首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminoacyl-tRNA synthetases are essential components in protein biosynthesis. Arginyl-tRNA synthetase (ArgRS) belongs to the small group of aminoacyl-tRNA synthetases requiring cognate tRNA for amino acid activation. The crystal structure of Escherichia coli (Eco) ArgRS has been solved in complex with tRNAArg at 3.0-Å resolution. With this first bacterial tRNA complex, we are attempting to bridge the gap existing in structure–function understanding in prokaryotic tRNAArg recognition. The structure shows a tight binding of tRNA on the synthetase through the identity determinant A20 from the D-loop, a tRNA recognition snapshot never elucidated structurally. This interaction of A20 involves 5 amino acids from the synthetase. Additional contacts via U20a and U16 from the D-loop reinforce the interaction. The importance of D-loop recognition in EcoArgRS functioning is supported by a mutagenesis analysis of critical amino acids that anchor tRNAArg on the synthetase; in particular, mutations at amino acids interacting with A20 affect binding affinity to the tRNA and specificity of arginylation. Altogether the structural and functional data indicate that the unprecedented ArgRS crystal structure represents a snapshot during functioning and suggest that the recognition of the D-loop by ArgRS is an important trigger that anchors tRNAArg on the synthetase. In this process, A20 plays a major role, together with prominent conformational changes in several ArgRS domains that may eventually lead to the mature ArgRS:tRNA complex and the arginine activation. Functional implications that could be idiosyncratic to the arginine identity of bacterial ArgRSs are discussed.  相似文献   

2.
To understand the mechanism of mutual recognition between aminoacyl tRNA synthetases (EC 6.1.1) and tRNAs, it is important to obtain more information about the structure of these enzymes. X-ray crystallography offers one approach, but although several aminoacyl tRNA synthetases have been isolated in very pure form1 and crystallization of tryptophanyl2 and seryl3 tRNA synthetases has been reported, no crystals were available that were suitable for structural analysis. Only very recently have Rymo and Lagerkvist4 described the formation of crystals of yeast lysyl tRNA synthetase which are apparently suitable for further X-ray analysis. Here we deal with the phenomenon of polymerization of the tryptophanyl tRNA synthetase complex with tryptophan in the form of rod-like particles and the subsequent formation of para-crystalline aggregates.  相似文献   

3.
The high molecular weight aminoacyl-tRNA synthetase complexes found in extracts of many eukaryotic cells often contain lipids and other non-protein components. Since hydrophobic interactions play an important role in maintaining synthetases in the complex, it has been suggested that the lipids present may also participate in its functional and structural integrity. In order to learn more about the role of lipids in the complex, we have compared the properties of the normal complex to one which has been delipidated by treatment with Triton X-114. Delipidation does not affect the size or activity of the aminoacyl-tRNA synthetase complex, but a variety of functional and structural properties of individual synthetases in the complex are altered dramatically. These include sensitivity to salts plus detergents, temperature inactivation, hydrophobicity, and sensitivity to protease digestion. In the latter case, removal of lipids also affects the low molecular weight products released by protease digestion. Purification of the synthetase complex by various chromatographic procedures can remove the lipids and lead to a structure that behaves like the delipidated complex prepared by detergent treatment. The significance of these findings for the intracellular location of aminoacyl-tRNA synthetases and for the study of purified complexes are discussed.  相似文献   

4.
Rat liver arginyl-tRNA synthetase is found in extracts either as a component (Mr = 72,000) of the multienzyme aminoacyl-tRNA synthetase complex or as a low molecular weight (Mr = 60,000) free protein. The two forms are thought to be identical except for an extra peptide extension at the NH2-terminus of the larger form which is required for its association with the complex, but is unessential for catalytic activity. It has been suggested that interactions among synthetases in the multienzyme complex are mediated by hydrophobic domains on these peptide extensions of the individual proteins. To test this model we have purified to homogeneity the larger form of arginyl-tRNA synthetase and compared its hydrophobicity to that of its low molecular weight counterpart. We show that whereas the smaller protein displays no hydrophobic character, the larger protein demonstrates a high degree of hydrophobicity. No lipid modification was found on the high molecular weight protein indicating that the amino acid sequence itself is responsible for its hydrophobic properties. These findings support the proposed model for synthetase association within the multienzyme complex.  相似文献   

