首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute increases of the key counterregulatory hormone epinephrine can be modified by a number of physiological and pathological conditions in type 1 diabetic patients (T1DM). However, it is undecided whether the physiological effects of epinephrine are also reduced in T1DM. Therefore, the aim of this study was to determine whether target organ (liver, muscle, adipose tissue, pancreas, cardiovascular) responses to epinephrine differ between healthy subjects and T1DM patients. Thirty-four age- and weight-matched T1DM (n = 17) and healthy subjects (n = 17) underwent two randomized, single-blind, 2-h hyperinsulinemic euglycemic clamp studies with (Epi) and without epinephrine infusion. Muscle biopsy was performed at the end of each study. Epinephrine levels during Epi were similar in all groups (4,039 +/- 384 pmol/l). Glucose (5.3 +/- 0.06 mmol/l) and insulin levels (462 +/- 18 pmol/l) were also similar in all groups during the glucose clamps. Glucagon responses to Epi were absent in T1DM and significantly reduced compared with healthy subjects. Endogenous glucose production during the final 30 min was significantly greater during Epi in healthy subjects compared with T1DM (8.4 +/- 1.3 vs. 4.4 +/- 0.6 micromol.kg(-1).min(-1), P = 0.041). Glucose uptake showed almost a twofold greater decrease with Epi in healthy subjects vs. T1DM (Delta31 +/- 2 vs. Delta17 +/- 2 nmol.kg(-1).min(-1), respectively, P = 0.026). Glycerol, beta-hydroxybutyrate, and nonesterified fatty acid (NEFA) all increased significantly more in T1DM compared with healthy subjects. Increases in systolic blood pressure were greater in healthy subjects, but reductions of diastolic blood pressure were greater in T1DM patients with Epi. Reduction of glycogen synthase was significantly greater during epinephrine infusion in T1DM vs. healthy subjects. In summary, despite equivalent epinephrine, insulin, and glucose levels, changes in glucose flux, glucagon, and cardiovascular responses were greater in healthy subjects compared with T1DM. However, T1DM patients had greater lipolytic responses (glycerol and NEFA) during Epi. Thus we conclude that there is a spectrum of significant in vivo physiological differences of epinephrine action at the liver, muscle, adipose tissue, pancreas, and cardiovascular system between T1DM and healthy subjects.  相似文献   

2.
The kinetics underlying plasma epinephrine concentrations were studied. Six athletes (T) and six sedentary males (C) were given intravenous infusions of 3H-labeled epinephrine, after which arterial blood was drawn. They rested sitting and bicycled continuously to exhaustion (60 min at 125 W, 60 min at 160 W, 40 min at 200 W, and 240 W to the end). Work time was 154 +/- 13 (SE) (T) and 75 +/- 6 (C) min. At rest, epinephrine clearance was identical [28.4 +/- 1.3 (T) vs. 29.2 +/- 1.8 (C) ml . kg-1 . min-1], but plasma concentration [1.42 +/- 0.27 (T) vs. 0.71 +/- 0.16 (C) nmol . l-1] and, accordingly, secretion [2.9 +/- 0.7 vs. 1.5 +/- 0.4 nmol . min-1] were higher (P less than 0.05) in T than C subjects. Epinephrine clearance was closely related to relative work load, decreasing from 15% above the basal level at 30% of maximal O2 uptake (VO2 max) to 22% below at 76% of VO2 max. Epinephrine concentrations increased much more with work intensity than could be accounted for by changes in clearance and were, at exhaustion, higher (P less than 0.05) in T (7.2 +/- 1.6) than in C (2.5 +/- 0.7 nmol . l-1) subjects despite similar glucose, heart rate, and hematocrit values. At a given load, epinephrine clearance rapidly became constant, whereas concentration increased continuously. Forearm extraction of epinephrine invalidated use of blood from a cubital vein or a hand vein arterialized by hot water in turnover measurements. During exercise, changes in epinephrine concentrations reflect changes in secretion rather than in clearance. Training may increase adrenal medullary secretory capacity.  相似文献   

3.
