共查询到20条相似文献,搜索用时 31 毫秒
1.
The review summarizes recent data and current opinions of the Ca2+ signal formation in cells. Mechanisms of Ca2+ mobilization from the intracellular Ca2+ stores are discussed along with the pathways of Ca2+ entry from the external medium. 相似文献
2.
3.
The kinetics of influx and efflux of 45Ca and its accumulation by the subcellular membranes of adipose tissue have been studied. The initial rate of Ca2+ efflux does not depend on the intracellular concentration of Na+ and K+. The rate of exchange between intracellular 45Ca and 40Ca of the incubation medium is independent on concentration of Na+ and K+ in the incubation mixture. This suggests the absence of Na,Ca-transmembrane exchange in the adipocytes. The changes in the ratio of intracellular concentration of Na+ and K+ by the factors inhibiting the activity ofNa,K-ATPase cause redistribution of Ca in the intracellular pools of the adipocytes. The lypolytic agents (adrenalin, adrenocorticotropic hormone, caffeine) but not dibutytyl-3' : 5'-AMP, accelerate Ca2+ efflux from the adipocytes. At physiological concentrations of ATP, succinate and Pi the highest Ca-accumulating activity is observed in adipose tissue mitochondria. The highest initial rate of Ca uptake, as in the case of contractile tissues, is detected in the endoplasmic reticulum membranes. In contrast to the plasma membranes and reticulum, in which the Ca-accumulating capacity is independent of ATP concentration up to 0.5 mM, the Ca-accumulating capacity of mitochondria decreases 8--9-fold with a reduction in ATP concentration from 4 down to 1 mM. The physiological significance of this phenomenon in the action mechanism of lipolytic agents, which reduce the ATP content in the adipocytes, is discussed. 相似文献
4.
5.
M D Kurski? T P Kondratiuk L G Babich S F Bychenok 《Biokhimii?a (Moscow, Russia)》1987,52(10):1618-1623
Plasma membranes of pig myometrium show the ability for endogenous phosphorylation (160 +/- 45 pmol 32P/mg.min); the initial rate of this process increases 2.5-fold in the presence of 10(-6) cAMP. Micromolar concentrations of cAMP activate the ATP-dependent transport of Ca2+ in myometrium plasma membranes; cAMP at concentrations of 10(-9)-10(-4) M has no effect on Ca,Mg-ATPase. Myometrium plasma membranes possess the Mg2+-dependent phosphatase activity. Dephosphorylation of membranes is accompanied by a decrease (by 25-50%) of the Ca,Mg-ATPase activity and Ca2+ uptake, respectively. The exogenous catalytic subunit of cAMP-dependent protein kinase increases the activity of Ca,Mg-ATPase in native and dephosphorylated membranes. Tolbutamide diminishes the activity of Ca,Mg-ATPase in native membranes by 25% without causing any appreciable influence on the enzyme activity in dephosphorylated membranes. Taking into account the similarity of dependence of Ca2+ uptake on Ca2+ concentration in native and cAMP-phosphorylated vesicles, it can be assumed that the cAMP-dependent phosphorylation affects the enzyme turnover number but not its affinity for Ca2+. The dephosphorylation-induced inhibition of Ca,Mg-ATPase activity and accumulation of Ca2+ are reversible processes. 相似文献
6.
Polarization of the inner membrane is the key factor in maintenance of the physiologically significant cations accumulation, in particular Ca2+, in the mitochondria. It has been well established that mitochondria accumulate calcium through the uniporter, driven by the mitochondrial membrane potential. Nevertheless, it has been shown that depolarized mitochondria also accumulate Ca2+. The aim of this paper is to investigate free Ca level in depolarized myometrium mitochondria. As we have shown previously Ca2+ addition to the incubation medium, that did not contain K-phosphate, ATP and Mg2+, led to inner mitochondrial membrane depolarization. Nevertheless Ca2+ addition to such medium led to the concentration-dependent accumulation of this cation in the matrix. RuR or Mg addition to the incubation medium led to the higher elevation of mitochondrial Ca2+ level in depolarized mitochondria. Mitochondrial Ca2+ level was not affected by 5 microM cyclosporine A. It was suggested that H+/Ca2+ exchanger could provide calcium accumulation in depolarized mitochondria. The elevation of mitochondrial Ca2+ level after addition of Mg2+ and RuR may be due to inhibition of Ca2+- efflux through Ca2+ uniporter. 相似文献
7.
