the surface of the cytoplasmic membrane, possibly phosphatidylinositol 4,5-bisphosphate, a pure noncompetitive inhibitor of the enzyme. Finally, AMPD1 and a series of N-truncated AMPD3 enzymes are used to show that these behaviors are specific to isoform E and require up to 48 N-terminal amino acids, even though this stretch of sequence contains no histidine residues. The pH-responsive cytosol-membrane partitioning of isoform E may be an important mechanism for branch point regulation of adenylate catabolism.  相似文献   

20.
XAS of Zn-peptide binary and ternary complexes prepared using peptides mimicking the potential metal binding sites of rabbit skeletal muscle AMP deaminase (AMPD) strongly suggest that the region 48-61 of the enzyme contains a zinc binding site, whilst the region 360-372 of the enzyme is not able to form 1:1 complexes with zinc, in contrast with what has been suggested for the corresponding region of yeast AMPD. XAS performed on fresh preparations of rabbit skeletal muscle AMPD provides evidence for a dinuclear zinc site in the enzyme compatible with a (mu-aqua)(mu-carboxylato)dizinc(II) core with an average of two histidine residues at each metal site and a Zn-Zn distance of about 3.3 Angstrom. The data indicate that zinc is not required for HPRG/AMPD interaction, both zinc ions being bound to the catalytic subunit of the enzyme, one to the three conserved amino acid residues among those four assumed to be in contact with zinc in yeast AMPD, and the other at the N-terminal region, probably to His-52, Glu-53 and His-57. Tryptic digests of different enzyme preparations demonstrate the existence of two different protein conformations and of a zinc ion connecting the N-terminal and C-terminal regions of AMPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号