Effect of physical training on the capacity to secrete epinephrine   总被引:5,自引:0,他引:5  
Epinephrine responses to hypoglycemia and to identical relative work loads have been shown to be higher in endurance-trained athletes than in untrained subjects. To test the hypothesis that training increases the adrenal medullary secretory capacity, we studied the effects of glucagon (1 mg/70 kg iv), acute hypercapnia (inspired O2 fraction = 7%), and acute hypobaric hypoxia (inspired Po2 = 87 Torr), respectively, on the epinephrine concentration in arterialized hand vein blood in eight endurance-trained athletes [T, O2 uptake = 66 (62-70) ml.min-1.kg-1] and seven sedentary males [C, O2 uptake = 46 (41-50)]. In response to identical increments in glucagon concentrations, plasma epinephrine increased more in T than in C subjects [0.87 +/- 0.11 vs. 0.38 +/- 0.14 (SE) nmol/l, P less than 0.05]. In response to hypercapnia [arterial PCO2 = 56 +/- 0.7 Torr (T) and 55 +/- 0.4 (C), P greater than 0.05], the increment in epinephrine was significant in T (0.38 +/- 0.11 nmol/l) but not (P less than 0.1) in C subjects (0.22 +/- 0.11). Hypoxia [arterial PO2 = 42 +/- 2 Torr (T) and 41 +/- 2 (C), P greater than 0.05] increased epinephrine in T (0.22 +/- 0.10 nmol/l, P less than 0.05) but not in C subjects (0.01 +/- 0.07). The plasma norepinephrine concentration never changed, whereas heart rate always increased, the increase being higher (P less than 0.05) in T than in C subjects only during hypercapnia. The results indicate that training increases the capacity to secrete epinephrine.  相似文献   

4.
The effects of an intravenous infusion of porcine GIP on beta-cell secretion in patients with untreated type 2 diabetes mellitus have been studied. The subjects were studied on two separate days. After a 10 h overnight fast and a further 120 min basal period they were given an intravenous infusion of porcine GIP (2 pmol.kg-1.min-1) or control solution in random order from 120-140 min. Frequent plasma glucose, insulin, C-peptide and GIP measurements were made throughout and the study was continued until 200 min. Plasma glucose levels were similar throughout both tests. During the GIP infusion there was an early significant rise in insulin concentration from 0.058 +/- 0.006 nmol/l to 0.106 +/- 0.007 nmol/l (P less than 0.01) within 6 min of commencing the GIP infusion and insulin levels reached a peak of 0.131 +/- 0.011 nmol/l at 10 min (P less than 0.01). Insulin levels remained significantly elevated during the rest of the GIP infusion (P less than 0.01-0.001) and returned to basal values 20 min post infusion. No change in basal insulin values was seen during the control infusion. C-peptide levels were similarly raised during the GIP infusion and the increase was significant just 4 min after commencing the GIP infusion (P less than 0.05). GIP levels increased from 16 +/- 3 pmol/l prior to the infusion to a peak of 286 +/- 24 pmol/l 20 min later. At 4 min when a significant beta-cell response was observed GIP levels were well within the physiological range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6 normal subjects received two times of 2 hr euglycemic glucose clamp studies (insulin infusion rate 40 mU/M2/min) one with and the other without somatostatin (SRIF) infusion (500 microgram/hr). Serum C-peptide and glucagon levels were measured during clamp to study the sensitivity of pancreatic alpha and beta cells to the suppressive effects of exogenous hyperinsulinemia during normoglycemia in normal subjects and to find whether SRIF had any modulative effects on endocrine pancreas secretion at the status of hyperinsulinemia. The results showed that in normal man the degree of suppression of pancreatic glucagon secretion by hyperinsulinemia (approximately 100 uU/ml) during euglycemic glucose clamp without SRIF infusion was less than that of C-peptide with mean value of 62 +/- 4% of basal glucagon remained at the end of clamp study; while only about 30 +/- 2% of basal C-peptide concentrations remained. But during SRIF infused glucose clamp studies (SRIF was infused from 60 to 120 min), 32 +/- 2% of mean basal C-peptide concentrations and 38 +/- 6% of mean basal glucagon concentrations left at the end of 2 hr clamp studies