5.
Tyrosyl-tRNA synthetase of beef liver has been isolated and its properties have been studied. Tyrosyl-tRNA synthetase is a structural dimer of alpha 2 type. Mr of the enzyme subunit is about 59 kDa. Km values for substrates have been determined and compared with kinetic properties of tyrosyl-tRNA synthetases from different sources. The polymorphism of tyrosyl-tRNA synthetase was studied. The enzyme was separated into two different forms by chromatography on phosphocellulose P 11. P1-form is active only in the amino acid activation reaction. This form is not due to the phosphorylation of the enzyme. The low molecular weight form (38 kDa) was also isolated. This form appeared due to the limited endogenic proteolysis of the main form and retained full activity in the aminoacylation reaction. Tyrosyl-tRNA synthetase from beef liver has non-specific affinity to rRNA-sepharose.  相似文献   

6.
The effects of a variety of detergents and neutral salts on the structure of the eukaryotic high molecular mass aminoacyl-tRNA synthetase complex have been directly determined by observing alterations in the composition, sedimentation behavior, and electron microscopic appearance of the rabbit reticulocyte complex. The intact complex is shown to exhibit the enzymatic activities, polypeptide composition, relative stoichiometry, and morphological features that are characteristic of this eukaryotic multienzyme particle. The structure of the high molecular mass aminoacyl-tRNA synthetase complex is seen to be resistant to both ionic and nonionic detergents. However, both 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and deoxycholate induce formation of large protein aggregates. In contrast, the chaotropic salts LiCl and NaSCN both selectively remove individual polypeptides from the high molecular mass aminoacyl-tRNA synthetase complex and promote formation of specific particulate subcomplexes which have distinct sizes, polypeptide compositions, and structural features. These data support the view that many of the protein interactions within the high molecular mass amino-acyl-tRNA synthetase complex are hydrophobic in nature. This study also provides direct evidence that the complex contains a core of tightly interacting synthetases onto which the remaining polypeptides are arrayed. The structural alterations observed here may account for the ability of these reagents to markedly inhibit several enzymatic activities within the complex.  相似文献   

7.
8.
Wheat chloroplastic methionyl-tRNA synthetase was isolated and appeared to be a monomer with a molecular weight of 75,000 daltons. Its catalytical properties in the aminoacylation for various isoacceptors tRNAsMet from E. coli and wheat germ revealed a recognition of prokaryotic tRNAs and wheat cytoplasmic tRNAiMet, but not tRNAmMet. Using pI determinations and catalytical properties, it could be detected in non-chloroplastic quiescent wheat germ a form of methionyl-tRNA synthetase having the same properties as the chloroplastic one's.  相似文献   

9.
Polypeptides containing β-amino acids are attractive tools for the design of novel proteins having unique properties of medical or industrial interest. Incorporation of β-amino acids in vivo requires the development of efficient aminoacyl-tRNA synthetases specific of these non-canonical amino acids. Here, we have performed a detailed structural and biochemical study of the recognition and use of β3-Met by Escherichia coli methionyl-tRNA synthetase (MetRS). We show that MetRS binds β3-Met with a 24-fold lower affinity but catalyzes the esterification of the non-canonical amino acid onto tRNA with a rate lowered by three orders of magnitude. Accurate measurements of the catalytic parameters required careful consideration of the presence of contaminating α-Met in β3-Met commercial samples. The 1.45 Å crystal structure of the MetRS: β3-Met complex shows that β3-Met binds the enzyme essentially like α-Met, but the carboxylate moiety is mobile and not adequately positioned to react with ATP for aminoacyl adenylate formation. This study provides structural and biochemical bases for engineering MetRS with improved β3-Met aminoacylation capabilities.  相似文献   

