首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MPF extracted from starfish oocytes copurifies with an M phase-specific H1 histone kinase encoded by a homolog of the fission yeast cell cycle control gene cdc2+. The most purified preparations contain p34cdc2 as the only major protein. Activation of the p34cdc2 kinase is correlated with appearance of the MPF activity both in vivo and in vitro. The increase in protein kinase activity is associated with p34cdc2 dephosphorylation and the decrease in protein kinase activity on leaving M phase with rephosphorylation. Microinjection of a peptide perfectly conserved in p34cdc2 from yeast to humans induces meiotic maturation, suggesting that an inhibitory component in G2 arrested oocytes interacts with this region of the p34cdc2 kinase. We propose that initiation of M phase is brought about by the dephosphorylation of p34cdc2, leading to increase in its protein kinase activity.  相似文献   

2.
In the clam, Spisula, two previously described proteins known as cyclin A and B display the unusual property of selective proteolytic degradation at the end of each mitosis. We show here that clam oocytes and embryos contain a cdc2 protein kinase. This protein kinase is a component of the M phase promoting factor (MPF) in frog eggs and the M phase-specific histone H1 kinase in starfish. Clam cdc2 is found in association with both cyclin A and B, probably not as a trimolecular association, but as separate cdc2/cyclin A and cdc2/cyclin B complexes. Clam cdc2 and the associated cyclins bind to p13suc1-Sepharose. The p13-bound complex, and also anti-cyclin A or B immunoprecipitates, each display cell cycle-dependent histone H1 kinase activity. We suggest that in addition to the cdc2 protein kinase, the cyclins are further components of the M phase promoting factor and that cyclin proteolysis provides the mechanism of MPF inactivation and thus exit from mitosis.  相似文献   

3.
We have purified to near homogeneity the M-phase-specific protein kinase from starfish oocytes at first meiotic metaphase, using an improved procedure based on affinity chromatography on the immobilized yeast protein suc1. As already reported, this is identical to MPF, the cytoplasmic factor that controls entry of eukaryotic cells into M-phase. MPF is a complex formed by the stoichiometric association of a 34-kd polypeptide previously identified as cdc2 with a polypeptide that migrates with the same mobility as starfish cyclin in SDS-PAGE (apparent mol. wt 47 kd). A cDNA clone encoding starfish cyclin B has been isolated and its sequence determined. It contains a single open reading frame encoding a predicted 43 729-dalton protein. Partial microsequencing of the 47-kd polypeptide component of MPF allowed its identification as the starfish cyclin. Since the apparent mol. wt of native starfish MPF was found to be less than 100 kd, it is a heterodimer comprising one molecule of cdc2 and one molecule of cyclin B.  相似文献   

4.
W G Dunphy  L Brizuela  D Beach  J Newport 《Cell》1988,54(3):423-431
In Xenopus, a cytoplasmic agent known as MPF induces entry into mitosis. In fission yeast, genetic studies have shown that the cdc2 kinase regulates mitotic initiation. The 13 kd product of the suc1 gene interacts with the cdc2 kinase in yeast cells. We show that the yeast suc1 gene product (p13) is a potent inhibitor of MPF in cell-free extracts from Xenopus eggs. p13 appears to exert its antagonistic effect by binding directly to MPF. MPF activity is quantitatively depleted by chromatography on a p13 affinity column. Concomitantly, the Xenopus counterpart of the yeast cdc2 protein is adsorbed to the column. A 42 kd protein also binds specifically to the p13 affinity matrix. These findings suggest that the Xenopus cdc2 protein and the 42 kd protein are components of MPF.  相似文献   

5.
Tyrosine-phosphorylated p34cdc2 and cyclin B2 are present and physically associated in small growing stage IV oocytes (800 microns in diameter) of Xenopus laevis. Microinjection of M-phase promoting factor (MPF) into stage IV oocytes induces germinal vesicle breakdown and the activation of the kinase activity of the p34cdc2/cyclin B2 complex measured on p13suc1 beads. During the in vivo activation of MPF in stage IV oocytes, p34cdc2 tyrosine dephosphorylation is not detectable, in contrast to stage VI oocytes. Addition of cycloheximide in MPF-injected stage IV oocytes induces neither the inhibition of histone H1 kinase activity nor the cyclin B2 degradation. Therefore, the activation mechanism of histone H1 kinase in stage IV oocytes does not require detectable tyrosine dephosphorylation of p34cdc2. It is suggested rather that the tyrosine phosphorylation of p34cdc2 plays a role in inhibiting cyclin B2 degradation.  相似文献   