when serum insulin level was about 100 uU/ml. For the glucose infusion rate (M value), it was significantly greater in our normal subjects in response to insulin + SRIF as compared to insulin alone (12.0 + 0.9 vs 8.8 +/- 1.4; P less than 0.01). We concluded: during hyperinsulinemia (100 uU/ml), the sensitivity of pancreatic alpha cells to insulin seems less than that of beta cells in normal man at normoglycemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In healthy subjects, basal endogenous glucose production is partly regulated by paracrine intrahepatic factors. It is currently unknown whether paracrine intrahepatic factors also influence the increased basal endogenous glucose production in patients with type 2 diabetes mellitus. Administration of indomethacin to patients with type 2 diabetes mellitus stimulates endogenous glucose production and inhibits insulin secretion. Our aim was to evaluate whether this stimulatory effect on glucose production is solely attributable to inhibition of insulin secretion. In order to do this, we administered indomethacin to 5 patients with type 2 diabetes during continuous infusion of somatostatin to block endogenous insulin and glucagon secretion and infusion of basal concentrations of insulin and glucagon in a placebo-controlled study. Endogenous glucose production was measured 3 hours after the start of the somatostatin, insulin and glucagon infusion, for 4 hours after administration of placebo/indomethacin, by primed, continuous infusion of [6,6-(2)H(2)] glucose. At the time of administration of placebo or indomethacin, there were no significant differences in plasma glucose concentrations and endogenous glucose production rates between the two experiments (16.4 +/- 2.09 mmol/l vs. 16.6 +/- 1.34 mmol/l and 17.7 +/- 1.05 micromol/kg/min and 17.0 +/- 1.06 micromol/kg/min), control vs. indomethacin). Plasma glucose concentration did not change significantly in the four hours after indomethacin or placebo administration. Endogenous glucose production in both experiments was similar after both placebo and indomethacin. Mean plasma C-peptide concentrations were all below the detection limit of the assay, reflecting adequate suppression of endogenous insulin secretion by somatostatin. There were no differences in plasma concentrations of insulin (76 +/- 5 vs. 74 +/- 4 pmol/l) and glucagon (69 +/- 8 vs. 71 +/- 6 ng/l) between the studies with levels remaining unchanged in both experiments. Plasma concentrations of cortisol, epinephrine, and norepinephrine were similar in the two studies and did not change significantly. We conclude that indomethacin stimulates endogenous glucose production in patients with type 2 diabetes mellitus by inhibition of insulin secretion.  相似文献   

7.
OBJECTIVES: The aim of this study was to examine hormonal counterregulation during insulin-induced hypoglycemia in type-1 diabetic patients during long-term near normoglycemic insulin therapy and intensive clinical care. METHODS: Type-1 diabetic patients (age 35.3 +/- 2 years, body mass index 22.8 +/- 1 kg x m(-2), mean diabetes duration 13.6 (11-17 years), mean HbA1c during the last year 6.6 +/- 0.1%) and nondiabetic subjects were studied during (0-120 min) and after (120-240 min) hypoglycemic (3.05 mmol/l) hyperinsulinemic (approximately 330 pmol/l) clamp tests. RESULTS: During hypoglycemia peak plasma concentrations of glucagon (199 +/- 16 vs. 155 +/- 11 ng/l, p < 0.05), epinephrine (4,514 +/- 644 vs. 1,676 +/- 513 pmol/l, p < 0.001), norepinephrine (2.21 +/- 0.14 vs. 1.35 +/- 0.19 nmol/l, p < 0.01) and cortisol (532 +/- 44 vs. 334 +/- 61 nmol/l) were reduced in the diabetic patients. Plasma lactate did not change from baseline values (0.51 +/- 0.06 mmol/l) in diabetic but doubled in healthy subjects (1.13 +/- 0.111 mmol/l, p < 0.001 vs. control). During the posthypoglycemic recovery period plasma concentrations of free fatty acids were higher in diabetic patients at 240 min (1.34 +/- 0.12 vs. 2.01 +/- 0.23 mmol/l, p < 0.05). CONCLUSION: Despite long-term near physiologic insulin substitution and the low incidence of hypoglycemia, hormonal hypoglycemia counterregulation was impaired in type-1 diabetic patients after a diabetes duration of more than 10 years.  相似文献   

8.
