首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Transfer of a non-Mendelian neamine-dependent (nd) mutant to an antibioticfree medium results in neamine-sensitive and neamine-resistent revertants. These reversions are caused by extranuclear mutations.The neamine-sensitive revertants are no more able to split offnd-cells after back-donation to neamine containing medium. Therefore they are different from the streptomycin-sensitive revertants of a streptomycin-dependent (sd) mutant. These mutants were capable ofsd-segregation though their potence ofsd-segregation diminished on antibiotic-free medium with increasing time of cultivation.The different behaviour can be explained by the fact that manysd-genes are present which have to be appointed to the mitochondria. On the other side, thend-gene exists only in few copies and is located therefore in the chloroplast.Several experiments with differing methods are discussed to localize the extranuclear genes.

Vorgelegt durch G. Melchers  相似文献   

2.
Campylobacter sputorum subspeciesbubulus contains a membrane-bound nitrite reductase which catalyses the six-electron reduction of nitrite to ammonia. Formate andL-lactate are used as hydrogen donors. Cells ofC. sputorum grown with nitrate or nitrite contain cytochromes of theb-andc-type and a carbon monoxide-binding cytochromec. In addition, a special membrane-bound carbon monoxide-binding pigment is found. Nitrite reduction with formate orL-lactate as a hydrogen donor is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Nitrite reduction by bacterial suspensions with lactate as a hydrogen donor is strongly inhibited by carbonylcyanide-m-chlorophenyl-hydrazone (CCCP) whereas nitrite reduction with formate as a hydrogen donor is not inhibited at all. H+/O values and H+/NO 2 - values were measured with ascorbate + N,N,N,N-tetramethyl-p-phenylenediamine (TMPD), formate (in the absence and presence of carbonic anhydrase) andL-lactate as a hydrogen donor. The results are summarized in a scheme for electron transport from formate or lactate to oxygen or nitrite which shows a periplasmic orientation of formate dehydrogenase and nitrite reductase and a cytoplasmic orientation of lactate dehydrogenase and oxygen reduction, and which shows proton translocation with a H+/2e value of 2.0. The H+/O and H+/NO 2 - values predicted by this scheme are in good agreement with the experimental values.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - MTPP+ methyltriphenylphosphonium cation - TMPD N,N,N,N-tetramethyl-p-phenylenediamine; H+/O (H+/NO 2 - ), number of protons liberated in the outer bulk phase at the reduction of one atom O (one ion NO 2 - ); H+/2e (q+/2e), number of protons (charges) translocated across the cytoplasmic membrane during flow of two electrons to an acceptor  相似文献   

3.
Pentobarbital stimulates 36Cl permeation across single Deiters' membranes in a microchamber system, acting on classical, extracellularly facing, GABAA receptors. However, when applied on the membrane cytoplasmic side it activates per se labeled chloride inout permeation. No effect was found on chloride outin permeation. Similarly, at lower concentrations it facilitates the increase of 36Cl inout permeation by application of GABA on the membrane inside, again via asymmetric chloride channels allowing inout but not outin passage. These data confirm that on the Deiters' membrane cytoplasmic side there are structures behaving pharmacologically as GABAA receptors whose function is that of a Cl extrusion pump. This mechanism involves a cycle of activation-phosphorylation/desensitization-reactivation of the receptor complexes  相似文献   