6.
A R Nebreda  J V Gannon    T Hunt 《The EMBO journal》1995,14(22):5597-5607
The meiotic maturation of Xenopus oocytes triggered by progesterone requires new protein synthesis to activate both maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase). Injection of mRNA encoding mutant p34cdc2 (K33R) that can bind cyclins but lacks protein kinase activity strongly inhibited progesterone-induced activation of both MPF and MAP kinase in Xenopus oocytes. Similar results were obtained by injection of GST-p34cdc2 K33R protein or by injection of a monoclonal antibody (A17) against p34cdc2 that blocks its activation by cyclins. Both the dominant-negative p34cdc2 and monoclonal antibody A17 blocked the accumulation of p39mos and activation of MAP kinase in response to progesterone, as well as blocking the appearance of MPF, although they did not inhibit the translation of p39mos mRNA. These results suggest that: (i) activation of free p34cdc2 by newly made proteins, probably cyclin(s), is normally required for the activation of both MPF and MAP kinase by progesterone in Xenopus oocytes; (ii) the activation of translation of cyclin mRNA normally precedes, and does not require either MPF or MAP kinase activity; and (iii) de novo synthesis and accumulation of p39mos is probably both necessary and sufficient for the activation of MAP kinase in response to progesterone.  相似文献   

7.
At the onset of mitosis, eukaryotic cells display an abrupt increase in a Ca2(+)- and cyclic nucleotide-independent histone H1 kinase activity, referred to as growth-associated or M phase-specific H1 kinase. The molecular basis for this activity is generally attributed to a kinase complex that consists of the p34cdc2 protein and cyclin, and exhibits maturation-promoting factor (MPF) activity. In the present study, we show that more than one kinase contributes to M phase-specific H1 kinase activity. When mature Xenopus oocyte extract prepared with ATP gamma S and NaF was fractionated by gel filtration, two prominent peaks of H1 kinase activity were detected, with apparent molecular masses of 600 and 150 kDa. The 150-kDa kinase copurified with the p34cdc2 protein and was immobilized by the suc 1 gene product p13 and anti-cyclin B2, which are specific for the cdc2 kinase complex. However, the 600-kDa kinase did not satisfy any of these criteria, thus identifying it as a novel M phase-specific H1 kinase. Only the 600-kDa kinase was recognized by the mitosis-specific monoclonal antibody, MPM-2, which inhibits Xenopus oocyte maturation and immunodepletes MPF activity. Furthermore, not only did the full activation of this kinase (MPM-2 kinase) coincide with the activation of MPF during the cell cycle, but also MPM-2 kinase-positive fractions obtained by gel filtration accelerated progesterone-induced oocyte maturation. It is, therefore, likely that MPM-2 kinase is a positive regulator in the M phase induction pathway.  相似文献   

8.
Genetic studies in the fission yeast Schizosaccharomyces pombe and biochemical data in oocytes and eggs of Xenopus laevis have implicated the product of the cdc2+ gene as critical for the G2 to M transition in the cell cycle. The product of the cdc2+ gene is a 34-kDa serine/threonine protein kinase, designated p34cdc2, that is a component of purified maturation-promoting factor (MPF) and also of purified mammalian growth-associated histone H1 kinase. The biochemical properties of p34cdc2 H1 kinase activity in the MPF complex were studied. Phosphorylation of the p45cyclin component in the MPF complex by p34cdc2 exhibited kinetics consistent with an intramolecular reaction. On glycerol gradient centrifugation, MPF kinase against several substrates sedimented with an apparent Mr = 45,000-55,000. p34cdc2 was found to utilize ATP, GTP, and adenosine 5'-O-(3-thiotriphosphate) with apparent Km values of 75, 700, and 250 microM, respectively. The kinase activity was inhibited by beta-glycerophosphate, NaF, and zinc, whereas p-nitrophenyl phosphate was slightly stimulatory. The relative rates of phosphorylation of various substrates by MPF and growth-associated H1 kinase were similar. These findings should prove useful in further work on the regulation of MPF kinase activity and characterization of its substrates.  相似文献   