Epinephrine responses to insulin-induced hypoglycemia have indicated that athletes have a higher adrenal medullary secretory capacity than untrained subjects. This view was tested by an exercise protocol aiming at identical stimulation of the adrenal medulla in the two groups. Eight athletes (T) and eight controls (C) ran 7 min at 60% maximal O2 consumption (VO2max), 3 min at 100% VO2max, and 2 min at 110% VO2max. Plasma epinephrine both at rest and at identical relative work loads [110% VO2max: 8.73 +/- 1.51 (T) vs. 3.60 +/- 1.09 mmol X l-1 (C)] was higher [P less than 0.05) in T than in C. Norepinephrine, as well as heart rate, increased identically in the two groups, indicating identical sympathetic nervous activity. Lactate and glycerol were higher in T than in C after running. Glucose production peaked immediately after exercise and was higher in T than in C. Glucose disappearance increased less than glucose production and was identical in T and C. Accordingly plasma glucose increased, more in T than in C (P less than 0.01). In T glucose levels approached the renal threshold greater than 20 min postexercise. Glucose clearance increased less in T than in C during exercise and decreased postexercise to or below (T, P less than 0.05) basal levels, despite increased insulin levels. Long-term endurance training increases responsiveness of the adrenal medulla to exercise, indicating increased secretory capacity. During maximal exercise this may contribute to higher glucose production, lower clearance, more inaccurate glucoregulation, and higher lypolysis in T compared with C.  相似文献   

9.
Non-obese type 2 diabetic subjects in good metabolic control (n=6, HbA1c 7.0 +/- 0.3%, mean diabetes duration: 5.7 +/- 1 years) and matched non-diabetic subjects (control; n = 6) were studied during hyperinsulinemic (approximately 3 nmol/l)-hypoglycemic (approximately 3.1 mmol/l) clamp tests (0-120 min) and the subsequent recovery period (120-240 min). Plasma glucagon rose gradually but not significantly, whereas norepinephrine and epinephrine similarly increased approximately 2 and approximately 25-fold in both groups. Islet amyloid polypeptide (IAPP) decreased to approximately 41% and approximately 24% of basal values during hypoglycemia and rapidly rose approximately 4.7-fold during the recovery period, while plasma C-peptide remained suppressed in both groups. Within 140 min, plasma free fatty acids similarly decreased to approximately 70 micromol/l (p < 0.05), but then rose to values being approximately 50% higher in diabetic than in control subjects (240 min: 907 +/- 93 vs. 602 +/- 90 micromol/l; p < 0.05). Glucose infusion rates were comparable during hypoglycemia, but approximately 40% lower during recovery in diabetic patients (1.88 +/- 0.27 vs. 3.44 +/- 0.27 mg x kg(-1) x min(-1), p < 0.001). These results demonstrate that (i) hypoglycemia induced by high-dose insulin largely abolishes the counterregulatory response of glucagon, but not of catecholamines in nondiabetic and well-controlled type 2 diabetic subjects, (ii) the rapid posthypoglycemic increase of plasma IAPP occurs independently of plasma insulin, and (iii) the superior rise in plasma free fatty acids may account at least in part for the posthypoglycemic insulin resistance of type 2 diabetic patients.  相似文献   

10.
Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that stimulates insulin secretion and decreases glucagon release. It has been hypothesized that GLP-1 also reduces glycemia independent of its effect on islet hormones. Based on preliminary evidence that GLP-1 has independent actions on endogenous glucose production, we undertook a series of experiments that were optimized to address this question. The effect of GLP-1 on glucose appearance (Ra) and glucose disposal (Rd) was measured in eight men during a pancreatic clamp that was performed by infusing octreotide to suppress secretion of islet hormones, while insulin and glucagon were infused at rates adjusted to maintain blood glucose near fasting levels. After stabilization of plasma glucose and equilibration of [3H]glucose tracer, GLP-1 was given intravenously for 60 min. Concentrations of insulin, C-peptide, and glucagon were similar before and during the GLP-1 infusion (115 +/- 14 vs. 113 +/- 11 pM; 0.153 +/- 0.029 vs. 0.156 +/- 0.026 nM; and 64.7 +/- 11.5 vs. 65.8 +/- 13.8 ng/l, respectively). With the initiation of GLP-1, plasma glucose decreased in all eight subjects from steady-state levels of 4.8 +/- 0.2 to a nadir of 4.1 +/- 0.2 mM. This decrease in plasma glucose was accounted for by a significant 17% decrease in Ra, from 22.6 +/- 2.8 to 19.1 +/- 2.8 micromol. kg-1. min-1 (P < 0.04), with no significant change in Rd. These findings indicate that, under fasting conditions, GLP-1 decreases endogenous glucose production independent of its actions on islet hormone secretion.  相似文献   

11.