4.
The regulation of the expression of enzyme activities catalyzing initial reactions in the anoxic metabolism of various aromatic compounds was studied at the whole cell level in the denitrifying Pseudomonas strain K 172. The specific enzyme activities were determined after growth on six different aromatic substrates (phenol, 4-hydroxybenzoate, benzoate, p-cresol, phenylacetate, 4-hydroxyphenylacetate) all being proposed to be metabolized anaerobically via benzoyl-CoA. As a control cells were grown on acetate, or aerobically on benzoate. The expression of the following enzyme activities was determined.Phenol carboxylase, as studied by the isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate; 4-hydroxybenzoyl-CoA reductase (dehydroxylating); p-cresol methylhydroxylase; 4-hydroxybenzyl alcohol dehydrogenase; 4-hydroxybenzaldehyde dehydrogenase; coenzymeA ligases for the aromatic acids benzoate, 4-hydroxybenzoate, phenylacetate, and 4-hydroxyphenylacetate; phenylglyoxylate: acceptor oxidoreductase and 4-hydroxyphenylglyoxylate: acceptor oxidoreductase; aromatic alcohol and aldehyde dehydrogenases.The formation of most active enzymes is strictly regulated; they were only induced when required, the basic activities being almost zero. The observed whole cell regulation pattern supports the postulate that the enzyme activities play a role in anoxic aromatic metabolism and that the compounds are degraded via the following intermediates: Phenol 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; benzoate benzoyl-CoA; p-cresol 4-hydroxybenzaldehyde 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; phenylacetate phenylacetyl-CoA phenylglyoxylate benzoyl-CoA plus CO2; 4-hydroxyphenylacetate 4-hydroxyphenylacetyl-CoA 4-hydroxyphenylglyoxylate 4-hydroxybenzoyl-CoA plus CO2 benzoyl-CoA.  相似文献   

5.
Campylobacter sputorum subsp. bubulus contained hydrogenase activity after growth with lactate and nitrate and after growth with hydrogen and nitrate. After growth with hydrogen and nitrate a molar growth yield (g dry cells/mol hydrogen) of 5.6 was measured. Hydrogenase and nitrate reductase were membrane-bound enzymes. In cells with high hydrogenase activity the H+/O, H+/NO inf2 sup- and H+/NO inf3 sup- values with hydrogen as the electron donor were 3.74, 2.61 and 4.36 respectively. In cells with low hydrogenase activity these values were 2.33,-0.86 and 1.31 respectively. These values and the stoichiometry of respiration-driven proton translocation (H+/2e=2) led to the conclusion that hydrogenase is located at the periplasmic side of the cytoplasmic membrane. In cells with low lactate dehydrogenase activity or low hydrogenase activity the reduction of nitrate to nitrite could be separated from the reduction of nitrite to ammonia. Positive H+/NO inf3 sup- values (between 0.9 and 1.7) with lactate or hydrogen as the electron donor were measured in these cells whereas H+/NO inf2 sup- values were negative. From this result it was concluded that nitrate reductase is located at the cytoplasmic face of the cytoplasmic membrane. The results explain the previous observation that molar growth yields with nitrate were somewhat higher than those with nitrite.  相似文献   

6.
Paddock  M.L.  Senft  M.E.  Graige  M.S.  Rongey  S.H.  Turanchik  T.  Feher  G.  Okamura  M.Y 《Photosynthesis research》1998,55(2-3):281-291
The structural basis for proton coupled electron transfer to QB in bacterial reaction centers (RCs) was studied by investigating RCs containing second site suppressor mutations (Asn M44 Asp, Arg M233 Cys, Arg H177 His) that complement the effects of the deleterious Asp L213 Asn mutation [DN(L213)]. The suppressor RCs all showed an increased proton coupled electron transfer rate k AB (2)(QA QB + H+ QAQBH) by at least 103 (pH 7.5) and a recombination rate k BD (D+QAQB DQAQB) 15–40 times larger than the value found in DN(L213) RCs. Proton transfer was studied by measuring the dependence of k AB (2) on the free energy for electron transfer (Get). k AB (2) was independent of Get in DN(L213) RCs, but dependent on Get in native and all suppressor RCs. This shows that proton transfer limits the k AB (2) reaction with a rate of 0.1s–1 in DN(L213) RCs but is not rate limiting and at least 108-fold faster in native and 105-fold faster in the suppressor RCs. The increased rate of proton transfer by the suppressor mutations are proposed to be due to: (i) a reduction in the barrier to proton transfer by providing a more negative electrostatic potential near QB ; and/or (ii) structural changes that permit fast proton transfer through the network of protonatable residues and water molecules near QB.  相似文献   