9.
Cell-free extracts prepared from activated clam oocytes contain factors which induce phosphorylation of the single 67-kD lamin (L67), disassemble clam oocyte nuclei, and cause chromosome condensation in vitro (Dessev, G., R. Palazzo, L. Rebhun, and R. Goldman. 1989. Dev. Biol. 131:469-504). To identify these factors, we have fractionated the oocyte extracts. The nuclear lamina disassembly (NLD) activity, together with a protein kinase activity specific for L67, appear as a single peak throughout a number of purification steps. This peak also contains p34cdc2, cyclin B, and histone H1-kinase activity, which are components of the M-phase promoting factor (MPF). The NLD/L67-kinase activity is depleted by exposure of this purified material to Sepharose conjugated to p13suc1, and is restored upon addition of a p34cdc2/p62 complex from HeLa cells. The latter complex phosphorylates L67 and induces NLD in the absence of other clam oocyte proteins. Our results suggest that a single protein kinase activity (p34cdc2-H1 kinase, identical with MPF) phosphorylates the lamin and is involved in the meiotic breakdown of the nuclear envelope in clam oocytes.  相似文献   

10.
Cyclin is a component of maturation-promoting factor from Xenopus   总被引:88,自引:0,他引:88  
J Gautier  J Minshull  M Lohka  M Glotzer  T Hunt  J L Maller 《Cell》1990,60(3):487-494
Highly purified maturation-promoting factor (MPF) from Xenopus eggs contains both cyclin B1 and cyclin B2 as shown by Western blotting and immunoprecipitation using Xenopus anti-B-type cyclin antibodies. Immunoprecipitates with these antibodies display the histone H1 kinase activity characteristic of MPF, for which exogenously added B1 and B2 cyclins are both substrates. Protein kinase activity against cyclin oscillates in maturing oocytes and activated eggs with the same kinetics as p34cdc2 kinase activity. These data indicate that B-type cyclin is the other component of MPF besides p34cdc2.  相似文献   

11.
A so-called 'growth-associated' or 'M-phase specific' histone H1 kinase (H1K) has been described in a wide variety of eukaryotic cell types; p34cdc2 has previously been shown to be a catalytic subunit of this protein kinase. In fertilized sea urchin eggs the activity of H1K oscillates during the cell division cycle and there is a striking temporal correlation between H1K activation and the accumulation of a phosphorylated form of cyclin. H1K activity declines in parallel with proteolytic cyclin destruction of the end of the first cell cycle. By virtue of the high affinity of the fission yeast p13suc1 for the p34cdc2 protein, H1K strongly binds to p13-Sepharose beads. Cyclin, p34cdc2 and H1K co-purify on this affinity reagent as well as through several conventional chromatographic procedures. Anticyclin antibodies immunoprecipitate the M-phase specific H1K in crude extracts or in purified fractions. Sea urchin eggs appear to contain much less cyclin than p34cdc2, suggesting that p34cdc2 may interact with other proteins. These results demonstrate that cyclin and p34cdc2 are major components of the M-phase specific H1K.  相似文献   