10.
The molecular basis of the genetic code relies on the specific ligation of amino acids to their cognate tRNA molecules. However, two pathways exist for the formation of Gln-tRNAGln. The evolutionarily older indirect route utilizes a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) that can form both Glu-tRNAGlu and Glu-tRNAGln. The Glu-tRNAGln is then converted to Gln-tRNAGln by an amidotransferase. Since the well-characterized bacterial ND-GluRS enzymes recognize tRNAGlu and tRNAGln with an unrelated α-helical cage domain in contrast to the β-barrel anticodon-binding domain in archaeal and eukaryotic GluRSs, the mode of tRNAGlu/tRNAGln discrimination in archaea and eukaryotes was unknown. Here, we present the crystal structure of the Methanothermobacter thermautotrophicus ND-GluRS, which is the evolutionary predecessor of both the glutaminyl-tRNA synthetase (GlnRS) and the eukaryotic discriminating GluRS. Comparison with the previously solved structure of the Escherichia coli GlnRS-tRNAGln complex reveals the structural determinants responsible for specific tRNAGln recognition by GlnRS compared to promiscuous recognition of both tRNAs by the ND-GluRS. The structure also shows the amino acid recognition pocket of GluRS is more variable than that found in GlnRS. Phylogenetic analysis is used to reconstruct the key events in the evolution from indirect to direct genetic encoding of glutamine.  相似文献   

11.
Glutamyl-queuosine tRNAAsp synthetase (Glu-Q-RS) from Escherichia coli is a paralog of the catalytic core of glutamyl-tRNA synthetase (GluRS) that catalyzes glutamylation of queuosine in the wobble position of tRNAAsp. Despite important structural similarities, Glu-Q-RS and GluRS diverge strongly by their functional properties. The only feature common to both enzymes consists in the activation of Glu to form Glu-AMP, the intermediate of transfer RNA (tRNA) aminoacylation. However, both enzymes differ by the mechanism of selection of the cognate amino acid and by the mechanism of its activation. Whereas GluRS selects l-Glu and activates it only in the presence of the cognate tRNAGlu, Glu-Q-RS forms Glu-AMP in the absence of tRNA. Moreover, while GluRS transfers the activated Glu to the 3′ accepting end of the cognate tRNAGlu, Glu-Q-RS transfers the activated Glu to Q34 located in the anticodon loop of the noncognate tRNAAsp. In order to gain insight into the structural elements leading to distinct mechanisms of amino acid activation, we solved the three-dimensional structure of Glu-Q-RS complexed to Glu and compared it to the structure of the GluRS·Glu complex. Comparison of the catalytic site of Glu-Q-RS with that of GluRS, combined with binding experiments of amino acids, shows that a restricted number of residues determine distinct catalytic properties of amino acid recognition and activation by the two enzymes. Furthermore, to explore the structural basis of the distinct aminoacylation properties of the two enzymes and to understand why Glu-Q-RS glutamylates only tRNAAsp among the tRNAs possessing queuosine in position 34, we performed a tRNA mutational analysis to search for the elements of tRNAAsp that determine recognition by Glu-Q-RS. The analyses made on tRNAAsp and tRNAAsn show that the presence of a C in position 38 is crucial for glutamylation of Q34. The results are discussed in the context of the evolution and adaptation of the tRNA glutamylation system.  相似文献   

12.
The glutaminyl-tRNA synthetase (GlnRS) enzyme, which pairs glutamine with tRNAGln for protein synthesis, evolved by gene duplication in early eukaryotes from a nondiscriminating glutamyl-tRNA synthetase (GluRS) that aminoacylates both tRNAGln and tRNAGlu with glutamate. This ancient GluRS also separately differentiated to exclude tRNAGln as a substrate, and the resulting discriminating GluRS and GlnRS further acquired additional protein domains assisting function in cis (the GlnRS N-terminal Yqey domain) or in trans (the Arc1p protein associating with GluRS). These added domains are absent in contemporary bacterial GlnRS and GluRS. Here, using Saccharomyces cerevisiae enzymes as models, we find that the eukaryote-specific protein domains substantially influence amino acid binding, tRNA binding and aminoacylation efficiency, but they play no role in either specific nucleotide readout or discrimination against noncognate tRNA. Eukaryotic tRNAGln and tRNAGlu recognition determinants are found in equivalent positions and are mutually exclusive to a significant degree, with key nucleotides located adjacent to portions of the protein structure that differentiated during the evolution of archaeal nondiscriminating GluRS to GlnRS. These findings provide important corroboration for the evolutionary model and suggest that the added eukaryotic domains arose in response to distinctive selective pressures associated with the greater complexity of the eukaryotic translational apparatus. We also find that the affinity of GluRS for glutamate is significantly increased when Arc1p is not associated with the enzyme. This is consistent with the lower concentration of intracellular glutamate and the dissociation of the Arc1p:GluRS complex upon the diauxic shift to respiratory conditions.  相似文献   