7.
Summary The vermilion gene was used as a target to determine the mutational specificity of ethyl methanesulfonate (EMS) in germ cells of Drosophila melanogaster. To study the impact of DNA repair on the type of mutations induced, both excision-repair-proficient (exr +) and excision-repair-deficient (exr ) strains were used for the isolation of mutant flies. In all, 28 mutants from the exr + strain and 24 from the exr strain, were characterized by sequence analysis. In two mutants obtained from the exr + strain, small deletions were observed. All other mutations were caused by single base-pair changes. In two mutants double base-pair substitutions had occurred. Of the mutations induced in the exr + strain, 22 (76%) were GCAT transitions, 3 (10%) ATTA transversions, 2 (6%) GCTA transversions and 2 (6%) were deletions. As in other systems, the mutation spectrum of EMS in Drosophila is dominated by GCAT transitions. Of the mutations in an exr background, 12 (48%) were GCAT transitions, 7 (28%) ATTA transversions, 5 (20%) GCTA transversions and 1 (4%) was a ATGC transition. The significant increase in the contribution of transversion mutations obtained in the absence of an active maternal excision-repair mechanism, clearly indicates efficient repair of N-alkyl adducts (7-ethyl guanine and 3-ethyl adenine) by the excision-repair system in Drosophila germ cells.  相似文献   

8.
Kim KH  Kim YO  Ko BS  Youn HJ  Lee DS 《Biotechnology letters》2004,26(22):1749-1755
An endo--(13),(14)-glucanase gene (bglBC1) from Bacillus circulans ATCC21367 was modified by substituting its native promoter with a strong promoter, BJ27X, to increase expression of the gene when cloned into B. subtilis RM125 and B. megaterium ATCC14945. A 771-bp endo--(13),(14)-glucanase open reading frame was inserted into a new shuttle plasmid, pBLC771, by ligating the ORF and pBE1, the latter of which contained the strong promoter, BJ27X. B. subtilis, transformed with the recombinant plasmid pBLC771, produced an extracellular endo--(13),(14)-glucanase that was 130 times (7176 mU ml–1) more active than that of the gene donor cells (55 mU ml–1), while the enzyme from the transformed B. megaterium was 7 times (378 mU ml–1) more active than that of the gene donor cells. M r of the enzyme was 28 kDa, with proteolytic processing of the enzyme being observed only in B. subtilis cells. The major products of water-soluble -glucan hydrolyzed by over-produced endo--(13),(14)-glucanase were tri- and tetra-oligosaccharides which can be developed as useful products such as anti-hypercholesterolemic, anti-hypertriglyceridemic, and anti-hyperglycemic agents.  相似文献   

9.
2D NMR spectroscopy and J coupling constant analysis are applied to resolve the structure of two photoproducts of thymidylyl-(35)-thymidine. These products are cyclobutane type thymine dimers possessing the cis-syn (the predominant one) and trans-syn geometry. The cis-syn is formed in an ANTI-ANTI conformation about the N-glycosyl linkages and resembles the normal base-stacked configuration. The glycosidic conformation in solution of the 5 terminal fragment differs from the crystal in which the less common SYN conformation is observed. In this isomer only the sugar pucker of the 3 terminal fragment is changed substantially with respect to the dinucleotide. The trans-syn isomer is formed in a SYN-ANTI glycosidic conformation. In this isomer the sugar puckers of both deoxyribose rings are affected and a preference for a pure 2-endo conformation is observed.Abbreviations dTpdT 2-deoxythymidylyl-(35)-2-deoxythymidine - dTp[]dT cyclobutane type photodimers of dTpdT - dTp- and dTp[]- their 5' terminal fragments (fragment A) - -pdT and-[]pdT their 3 terminal fragments (fragment B) - RP-HPLC reversed-phase high-performance liquid chromatography - COSY two-dimensional correlated spectroscopy - 2D NOE two-dimensional nuclear Overhauser spectroscopy  相似文献   