M D Kurski? S A Kosterin N F Burchinskaia S G Shlykov 《Ukrainski? biokhimicheski? zhurnal》1987,59(3):35-39
Na+, pH, prostaglandin F2 alpha are studied for their effect on Ca2+ transport into fractions of cow's myometrium mitochondria. Na+ does not affect a passive release of Ca2+ from mitochondria and its energy-dependent accumulation. A decrease of the incubation medium pH from 7.5 to 6.5 stimulates Ca2+ release from mitochondria and inhibits its energy-dependent pumping into them. Prostaglandin F2 alpha (10(-8)--2 X 10(-4) M) does not affect the activity of Ca2+ accumulation and release systems. A conclusion is made that the Na+-Ca2+-exchange system is absent in mitochondria of smooth muscle cells and Ca2+ release proceeds as a result of H+-Ca2+-antiport system functioning. 相似文献
8.
G Fiskum 《Cell calcium》1985,6(1-2):25-37
Digitonin and other saponins can be used to selectively permeabilize the plasma membrane of a wide variety of cells without significantly affecting the gross structure and function of Ca2+-sequestering organelles such as mitochondria and endoplasmic reticulum. These characteristics have allowed digitonin to be used in the determination of the intracellular levels and distribution of Ca2+, as well as the measurement of Ca2+ fluxes by organelles "in situ". Studies conducted with several different types of digitonin-permeabilized cells indicate that the endoplasmic reticulum functions as a high affinity and low-capacity intracellular Ca2+ buffer, whereas mitochondria operate as a relatively low affinity but high capacity Ca2+ buffering system. However, recent findings suggest that mitochondria have a comparable affinity for net Ca2+ uptake in the presence of physiological concentrations of polyamines. The use of permeabilized cells has also been important in the identification of the endoplasmic reticulum as a site at which the recently discovered second messenger inositol trisphosphate acts to bring about an increase in the cytosolic free Ca2+ concentration. Thus, the selective permeabilization of cells with digitonin and its analogues has been a powerful yet simple tool in the study of intracellular Ca2+ homeostasis. 相似文献
9.
A high level of Ca2+ or Mg2+ nucleotide phosphohydrolase activity is present on the outside surface of intact myometrial cells and is also observed in the isolated plasma membranes. About half of this activity is labile while the remainder is stable. The characteristics of the activities suggest the presence of at least two different ecto-enzymes. The stable component (Km for Ca2+ about 0.1 mM) accepts XTP or XDP as substrate, is not inhibited by p-chloromercuriphenylsulfonate or inorganic phosphate, but is inhibited by 20 mM NaN3. The labile component (Km for Ca2+ nearly 1 mM) cleaves XTP but not XDP, and is inhibited by p-chloromercuriphenyl-sulfonate and inorganic phosphate, but not by NaN3. The activity of the labile component can be restored by removing the cells from the incubation medium and resuspending them in fresh medium. This suggests that the 'lability' is due to product inhibition, probably by inorganic orthophosphate. While the Ca2+ pump of myometrial plasma membranes was inhibited by 0.1 microM oxytocin, these ecto-enzymes were unaffected by oxytocin concentrations up to 10 microM. Because of its high activity and rapid inactivation by product inhibition, the labile enzyme may be involved in the regulation of purinergic receptors. 相似文献
10.
Bunney TD Shaw PJ Watkins PA Taylor JP Beven AF Wells B Calder GM Drøbak BK 《FEBS letters》2000,476(3):145-149
Localised alterations in cytoplasmic Ca(2+) levels are an integral part of the response of eukaryotic cells to a plethora of external stimuli. Due to the large size of nuclear pores, it has generally been assumed that intranuclear Ca(2+) levels reflect the prevailing cytoplasmic Ca(2+) levels. Using nuclei prepared from carrot (Daucus carota L.) cells, we now show that Ca(2+) can be transported across nuclear membranes in an ATP-dependent manner and that over 95% of Ca(2+) is accumulated into a pool releasable by the Ca(2+) ionophore A.23187. ATP-dependent nuclear Ca(2+) uptake did not occur in the presence of ADP or ADPgammaS and was abolished by orthovanadate. Confocal microscopy of nuclei loaded with dextran-linked Indo-1 showed that the initial ATP-induced rise in [Ca(2+)] occurs in the nuclear periphery. The occurrence of ATP-dependent Ca(2+) uptake in plant nuclei suggests that alterations of intranuclear Ca(2+) levels may occur independently of cytoplasmic [Ca(2+)] changes. 相似文献
11.