12.
We demonstrate, for the first time in fish, that a Ca(2+)-independent and cyclic-nucleotide-independent histone H1 kinase activity oscillates according to the cell cycle of the oocyte, peaking at the first and the second meiotic metaphase with a transient drop between them. The kinase, M-phase-specific histone H1 kinase (M-H1K), was purified from mature carp oocytes by using two exogenous substrates for assaying its activity: histone H1 and a synthetic peptide (SP peptide, KKAAKSPKKAKK) containing the sequence KSPKK, which includes the consensus sequence of the site phosphorylated by a serine/threonine-specific protein kinase encoded by the fission yeast cdc2+ gene (cdc 2 kinase). The M-H1K and maturation-promoting factor (MPF) activities coincided closely throughout four steps of purification, strongly suggesting the identity of M-H1K and MPF. The final preparation was purified 5000-fold with a recovery of 4%, when histone H1 was used for the kinase assay, and 10,000-fold with a recovery of 7% when SP peptide was used. The purified molecular mass of the kinase was estimated to be 100 kDa by gel filtration and contained four proteins of 33, 34, 46 and 48 kDa. Anti-PSTAIR antibody recognizing cdc2 kinase cross-reacted with the 33-kDa and 34-kDa proteins, while the 46-kDa and 48-kDa bands cross-reacted with monoclonal antibodies raised against cyclin B. The 33-kDa protein was also recognized by an antibody against a goldfish cdk2 (Eg1) kinase, a cdc2-related kinase which has the PSTAIR sequence and binds to p13suc1 but does not form a complex with cyclin B. M-H1K activity corresponded well to the 34-kDa, 46-kDa and 48-kDa proteins but not to the 33-kDa protein. These results strongly suggest that M-H1K consists of cdc2 kinase forming a complex with cyclin B, and that cdk2 kinase is not a component of M-H1K, although it is found in the highly purified M-H1K. The purified M-H1K utilized Mg2+, Mn2+, ATP and GTP, and had a wide pH optimum ranging over 8.0-10.5. The kinase was thermolabile and sensitive to freezing/thawing.  相似文献   

13.
G2-arrested oocytes contain cdc2 kinase as an inactive cyclin B-cdc2 complex. When a small amount of highly purified and active cdc2 kinase, prepared from starfish oocytes at first meiotic metaphase, is microinjected into Xenopus oocytes, it induces activation of the inactive endogenous complex and, as a consequence, drives the recipient oocytes into M phase. In contrast, the microinjected kinase undergoes rapid inactivation in starfish oocytes, which remain arrested at G2. Endogenous cdc2 kinase becomes activated in both nucleated and enucleated starfish oocytes injected with cytoplasm taken from maturing oocytes at the time of nuclear envelope breakdown, but only cytoplasm taken from nucleated oocytes becomes able thereafter to release second recipient oocytes from G2 arrest, and thus contains M phase-promoting factor (MPF) activity. Both nucleated and enucleated starfish oocytes produce MPF activity when type 2A phosphatase is blocked by okadaic acid. If type 2A phosphatase is only partially inhibited, neither nucleated nor enucleated oocytes produce MPF activity, although both do so if purified cdc2 kinase is subsequently injected as a primer to activate the endogenous kinase. The nucleus of starfish oocytes contains an inhibitor of type 2A phosphatase, but neither active nor inactive cdc2 kinase. Microinjection of the content of a nucleus into the cytoplasm of G2-arrested starfish oocytes activates endogenous cdc2 kinase, produces MPF activity, and drives the recipient oocytes into M phase. Together, these results show that the MPF amplification loop is controlled, both positively and negatively, by cdc2 kinase and type 2A phosphatase, respectively. Activation of the MPF amplification loop in starfish requires a nuclear component to inhibit type 2A phosphatase in cytoplasm.  相似文献   

14.
All dividing cells entering the M phase of the cell cycle undergo the transient activation of an M-phase-specific histone H1 kinase which was recently shown to be constituted of at least two subunits, p34cdc2 and cyclincdc13. The DNA-binding high-mobility-group (HMG) proteins 1, 2, 14, 17, I, Y and an HMG-like protein, P1, were investigated as potential substrates of H1 kinase. Among these HMG proteins, P1 and HMG I and Y are excellent substrates of the M-phase-specific kinase obtained from both meiotic starfish oocytes and mitotic sea urchin eggs. Anticyclin immunoprecipitates, extracts purified on specific p34cdc2-binding p13suc1-Sepharose and affinity-purified H1 kinase display strong HMG I, Y and P1 phosphorylating activities, demonstrating that the p34cdc2/cyclincdc13 complex is the active kinase phosphorylating these HMG proteins. HMG I and P1 phosphorylation is competitively inhibited by a peptide mimicking the consensus phosphorylation sequence of H1 kinase. HMG I, Y and P1 all possess the consensus sequence for phosphorylation by the p34cdc2/cyclincdc13 kinase (Ser/Thr-Pro-Xaa-Lys/Arg). HMG I is phosphorylated in vivo at M phase on the same sites phosphorylated in vitro by H1 kinase. P1 is phosphorylated by H1 kinase on sites different from the sites of phosphorylation by casein kinase II. The three thermolytic phosphopeptides of P1 phosphorylated in vitro by purified H1 kinase are all present in thermolytic peptide maps of P1 phosphorylated in vivo in proliferating HeLa cells. These phosphopeptides are absent in nonproliferating cells. These results demonstrate that the DNA-binding proteins HMG I, Y and P1 are natural substrates for the M-phase-specific protein kinase. The phosphorylation of these proteins by p34cdc2/cyclincdc13 may represent a crucial event in the intense chromatin condensation occurring as cells transit from the G2 to the M phase of the cell cycle.  相似文献   