13.
Detailed structural insights into the p97-Npl4-Ufd1 interface   总被引:1,自引:0,他引:1  
The AAA ATPase, p97, achieves its versatility through binding to a wide range of cofactor proteins that adapt it to different cellular functions. The heterodimer UN (comprising Ufd1 and Npl4) is an adaptor complex that recruits p97 for numerous tasks, many of which involve the ubiquitin pathway. Insights into the structural specificity of p97 for its UN adaptor are currently negligible. Here, we present the solution structure of the Npl4 "ubiquitin-like" domain (UBD), which adopts a beta-grasp fold with a 3(10) helical insert. Moreover we performed a chemical shift perturbation analysis of its binding surface with the p97 N domain. We assigned the backbone amides of the p97 N domain and probed both its reciprocal binding surface with Npl4 UBD and its interaction with the p97-binding region of Ufd1. NMR data recorded on a 400-kDa full-length UN-hexamer p97 complex reveals an identical mode of interaction. We calculated a structural model for the p97 N-Npl4 UBD complex, and a comparison with the p97-p47 adaptor complex reveals subtle differences in p97 adaptor recognition and specificity.  相似文献   

14.
Knowledge of the structural basis of protein-protein interactions (PPI) is of fundamental importance for understanding the organization and functioning of biological networks and advancing the design of therapeutics which target PPI. Allosteric modulators play an important role in regulating such interactions by binding at site(s) orthogonal to the complex interface and altering the protein''s propensity for complex formation. In this work, we apply an approach recently developed by us for analyzing protein surfaces based on steered molecular dynamics simulation (SMD) to the study of the dynamic properties of functionally distinct conformations of a model protein, calmodulin (CaM), whose ability to interact with target proteins is regulated by the presence of the allosteric modulator Ca2+. Calmodulin is a regulatory protein that acts as an intracellular Ca2+ sensor to control a wide variety of cellular processes. We demonstrate that SMD analysis is capable of pinpointing CaM surfaces implicated in the recognition of both the allosteric modulator Ca2+ and target proteins. Our analysis of changes in the dynamic properties of the CaM backbone elicited by Ca2+ binding yielded new insights into the molecular mechanism of allosteric regulation of CaM-target interactions.  相似文献   

15.
Rat liver arginyl-tRNA synthetase is found in extracts either as a component (Mr = 72,000) of a high molecular weight aminoacyl-tRNA synthetase complex or as a low molecular weight (Mr = 60,000) free form. Previous studies suggested that the free protein arises from the complex-derived form by a limited proteolysis that removes the portion of the protein required for its association with the complex. In order to determine the location in the protein and some structural properties of this extra 12-kDa portion, the complex-derived and free forms were each extensively purified and compared by peptide mapping using limited V-8 protease digestion. The two proteins showed 7-8 peptide bands in common, as well as 1-2 unique bands each. Treatment of each of the proteins with carboxypeptidase Y prior to digestion with V-8 protease indicated that the two proteins have a common COOH-terminal peptide. Amino acid analyses of the two arginyl-tRNA synthetases revealed a strong similarity; however, the complex-derived form contained a large excess of basic amino acids. These results demonstrate directly that the complex-derived and free forms of arginyl-tRNA synthetase are closely related proteins, but that the former includes a basic, NH2-terminal extension absent in the free form. The role of this extra segment in the polyanion-binding properties of eukaryotic synthetases and in their structural organization into high molecular weight complexes is discussed.  相似文献   

16.
This review highlights studies by Lev L. Kisselev and his colleagues on the initial and terminal stages of protein biosynthesis, which cover the period of the last 45 years (1961-2006). They investigated spatial structure of tRNAs, structure and functions of aminoacyl-tRNA-synthetases of higher organisms, and the final step of protein synthesis, termination of translation. L. Kisselev and his team have made three major contributions to these fields of molecular biology; (i) they proposed the hypothesis on the role of anticodon triplet of tRNA in recognition by cognate aminoacyl-tRNA synthetase, which has been experimentally confirmed and is now included in textbooks; (ii) identified primary structures and functions of two eukaryotic protein factors (eRF1 and eRF3) playing a pivotal role in translation termination; (iii) characterized a structural basis for stop codon recognition by eRF1 within the ribosome and discovered the negative structural elements of eRF1, limiting its recognition of one or two stop-codons.  相似文献   