10.
Detailed karyological surveys of the ant Myrmecia pilosula species group, which is characterized by the lowest chromosome number in higher organisms (2n=2), were attempted. We revealed that this species has developed highly complicated chromosomal polymorphisms. Their chromosome numbers are in the range 2n=2, 3, and 4, and six polymorphic chromosomes are involved, i.e., two for chromosome 1 (denoted as SM1 and ST1), three for chromosome 2 (A2, A2, and M2), and M(1+2) for the 2n=2 karyotype. We suggested that these chromosomes were induced from a pseudo-acrocentric (A 1 M ) and A2 as follows: (1) A 1 M SM1 or ST1 by two independent pericentric inversions; (2) A2A2M2 by chromosomal gap insertion and centromere shift; and (3) ST1+A2M(1+2) by telomere fusion, where (3) means that the 2n=2 karyotype was derived secondarily from a 2n=4 karyotype. It is a noteworthy finding that active nucleolus organizer (NOR) sites, in terms of silver staining, are tightly linked with the centromere in this species, and that both the centromere and NOR of A2 were inactivated after the telomere fusion.  相似文献   

11.
In the homothallic P/d sex interconversion system in a strain of a fission yeast (Schizosaccharomyces pombe), Pd is apparently twice as frequent as dP. This is interpreted to mean that Pd occurs before DNA replication, whereas dP occurs after. But the probabilities of their occurrence within a cell cycle are about the same (1 in 27 cell divisions).  相似文献   

12.
Fumonisins, mycotoxins produced byFusarium moniliforme and a number of other fungi, are potent inhibitors of the sphinganine-N-acyltransferase, a key enzyme of sphingolipid biosynthesis, and cause neuronal degeneration, liver and renal toxicity, cancer and other injury to animals.In this study we investigated the effect of fumonisin B1 on the sphingolipids of developing chick embryos. After yolk sac injection of fumonisin B1 a concentration and time dependent increase of the sphinganine-over-sphingosine ratio of the embryos could be demonstrated. Studies were done to evaluate the effect of fumonisin B1 on the glycosphingolipid pattern of the chick embryos. In the presence of 72 µg fumonisin B1 per egg the incorporation of [14C]galactose and of [14C]serine into embryonic glycosphingolipids was reduced by about 70%, although the mass of glycosphingolipids was not affected by the toxin. However, a reduction of the wet weight of the treated embryos was observed. Additionally, histological examinations of whole embryo sections of control and fumonisin B1 treated embryos are presented. Fumonisin B1 caused haemorrhages under the skin as well as in the liver of treated embyros. A close correlation between disruption of sphingoid metabolism and light microscopic detectable tissue lesions could be observed.Abbreviations Cer ceramide (N-acylsphingosine) - FB1 fumonisin B1 - GM3 NeuAc23Gal14Glc11Cer - GD3 NeuAc28NeuAc23Gal14Glc11Cer - GD1a NeuAc23Gal13GalNAc14(NeuAc23)Gal14Glc11Cer - GT1b NeuAc23Gal13GalNAc14(NeuAc28NeuAc23) Gal14Glc11Cer - HPLC high pressure liquid chromatography - PBS phosphate buffered saline - PDMP 1-phenyl-2-dodecanoylamino-3-morpholino-1-propanol - Sa sphinganine - So sphingosine - Sa/So sphinganine-over-sphingosine - TLC thin layer chromatography - Tris Tris(hydroxymethyl)aminomethan Dedicated to Dr Sen-itiroh Hakomori in celebration of his 65th birthday.  相似文献   