15.
《The Journal of cell biology》1989,109(6):3347-3354
Specific inhibition of types 1 and 2A protein phosphatases by microinjection of okadaic acid (OA) into starfish oocytes induced germinal vesicle breakdown and activation of M phase-promoting factor (MPF) and histone H1 kinase. The effects were evident in immature oocytes arrested at first meiotic prophase as well as in fully mature oocytes arrested at the pronucleus stage. In addition, MPF and histone H1 kinase were stabilized for several hours and protected from inactivation by inhibition of type 1 protein phosphatases with either OA or specific anti-phosphatase antibodies. Microinjection of okadaic acid was associated with unusual changes of the microtubule network, including the disappearance of spindles and extension of the cytoplasmic array of microtubules. MPF activation after OA injection was associated with dephosphorylation of phosphothreonine and phosphoserine residues in cdc2, showing that neither type 1 nor 2A protein phosphatases catalyzes these dephosphorylations. The effects of OA on MPF activation and inactivation appeared to involve the cyclin subunit. OA did not induce MPF activation in the absence of protein synthesis and it prevented degradation of cyclin. Therefore protein phosphatases types 1 and 2A appear to be involved in activation and inactivation of MPF involving mechanisms that operate after cyclin synthesis and before its degradation.  相似文献   

16.
W G Dunphy  J W Newport 《Cell》1989,58(1):181-191
It has been demonstrated that the Xenopus homolog of the fission yeast cdc2 protein is a component of M phase promoting factor (MPF). We show that the Xenopus cdc2 protein is phosphorylated on tyrosine in vivo, and that this tyrosine phosphorylation varies markedly with the stage of the cell cycle. Tyrosine phosphorylation is high during interphase (in Xenopus oocytes and activated eggs) but absent during M phase (in unfertilized eggs). In vitro activation of pre-MPF from Xenopus oocytes results in tyrosine dephosphorylation of the cdc2 protein and switching-on of its kinase activity. The product of the fission yeast suc1 gene (p13), which inhibits the entry into mitosis in Xenopus extracts, completely blocks tyrosine dephosphorylation and kinase activation. However, p13 has no effect on the activated form of the cdc2 kinase. These findings suggest that p13 controls the activation of the cdc2 kinase, and that tyrosine dephosphorylation is an important step in this process.  相似文献   

17.
M phase promoting factor (MPF) is a major element controlling entry into the M phase of the eukaryotic cell cycle. MPF is composed of two subunits, p34cdc2 and cyclin B. Using indirect immunofluorescence staining with specific antibody against starfish cyclin B, we monitored the dynamics of the subcellular distribution of MPF during meiosis reinitiation in starfish oocytes. We found that all of the cyclin B is already associated with p34cdc2 in immature oocytes arrested at the G2/M border and that this inactive complex is present exclusively in the cytoplasm. After its activation, part of the p34cdc2-cyclin B complex moves into the germinal vesicle before nuclear envelope breakdown, independently of either microtubules or actin filaments. Thereafter, some part of the complex accumulates in the nucleolus and condensed chromosomes. Another portion of the complex accumulates on meiotic asters and spindles, while the rest is still present throughout the cytoplasm. As these patterns of localization are detected in the detergent-extracted oocytes, we propose at least four distinct subcellular states of the p34cdc2-cyclin B complex: freely soluble, microtubule-associated, detergent-resistant cytoskeleton-associated and chromosome-associated. Thus, in addition to the intramolecular modification of p34cdc2-cyclin B complex, its intracellular relocation plays a key role in promoting the M phase.  相似文献   