17.
To ensure fidelity of translation, several aminoacyl-tRNA synthetases (aaRSs) possess editing capability to hydrolyse mis-aminoacylated tRNAs. In this report, based on our previously-modelled structure of leucyl-tRNA synthetase (LeuRS) complexed with valyl-tRNALeu, further structural modelling has been performed along with molecular dynamics simulations. This enabled the identification of the nucleophile, which is different from that suggested by the crystal structure of the LeuRS • Nva2AA complex. Our results revealed that the 3′ hydroxyl group of A76 acts as a “gate” to regulate the accessibility of the nucleophile; thus, the opening of the gate leads to the productive complex for the reaction.  相似文献   

18.
We have constructed a model of the complex between tyrosyl-tRNA synthetase (TyrRS) from Bacillus stearothermophilus and tRNATyr by successive cycles of predictions, mutagenesis of TyrRS and molecular modeling. We confront this model with data obtained independently, compare it to the crystal structures of other complexes and review recent data on the discrimination between tRNAs by TyrRS. Comparison of the crystal structures of TyrRs and GlnRS, both of which are class I synthetases, and comparison of the identity elements of tRNATyr and tRNAGln indicate that the two synthetases bind their cognate tRNAs differently. The mutagenesis data on tRNATyr confirm the model of the TyrRS:tRNATyr complex on the following points. TyrRS approaches tRNATyr on the side of the variable loop. The bases of the first three pairs of the acceptor stem are not recognized. The presence of the NH2 group in position C6 and the absence of a bulky group in position C2 are important for the recognition of the discriminator base A73 by TyrRS, which is fully realized only in the transition state for the acyl transfer. The anticodon is the major identity element of tRNATyr. We have set up an in vivo approach to study the effects of synthetase mutations on the discrimination between tRNAs. Using this approach, we have shown that residue Glul52 of TyrRS acts as a purely negative discriminant towards non-cognate tRNAs, by electrostatic and steric repulsions. The overproductions of the wild type TyrRSs from E coli and B stearothermophilus are toxic to E coli, due to the mischarging or the non-productive binding of tRNAs. The construction of a family of hybrids between the TyrRSs from E coli and B stearothermophilus has shown that their sequences and structures have remained locally compatible through evolution, for holding and function, in particular for the specific recognition and charging of tRNATyr.  相似文献   

19.
The p75 neurotrophin receptor (p75NTR) is a critical mediator of neuronal death and tissue remodeling and has been implicated in various neurodegenerative diseases and cancers. The death domain (DD) of p75NTR is an intracellular signaling hub and has been shown to interact with diverse adaptor proteins. In breast cancer cells, binding of the adaptor protein TRADD to p75NTR depends on nerve growth factor and promotes cell survival. However, the structural mechanism and functional significance of TRADD recruitment in neuronal p75NTR signaling remain poorly understood. Here we report an NMR structure of the p75NTR-DD and TRADD-DD complex and reveal the mechanism of specific recognition of the TRADD-DD by the p75NTR-DD mainly through electrostatic interactions. Furthermore, we identified spatiotemporal overlap of p75NTR and TRADD expression in developing cerebellar granule neurons (CGNs) at early postnatal stages and discover the physiological relevance of the interaction between TRADD and p75NTR in the regulation of canonical NF-κB signaling and cell survival in CGNs. Our results provide a new structural framework for understanding how the recruitment of TRADD to p75NTR through DD interactions creates a membrane-proximal platform, which can be efficiently regulated by various neurotrophic factors through extracellular domains of p75NTR, to propagate downstream signaling in developing neurons.  相似文献   

20.
Aminoacyl-tRNA synthetases from eucaryotic cells generally are isolated as high molecular weight complexes comprised of multiple synthetase activities, and often containing other components as well. A model is proposed for the synthetase complex in which hydrophobic extensions on the proteins serve to maintain them in their high molecular weight form, but are not needed for catalytic activity. The structural similarity of these enzymes to certain membrane-bound proteins, and its implications for synthetase localization and function in vivo, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号