13.
The lectin extracted from the seeds of Salvia sclarea (SSL) recognizes the Tn antigen (GalNAc 1Ser/Thr) expressed in certain human carcinomas. In previous studies, knowledge of the binding properties of SSL was restricted to GalNAc1 related oligosaccharides and glycopeptides. Thus, the requirements of functional groups in monosaccharide and high-density polyvalent carbohydrate structural units for SSL binding and an updated affinity profile were further evaluated by enzyme-linked lectinosorbent (ELLSA) and inhibition assays. Among the glycoproteins (gps) tested for interaction, a high density of exposed Tn-containing glycoproteins such as in the armadillo salivary Tn glycoprotein and asialo ovine salivary glycoprotein reacted best with SSL. When the gps were tested for inhibition of SSL binding, which was expressed as 50% nanogram inhibition, the high density polyvalent Tn present in macromolecules was the most potent inhibitor. Among the monosaccharide and carbohydrate structural units studied, which were expressed as nanomole inhibition, GalNAc 13GalNAc 13Gal 14Gal 14Glc (Fp), GalNAc 13Gal 14Glc (AL), GalNAc 13GalNAc 1Me (F), GalNAc 13GalNAc 1Me (F ) and GalNAc 1 Ser/Thr (Tn) were the most active ligands, being 2.5–5.0× 103 and 1.25–2.5 times more active than Gal and GalNAc, respectively. From the results, it is suggested that the combining site of SSL is a shallow groove type, recognizing the monosaccharide of GalNAc as the major binding site or Tn up to the Forssman pentasaccharide (Fp). It can be concluded that the three critical factors for SSL binding are the –NH CH3CO at carbon-2 in Gal, the configuration of carbon-3 in GalNAc, and the polyvalent Tn (GalNAc 1Ser/Thr) present in macromolecules. These results should assist in understanding the glyco-recognition factors involved in carbohydrate–lectin interactions in biological processes. The effect of the polyvalent F , F and GalNAc 13Gal 1 (P ) glycotopes on binding should be examined. However, this is hampered by the lack of availability of suitable reagents.  相似文献   

14.
The effects of biogenic amines, glucagon, and insulin on the cAMP-dependent protein kinase A (PKA) activity have been studied in the muscle tissue of the freshwater bivalve mollusc Anodonta cygnea. It was shown that serotonin, glucagon, and insulin both in vivo and in vitro stimulated PKA activity, whereas isoproterenol inhibited it. The stimulating effect of serotonin and inhibiting effect of isoproterenol was blocked by serotoninergic (cyproheptadine) and adrenergic (propranolol) inhibitors, which confirms specificity of the effect of biogenic amines on the PKA activity. Taking into account participation of adenylyl cyclase system in action of the above hormones, the revealed hormonal effects on the PKA activity produce metabolic effects via the following chain reaction. In the case of serotonin and glucagon: receptor Gs-protein AC cAMP PKA phosphorylation of glycogen synthase (GS) and glucose-6-phosphate dehydrogenase (G6PDH) and inhibition of their activity; in the case of isoproterenol: -adrenoreceptor Gi-protein AC inhibition decreasing PKA inhibition of phosphorylase and stimulation of GSI and G6PDH. A participation is suggested of the insulin-stimulated AC signaling system in the mechanism of the mitogenic insulin effect mediated, as shown in this work, via the PKA activation, but not of the metabolic effect of insulin.  相似文献   

15.
Summary A UGA suppressor derived from a glutamine tRNA gene of Escherichia coli K 12 was isolated and characterized. Phages carrying the suppressor su+2UGA could be obtained only from a hybrid transducing phage, h 80 cI 857psu +2oc, but not from the original transducing phage cI 857psu +2oc. By DNA sequence analysis, it was found that the su +2 UGA suppressor obtained has two mutations; one is in the anticodon (TTATCA), as expected, and the other (CT) is at the 7th position from the 3 end of tRNA 2 Gln . The significance of these mutations and the lethal effect on phage of the increased amounts of UGA suppressor tRNAs are discussed.  相似文献   