We investigated the effect of cytosolic and extracellular Ca2+ on Ca2+ signals in pancreatic acinar cells by measuring Ca2+ concentration in the cytosol([Ca2+]c) and in the lumen of the ER([Ca2+]Lu). To control buffers and dye in the cytosol, a patch-clamp microelectrode was employed. Acetylcholine released Ca2+ mainly from the basolateral ER-rich part of the cell. The rate of Ca2+ release from the ER was highly sensitive to the buffering of [Ca2+]c whereas ER Ca2+ refilling was enhanced by supplying free Ca2+ to the cytosol with [Ca2+]c clamped at resting levels with a patch pipette containing 10 mM BAPTA and 2 mM Ca2+. Elevation of extracellular Ca2+ to 10 mM from 1 mM raised resting [Ca2+]c slightly and often generated [Ca2+]c oscillations in single or clustered cells. Although pancreatic acinar cells are reported to have extracellular Ca2+-sensing receptors linked to phospholipase C that mobilize Ca2+ from the ER, exposure of cells to 10 mM Ca2+ did not decrease [Ca2+]Lu but rather raised it. From these findings we conclude that 1) ER Ca2+ release is strictly regulated by feedback inhibition of [Ca2+]c, 2) ER Ca2+ refilling is determined by the rate of Ca2+ influx and occurs mainly in the tiny subplasmalemmal spaces, 3) extracellular Ca2+-induced [Ca2+]c oscillations appear to be triggered not by activation of extracellular Ca2+-sensing receptors but by the ER sensitised by elevated [Ca2+]c and [Ca2+]Lu. 相似文献
12.
Characteristics of the Ca2+ pump and Ca2+-ATPase in the plasma membrane of rat myometrium. 下载免费PDF全文
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control. 相似文献
13.
Mechanisms of electrically mediated cytosolic Ca2+ transients in aequorin-transformed tobacco cells 下载免费PDF全文
Sukhorukov VL Endter JM Zimmermann D Shirakashi R Fehrmann S Kiesel M Reuss R Becker D Hedrich R Bamberg E Roitsch T Zimmermann U 《Biophysical journal》2007,93(9):3324-3337
Cytosolic Ca(2+) changes induced by electric field pulses of 50-micros duration and 200-800 V/cm strength were monitored by measuring chemiluminescence in aequorin-transformed BY-2 tobacco cells. In Ca(2+)-substituted media, electropulsing led to a very fast initial increase of the cytosolic Ca(2+) concentration reaching a peak value within <100-200 ms. Peaking of [Ca(2+)](cyt) was followed by a biphasic decay due to removal of Ca(2+) (e.g., by binding and/or sequestration in the cytosol). The decay had fast and slow components, characterized by time constants of approximately 0.5 and 3-5 s, respectively. Experiments with various external Ca(2+) concentrations and conductivities showed that the fast decay arises from Ca(2+) fluxes through the plasmalemma, whereas the slow decay must be assigned to Ca(2+) fluxes through the tonoplast. The amplitude of the [Ca(2+)](cyt) transients increased with increasing field strength, whereas the time constants of the decay kinetics remained invariant. Breakdown of the plasmalemma was achieved at a critical field strength of approximately 450 V/cm, whereas breakdown of the tonoplast required approximately 580 V/cm. The above findings could be explained by the transient potential profiles generated across the two membranes in response to an exponentially decaying field pulse. The dielectric data required for calculation of the tonoplast and plasmalemma potentials were derived from electrorotation experiments on isolated vacuolated and evacuolated BY-2 protoplasts. The electrorotation response of vacuolated protoplasts could be described in terms of a three-shell model (i.e., by assuming that the capacitances of tonoplast and plasmalemma are arranged in series). Among other things, the theoretical analysis together with the experimental data show that genetic manipulations of plant cells by electrotransfection or electrofusion must be performed in low-conductivity media to minimize release of vacuolar Ca(2+) and presumably other vacuolar ingredients. 相似文献
14.