Severe hypoglycemia occurs in intensively treated patients with type 1 diabetes mellitus (T1DM) due in part to deficient epinephrine counterregulatory responses. Previously, we have found that T1DM patients demonstrated a spectrum of altered responses to epinephrine at a variety of target organs compared with nondiabetic healthy subjects. What is not known is whether intensive glycemic control further modifies target organ responses in individuals with T1DM. Therefore, the aim of this study is to assess whether there is tissue specific (liver, muscle, adipose tissue, pancreas and cardiovascular) resistance to epinephrine in intensively controlled (IC) T1DM compared with those with conventional control (CC). Eight IC patients (age 33 +/- 4 yr, BMI 24 +/- 2 kg/m2, Hb A1C 6.7 +/- 0.1%), and 11 CC patients (age 35 +/- 3 yr, BMI 25 +/- 1 kg/m2, Hb A1C 9.6 +/- 0.1%) underwent two separate randomized, single-blind, 2-h hyperinsulinemic euglycemic clamp studies with (EPI) and without (NO EPI) epinephrine infusion. Epinephrine levels during EPI were similar in all groups (5,197 +/- 344 pmol/l). Glucose (5.3 +/- 0.1 mmol/l) and insulin levels (515 +/- 44 pmol/l) were similar in all groups during the glucose clamps. Endogenous glucose production (EGP) and glucose uptake (R(d)) were determined using [3-H3]glucose. Muscle biopsy was performed at the end of each study. IC had a significantly reduced EGP and R(d) responses to EPI compared with CC. Glucagon responses to EPI were similarly blunted in both IC and CC. Free fatty acid and glycerol response to EPI was greater in CC compared with IC. There was a significantly greater systolic blood pressure response to EPI in CC. We conclude that, despite similar epinephrine, insulin, and glucose levels, intensively treated T1DM patients had reduced cardiovascular, skeletal muscle, hepatic, and adipose target organ responses to EPI compared with conventionally treated T1DM patients.  相似文献   

12.
Aim of the present study was to evaluate whether the inhibitory effect of somatostatin on pancreatic B-cell secretion is normal in nondiabetic obese subjects. For this purpose plasma C-peptide concentrations were measured in 10 nondiabetic obese subjects and 10 nonobese healthy controls during a 4-h hyperglycemic (11 mmol/l) glucose clamp. Somatostatin was infused (2.5 nmol/min) during the third hour of the study period in order to inhibit glucose-stimulated B-cell secretion. Fasting C-peptide averaged 0.46 +/- 0.04 nmol/l (mean +/- SEM) in nonobese subjects, and 0.85 +/- 0.08 nmol/l in obese patients (P less than 0.001). In the period 0-120 min the area under the plasma C-peptide curve was significantly higher in obese than in nonobese subjects (292 +/- 23 vs. 230 +/- 17 nmol/l x 120 min, P less than 0.05), however, in the last 20 min of the glucose infusion period without somatostatin (100-120 min) plasma C-peptide was not significantly different in the two groups (2.94 +/- 0.32 nmol/l in nonobese subjects and 3.21 +/- 0.19 nmol/l in obese patients, p = NS). During somatostatin infusion while maintaining hyperglycemia, plasma C-peptide decreased in both groups, and in the period 160-180 min it averaged 0.89 +/- 0.12 nmol/l in control subjects and 0.93 +/- 0.08 nmol/l in obese patients (P = NS), with a percent reduction similar in the two groups (70 +/- 2% in controls and 71 +/- 2% in obese patients). After discontinuing somatostatin infusion, plasma C-peptide increased to concentrations which were higher in obese than in nonobese subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We