16.
ARhizobium sp. (strain NC 92) has been shown to be capable of utilizing uric acid, allantoin, allantoate, urea, and oxaluric acid as sole nitrogen sources. Allantoinase is repressible by NH 4 + and inducible by allantoin and, less efficiently, by uric acid, oxaluric acid, and allophanate, but not by urea or parabanic acid. This allantoinase (purified 50-fold to homogeneity) is of 166 Kd M.W., is optimally active at pH 7.5, has a Km of 4.16 mM and no requirement for sulfhydryl groups or metal ions, and is competitively inhibited by acetohydroxamate (Ki 9 mM). Parabanic acid is nontoxic toRhizobium NC 92 on inorganic N and is highly toxic to growth on allantoin N. Growth inhibition is reversed by supplemented allantoin, and suggestive evidence indicates that NC 92 metabolizes allantoin via the pathway: allantoin allantoate urea NH3; allophanate is not an intermediate herein. Analysis of allantoinase induction indicates that the mandatory structural requirement is for a free urea moiety in an inducing molecule.  相似文献   

17.
Warburg showed in 1929 that the photochemical action spectrum for CO dissociation from cytochrome c oxidase is that of a heme protein. Keilin had shown that cytochrome a does not react with oxygen, so he did not accept Warburg's view until 1939, when he discovered cytochrome a 3. The dinuclear cytochrome a 3-CuB unit was found by EPR in 1967, whereas the dinuclear nature of the CuA site was not universally accepted until oxidase crystal structures were published in 1995. There are negative redox interactions between cytochrome a and the other redox sites in the oxidase, so that the reduction potential of a particular site depends on the redox states of the other sites. Calculated electron-tunneling pathways for internal electron transfer in the oxidase indicate that the coupling-limited rates are 9×105 (Cu A a) and 7×106 s–1 (a a 3); these calculations are in reasonable agreement with experimental rates, after corrections are made for driving force and reorganization energy. The best CuA-a pathway starts from the ligand His204 and not from the bridging sulfur of Cys196, and an efficient a-a 3 path involves the heme ligands His378 and His376 as well as the intervening Phe377 residue. All direct paths from CuA to a 3 are poor, indicating that direct CuA a 3 electron transfer is much slower than the CuA a reaction. The pathways model suggests a means for gating the electron flow in redox-linked proton pumps.  相似文献   

18.
Tůmová  E.  Sofrová  D. 《Photosynthetica》2002,40(1):103-108
Intact cells of Synechococcus elongatus were treated with different concentrations (0.1 and 1.0 mM = Cd0.1, Cd1.0) of CdCl2 for 24 h. Cd0.1 treatment stimulated growth of the cell culture and chlorophyll (Chl) a concentration in the culture. Cd1.0 inhibited both the above mentioned parameters. The oxygen evolving activity of intact cells (H2O BQ) as well as of isolated thylakoid membranes, TM (H2O DCPIP; H2O PBQ + FeCy) decreased after 24 h of Cd1.0 cultivation to 7 %. Photosystem 1 (PS1) activity was less sensitive to the effect of Cd2+ than PS2 activity. CdCl2 concentration in cultivation media after 24 h of cultivation proved that the cyanobacterium cells take up these ions to a large extent from the cultivation medium. After 24 h of the Cd1.0 treatment only 12 % of the amount of Cd2+ originally added to the cultivation medium was found. The ratio of external-antenna pigments, phycocyanin, and allophycocyanin to Chl increased approximately twofold with growing Cd2+ concentration in the cultivation medium. This ratio was found in both TM and dodecylmaltoside extracts.  相似文献   