Micci M. A.; Christensen Burgess N. 《American journal of physiology. Cell physiology》1998,274(6):C1625
The role of theNa+/Ca2+exchanger in intracellular Ca2+regulation was investigated in freshly dissociated catfish retinalhorizontal cells (HC).Ca2+-permeable glutamate receptorsand L-type Ca2+ channels as wellas inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitiveintracellular Ca2+ stores regulateintracellular Ca2+ in these cells.We used the Ca2+-sensitive dyefluo 3 to measure changes in intracellularCa2+ concentration([Ca2+]i)under conditions in whichNa+/Ca2+exchange was altered. In addition, the role of theNa+/Ca2+exchanger in the refilling of the caffeine-sensitiveCa2+ store followingcaffeine-stimulated Ca2+ releasewas assessed. Brief applications of caffeine (1-10 s) producedrapid and transient changes in[Ca2+]i.Repeated applications of caffeine produced smallerCa2+ transients until no furtherCa2+ was released. Store refillingoccurred within 1-2 min and required extracellularCa2+. Ouabain-induced increases inintracellular Na+ concentration([Na+]i)increased both basal free[Ca2+]iand caffeine-stimulated Ca2+release. Reduction of external Na+concentration([Na+]o)further and reversibly increased[Ca2+]iin ouabain-treated HC. This effect was not abolished by the Ca2+ channel blocker nifedipine,suggesting that increases in[Na+]ipromote net extracellular Ca2+influx through aNa+/Ca2+exchanger. Moreover, when[Na+]owas replaced by Li+, caffeine didnot stimulate release of Ca2+ fromthe caffeine-sensitive store afterCa2+ depletion. TheNa+/Ca2+exchanger inhibitor 2',4'-dimethylbenzamil significantlyreduced the caffeine-evoked Ca2+response 1 and 2 min after store depletion. 相似文献
15.
The microenvironment between the plasma membrane and the near-membrane sarcoplasmic reticulum (SR) may play an important role in Ca(2+) regulation in smooth muscle cells. We used a three-dimensional mathematical model of Ca(2+) diffusion and regulation and experimental measurements of SR Ca(2+) uptake and the distribution of the SR in isolated smooth muscle cells to predict the extent that the near-membrane SR could load Ca(2+) after the opening of single plasma membrane Ca(2+) channels. We also modeled the effect of SR uptake on 1), single-channel Ca(2+) transients in the near-membrane space; 2), the association of Ca(2+) with Ca(2+) buffers in this space; and 3), the amount of Ca(2+) reaching the central cytoplasm of the cell. Our results indicate that, although single-channel Ca(2+) transients could increase SR Ca(2+) to a certain extent, SR Ca(2+) uptake is not rapid enough to greatly affect the magnitude of these transients or their spread to the central cytoplasm unless the Ca(2+) uptake rate of the peripheral SR is an order-of-magnitude higher than the mean rate derived from our experiments. Immunofluorescence imaging, however, did not reveal obvious differences in the density of SR Ca(2+) pumps or phospholamban between the peripheral and central SR in smooth muscle cells. 相似文献
16.
Purified plasma membrane vesicles from GH3 rat anterior pituitary cells exhibit a Mg2+-ATP-dependent Ca2+ transport activity. Concentrative uptake of Ca2+ is abolished by exclusion of either Mg2+ or ATP or by inclusion of the Ca2+ ionophore A23187. Furthermore, addition of A23187 to vesicles which have reached a steady state of ATP-supported Ca2+ accumulation rapidly and completely discharges accumulated cation. Ca2+ uptake is unaffected by treatment of vesicles with oligomycin, the uncoupler CCCP, or valinomycin and is greatly reduced in non-plasma membrane fractions. Likewise, Ca2+ accumulation is not stimulated by oxalate, consistent with the plasma membrane origin of this transport system. (Na+, K+)-ATPase participation in the Ca2+ transport process (i.e. via coupled Na+/Ca2+ exchange) was eliminated by omitting Na+ and including ouabain in the reaction medium. Ca2+ transport activity in GH3 vesicles has a similar pH dependence as that seen in a number of other plasma membrane systems and is inhibited by orthovanadate in the micromolar range. Inhibition is enhanced if the membranes are preincubated with vanadate for a short time. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ and ATP are 0.7 and 125 microM, respectively. The average Vmax is 3.6 nmol of Ca2+/min/mg of protein at 37 degrees C. Addition of exogenous calmodulin or calmodulin antagonists had no significant effect on these kinetic properties. GH3 plasma membranes also contain a Na+/Ca2+ exchange system. The apparent Km for Ca2+ is almost 10-fold higher in this system than that for ATP-driven Ca2+ uptake. When both processes are compared under similar conditions, the Vmax of the exchanger is approximately 2-3 times that of ATP-dependent Ca2+ accumulation. Similar results are obtained when purified plasma membranes from bovine anterior pituitary glands were investigated. It is suggested that both Na+/Ca2+ exchange and the (Ca2+ + Mg2+)-ATPase are important in controlling intracellular levels of Ca2+ in anterior pituitary cells. 相似文献
17.