18.
cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2.   总被引:38,自引:12,他引:26       下载免费PDF全文
To determine how the human cdc25 gene product acts to regulate p34cdc2 at the G2 to M transition, we have overproduced the full-length protein (cdc25Hs) as well as several deletion mutants in bacteria as glutathione-S-transferase fusion proteins. The wild-type cdc25Hs gene product was synthesized as an 80-kDa fusion protein (p80GST-cdc25) and was judged to be functional by several criteria: recombinant p80GST-cdc25 induced meiotic maturation of Xenopus oocytes in the presence of cycloheximide; p80GST-cdc25 activated histone H1 kinase activity upon addition to extracts prepared from Xenopus oocytes; p80GST-cdc25 activated p34cdc2/cyclin B complexes (prematuration promoting factor) in immune complex kinase assays performed in vitro; p80GST-cdc25 stimulated the tyrosine dephosphorylation of p34cdc2/cyclin complexes isolated from Xenopus oocyte extracts as well as from overproducing insect cells; and p80GST-cdc25 hydrolyzed p-nitrophenylphosphate. In addition, deletion analysis defined a functional domain residing within the carboxy-terminus of the cdc25Hs protein. Taken together, these results suggest that the cdc25Hs protein is itself a phosphatase and that it may function directly in the tyrosine dephosphorylation and activation of p34cdc2 at the G2 to M transition.  相似文献   

19.
Growing pig oocytes (≤90 μm in diameter) are unable to resume meiosis in vitro. The objective of our present experiments has been to identify the reasons for meiotic competence in these cells. By comparing histone H1 kinase activity in growing and fully grown oocytes we demonstrate that incompetence is associated with an inability to activate H1 kinase in growing oocytes. Immunoblotting was used to determine whether this kinase inactivity resulted from a lack of either p34cdc2 protein or B-type cyclin. The results established that each of these cell cycle molecules are present in comparable amounts in both growing and fully grown oocytes. In the third series of studies experiments were carried out in an attempt to induce p34cdc2 activation during growth. Treatment with okadaic acid, an inhibitor of phosphatase 1 and 2A known to stimulate and accelerate the transition into M-phase of the meiotic cycle in a number of different species, was able to induce p34cdc2 kinase activity and facilitated the G2- to M-phase in growing oocytes. We conclude that although growing oocytes in pigs have sufficient key cell cycle components for the G2 to M transition, they remain incapable of converting these components to active maturation-promoting factor (MPF) until growth is virtually completed. Inhibition of phosphatase 1 or 2A induces the formation of active MPF during growth by an as yet unidentified pathway. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Numerous studies of cell cycle control in dividing cells have pointed to the central role of a 34-kDa histone H1 kinase (p34cdc2) complexed with regulatory subunits known as cyclins. We now report that p34cdc2-cyclin may also participate in signal transduction in nonproliferating, terminally differentiated cells, in this instance during sheep platelet activation. Immunological evidence for the presence of a p34cdc2 cognant in sheep platelet cytosol was obtained with antipeptide antibodies raised against peptide sequences in the conserved PSTAIRE and C-terminus regions of murine cdc2. The immunoreactive 32-kDa protein was adsorbed onto p13suc1-Sepharose, which selectively binds p34cdc2. A 58-kDa protein that also bound to p13suc1-Sepharose was identified as cyclin A on the basis of its size and immunoreactivity with two different anticyclin peptide antibodies. The p34cdc2-cyclin A complex was regulated during platelet activation. Its histone H1 phosphorylating activity was stimulated 2-fold in p13suc1-Sepharose extracts from platelets that had been exposed to platelet-activating factor or thrombin for 1 min prior to harvesting. Our findings imply that the p34cdc2-cyclin complex may serve alternative functions besides control of cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号