19.
Summary -nitropropionic acid (BNP) was converted to nitrate in media inoculated with A. flavus spores or with replacement cultures of mycelium pregrown in glucose-peptone medium. Conversion by replacement cultures was rapid: 8–30% in 2 days; influenced by pH: most rapid at pH 3.5; and extensive: as much as 80% BNP nitrogen appeared as nitrate after 14 days. Nitrite was detectable in BNP replacement cultures at low levels or not at all, and nitrate was formed in BNP replacement media with or without glucose. Nitrite was not oxidized in growing cultures inoculated with spores, but replacement cultures oxidized over 50% of added nitrite to nitrate in 8 days. No nitrite or nitrate appeared in replacement systems with pyruvic oxime, oxalacetic acid oxime, acetoxime, ketoglutaric acid oxime, or hydroxylamine.Of the three non-nitrifying mutants of A. flavus obtained, all formed nitrate from BNP in replacement but only one oxidized nitrite to nitrate. No accumulation of free or bound hydroxylamine or of nitrite could be detected in the mutants. BNP was detected by qualitative test in cultures of the wild type but not the mutants. Evidence indicates that the pathway in A. flavus is BNPNO3 - rather than BNPNO2 -NO3 -.  相似文献   

20.
Anaerobic degradation of cresols by denitrifying bacteria   总被引:15,自引:0,他引:15  
The initial reactions in anaerobic metablism of methylphenols (cresols) and dimethylphenols were studied with denitrifying bacteria. A newly isolated strain, possibly a Paracoccus sp., was able to grow on o-or p-cresol as sole organic substrate with a generation time of 11 h; o-or p-cresol was completely oxidized to CO2 with nitrate being reduced to N2. A denitrifying Pseudomonas-like strain oxidized m-or p-cresol as the sole organic growth substrate completely to CO2 with a generation time of 14 h. Demonstration of intermediates and/or in vitro measurement of enzyme activities suggest the following enzymatic steps:(1) p-Cresol was metabolized by both strains via benzoyl-CoA as central intermediate as follows: p-cresol 4-OH-benzaldehyde 4-OH-benzoate 4-OH-benzoly-CoA benzoyl-CoA. Oxidation of the methyl group to 4-OH-benzaldehyde was catalyzed by p-cresol methylhydroxylase. After oxidation of the aldehyde to 4-OH-benzoate, 4-OH-benzoyl-CoA is formed by 4-OH-benzoyl-CoA synthetase; subsequent reductive dehydroxylation of 4-OH-benzoyl-CoA to benzoyl-CoA is catalyzed by 4-OH-benzoyl-CoA reductase (dehydroxylating).(2) o-Cresol was metabolized in the Paracoccus-like strain via 3-CH3-benzoyl-CoA as central intermediate as follows: o-cresol 4-OH-3-CH3-benzoate 4-OH-3-CH3-benzoyl-CoA 3-CH3-benzoyl-CoA. The following enzymes were demonstrated: (a) An enzyme catalyzing an isototope exchange reaction between 14CO2 and the carboxyl of 4-OH-3-CH3-benzoate; this activity is thought to be a partial reaction catalyzed by an o-cresol carboxylase. (b) 4-OH-3-CH3-benzoyl-CoA synthetase (AMP-forming) activating the carboxylation product 4-OH-3-CH3-benzoate to its coenzyme A thioester. (c) 4-OH-3-CH3-benzoyl-CoA reductase (dehydroxylating) catalyzing the reductive dehydroxylation of the 4-hydroxyl group with reduced benzyl viologen as electron donor to yield 3-CH3-benzoyl-CoA. This thioester may also be formed by action of a coenzyme A ligase when 3-CH3-benzoate is metabolized. 2,4-Dimethylphenol was metabolized via 4-OH-3-CH3-benzoate and further to 3-CH3-benzoyl-CoA.(3) The initial reactions of anaerobic metabolism of m-cresol in the Pseudomonas-like strain were not resolved. No indication for the oxidation of the methyl group nor for the carboxylation of m-cresol was found. In contrast, 2,4-and 3,4-dimethylphenol were oxidized to 4-OH-3-CH3-and 4-OH-2-CH3-benzoate, respectively, probably initiated by p-cresol methylhydroxylase; however, these compounds were not metabolized further.The hydroxyl and methyl groups are abbreviated as OH-and CH3-, respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号