The plasma membrane Na+/Ca2+ exchanger (NCX) is almost certainly the major Ca2+ extrusion mechanism in cardiac myocytes. Binding of Na+ and Ca2+ ions to its large cytosolic loop regulates ion transport of the exchanger. We determined the solution structures of two Ca2+ binding domains (CBD1 and CBD2) that, together with an alpha-catenin-like domain (CLD), form the regulatory exchanger loop. CBD1 and CBD2 are very similar in the Ca2+ bound state and describe the Calx-beta motif. Strikingly, in the absence of Ca2+, the upper half of CBD1 unfolds while CBD2 maintains its structural integrity. Together with a 7-fold higher affinity for Ca2+, this suggests that CBD1 is the primary Ca2+ sensor. Specific point mutations in either domain largely allow the interchange of their functionality and uncover the mechanism underlying Ca2+ sensing in NCX. 相似文献
18.
Shlykov SH Babich LH Slichenko NM Rodik RV Boĭko VI Kal'chenko VI Kosterin SO 《Ukrainski? biokhimicheski? zhurnal》2007,79(4):28-33
Calixarenes, owing to the ability to form supramolecular complexes with biologically important molecules and ions, can influence a course of biochemical processes and, accordingly, be considered as perspective molecular platforms for creation of physiologically active compounds. The work purpose is to study calixarene C-91 influence on systems of active Ca ions transport which are localized in subcellular membrane structures (mitochondria, sarcoplasmic reticulum, plasma membrane) of myometrial cells. It has been shown, that calixarene C-91 addition to incubation medium led to an increase in Ca2+ accumulation level in mitochondria. The maximal stimulating effect was 173% and it was observed at 100 microM concentration. It is suggested, that calixarene C-91 can enter mitochondria with the subsequent precipitation of Ca ions in a matrix therefore calcium capacity increases, and as a consequence, higher Ca2+ accumulation in these structures is observed. In a wide range of concentration (1-100 microM) calixarene C-91 did not influence a level of Ca2+ accumulation in sarcoplasmic reticulum of myometrial cells. Titration of solubilized Ca2+, Mg2+-ATPase by calixarene C-91 (0,1-100 microM) did not cause changes in its activity. Thus, calixarene C-91 increases Ca2+ accumulation level in mitochondria, but practically does not influence calcium pumps activity of a plasma membrane and sarcoplasmic reticulum of myometrial cells. 相似文献
19.
The effect of oxytocin on phosphoinositide metabolism as well as on membrane protein phosphorylation in myometrial tissue was studied. Oxytocin enhanced the 32P incorporation into phospholipids in myometrial tissue. The effect of oxytocin on phosphoinositide metabolism was also detected in plasma membrane of 20 days pregnant rats. Phosphorylated membrane lipids have been analysed and phosphatidylinositol 4, 5-bisphosphate proved to be the main reaction product. Oxytocin enhanced the 32P incorporation into phospholipids measured in the first 30 sec then the labeling decreased more rapidly then in case of the control. The effect of oxytocin proved to be concentration dependent. The protein phosphorylation was also influenced by oxytocin. However the amount of alkylphosphate formed depended on the presence or absence of Ca2+, Ca2+-calmodulin and cyclic AMP, oxytocin influenced the protein phosphorylation in the presence of Ca2+-calmodulin only. 相似文献
20.
Cheng JS Lee KC Wang JL Tseng LL Chou KJ Tang KY Jan CR 《The Chinese journal of physiology》2000,43(4):165-169
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in HA22/VGH human hepatoma cells were evaluated using fura-2 as a fluorescent Ca2+ dye. Histamine (0.2-5 microM) increased [Ca2+]i in a concentration-dependent manner with an EC50 value of about 1 microM. The [Ca2+]i response comprised an initial rise, a slow decay, and a sustained phase. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In Ca2+-free medium, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 5 microM histamine failed to increase [Ca2+]i. After pretreatment with 5 microM histamine in Ca2+-free medium for 4 min, addition of 3 mM Ca2+ induced a [Ca2+]i increase of a magnitude 7-fold greater than control. Histamine (5 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 5 microM pyrilamine but was not altered by 50 microM cimetidine. Together, this study shows that histamine induced [Ca2+]i increases in human hepatoma cells by stimulating H1, but not H2, histamine receptors. The [Ca2+]i signal was caused by Ca2+ release from thapsigargin-sensitive endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, accompanied by Ca2+ entry. 相似文献