examined net pancreatic norepinephrine (NE) spillover, pancreatic polypeptide (PP) release, and the decrement in C-peptide to identify factors involved in the blunted counterregulatory glucagon response in pregnancy. Conscious pregnant [pregnant hypoglycemic (Ph); 3rd trimester; n = 8] and nonpregnant [nonpregnant hypoglycemic (NPh); n = 6] dogs were studied during insulin-induced (approximately 12-fold basal insulin concentrations) hypoglycemia (plasma glucose 3.1 mM). Additional dogs were studied during hyperinsulinemic euglycemia [nonpregnant euglycemic (NPe), n = 4; pregnant euglycemic (Pe), n = 5; plasma glucose 6 mM]. Arterial glucagon concentrations declined similarly in NPe and Pe. Areas under the curve (AUCs) of the changes in glucagon and epinephrine were seven- and threefold greater in NPh than Ph (P < 0.05 between groups for both). Glucagon secretion fell below basal in NPe, Pe, and Ph but rose significantly in NPh. C-peptide declined 0.25 +/- 0.06, 0.12 +/- 0.11, 0.28 +/- 0.05, and 0.13 +/- 0.02 ng/ml in NPe, Pe, NPh, and Ph, respectively (P < 0.05, NPh vs. Ph). AUCs of NE spillover were 516 +/- 274, 265 +/- 303, 506 +/- 94, and -63 +/- 79 ng, respectively (P < 0.05, NPh vs. Ph). The AUC of PP release was approximately threefold greater in NPh than Ph (P < 0.05) but not different between euglycemic groups. The current evidence strongly suggests that the blunting of glucagon secretion during insulin-induced hypoglycemia in pregnancy is related to generalized impairment of a number of different signals, including parasympathetic and sympathoadrenal stimuli and altered sensing of circulating and/or intraislet insulin.  相似文献   

14.
The mechanisms by which the enteroinsular axis influences beta-cell function have not been investigated in detail. We performed oral and isoglycemic intravenous (IV) glucose administration in subjects with normal (NGT; n = 11) or impaired glucose tolerance (IGT; n = 10), using C-peptide deconvolution to calculate insulin secretion rates and mathematical modeling to quantitate beta-cell function. The incretin effect was taken to be the ratio of oral to IV responses. In NGT, incretin-mediated insulin release [oral glucose tolerance test (OGTT)/IV ratio = 1.59 +/- 0.18, P = 0.004] amounted to 18 +/- 2 nmol/m(2) (32 +/- 4% of oral response), and its time course matched that of total insulin secretion. The beta-cell glucose sensitivity (OGTT/IV ratio = 1.52 +/- 0.26, P = 0.02), rate sensitivity (response to glucose rate of change, OGTT/IV ratio = 2.22 +/- 0.37, P = 0.06), and glucose-independent potentiation were markedly higher with oral than IV glucose. In IGT, beta-cell glucose sensitivity (75 +/- 14 vs. 156 +/- 28 pmol.min(-1).m(-2).mM(-1) of NGT, P = 0.01) and potentiation were impaired on the OGTT. The incretin effect was not significantly different from NGT in terms of plasma glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide responses, total insulin secretion, and enhancement of beta-cell glucose sensitivity (OGTT/IV ratio = 1.73 +/- 0.24, P = NS vs. NGT). However, the time courses of incretin-mediated insulin secretion and potentiation were altered, with a predominance of glucose-induced vs. incretin-mediated stimulation. We conclude that, under physiological circumstances, incretin-mediated stimulation of insulin secretion results from an enhancement of all dynamic aspects of beta-cell function, particularly beta-cell glucose sensitivity. In IGT, beta-cell function is inherently impaired, whereas the incretin effect is only partially affected.  相似文献   

15.
Demonstration of a dawn phenomenon in normal adolescents   总被引:1,自引:0,他引:1  
To ascertain whether the dawn phenomenon occurs in normal adolescents and, if so, to determine its mechanism, we measured nocturnal plasma glucose, insulin, glucagon, growth hormone, cortisol, and adrenocorticotropic hormone (ACTH) levels between 01.00 and 08.00 h in 10 healthy adolescents. The prehepatic insulin secretion rate was calculated based on C peptide levels. The metabolic clearance rate of insulin (MCRI) was calculated as the ratio of mean insulin secretion rate to mean insulin concentration. There was no change in plasma glucose, insulin, and glucagon between 01.00-04.00 and 05.00-08.00 h (paired t test). The MCRI was higher at 05.00-08.00 h compared to 01.00-04.00 h (9.30 +/- 1.50 vs. 4.87 +/- 1.11 ml.kg-1.min-1; p = 0.008). The prehepatic insulin secretion increased at 05.00-08.00 h relative to 01.00-04.00 h (1.1 +/- 0.2 vs. 0.6 +/- 0.1 pmol.kg-1.min-1; p = 0.013). Similarly, cortisol and ACTH levels were higher at 05.00-08.00 versus 01.00-04.00 h (323 +/- 33 vs. 102 +/- 22 nmol/l, p less than 0.001; 3.6 +/- 0.5 vs. 1.8 +/- 0.4 pmol/l, p = 0.006, respectively). Growth hormone was higher at 01.00-04.00 versus 05.00-08.00 h (7.6 +/- 1.2 and 3.0 +/- 0.9 microgram/l; p = 0.019). ACTH correlated with MCRI (r = 0.66; p = 0.002) and prehepatic insulin secretion (r = 0.75; p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We wished to determine the effect of a 25% hematocrit reduction on glucoregulatory hormone release and glucose fluxes during exercise. In five anemic dogs, plasma glucose fell by 21 mg/dl and in five controls by 7 mg/dl by the end of the 90-min exercise period. After 50 min of exercise, hepatic glucose production (Ra) and glucose metabolic clearance rate (MCR) began to rise disproportionately in anemics compared with controls. By the end of exercise, the increase in Ra was almost threefold higher (delta 15.1 +/- 3.4 vs. delta 5.2 +/- 1.3 mg X kg-1 X min-1) and MCR nearly fourfold (delta 24.6 +/- 8.8 vs. delta 6.5 +/- 1.3 ml X kg-1 X min-1). Exercise with anemia, in relation to controls resulted in elevated levels of glucagon [immunoreactive glucagon (IRG) delta 1,283 +/- 507 vs delta 514 +/- 99 pg/ml], norepinephrine (delta 1,592 +/- 280 vs. delta 590 +/- 155 pg/ml), epinephrine (delta 2,293 +/- 994 vs. delta 385 +/- 186 pg/ml), cortisol (delta 6.7 +/- 2.2 vs. delta 2.1 +/- 1.0 micrograms/dl) and lactate (delta 12.1 +/- 2.2 vs. delta 4.2 +/- 1.8 mg/dl) after 90 min. Immunoreactive insulin and free fatty acids were similar in both groups. In conclusion, exercise with a 25% hematocrit reduction results in 1) elevated lactate, norepinephrine, epinephrine, cortisol, and IRG levels, 2) an increased Ra which is likely related to the increased counterregulatory response, and 3) we speculate that a near fourfold increase in MCR is related to metabolic changes due to hypoxia in working muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We evaluated the acute effects of OXM on glucose metabolism in diet-induced insulin-resistant male C57Bl/6 mice. To determine the effects on glucose tolerance, mice were intraperitoneally injected with OXM (0.75, 2.5, or 7.5 nmol) or vehicle prior to an ip glucose tolerance test. OXM (0.75 nmol/h) or vehicle was infused during a hyperinsulinemic euglycemic clamp to quantify insulin action on glucose production and disposal. OXM dose-dependently improved glucose tolerance as estimated by AUC for glucose (OXM: 7.5 nmol, 1,564 +/- 460, P < 0.01; 2.5 nmol, 1,828 +/- 684, P < 0.01; 0.75 nmol, 2,322 +/- 303, P < 0.05; control: 2,790 +/- 222 mmol.l(-1).120 min). Insulin levels in response to glucose administration were higher in 7.5 nmol OXM-treated animals compared with controls. In basal clamp conditions, OXM increased EGP (82.2 +/- 14.7 vs. 39.9 +/- 5.7 micromol.min(-1).kg(-1), P < 0.001). During insulin infusion, insulin levels were twice as high in OXM-treated mice compared with controls (10.6 +/- 2.8 vs. 4.4 +/- 2.2 ng/ml, P < 0.01). Consequently, glucose infusion rate (118.6 +/- 30.8 vs. 38.8 +/- 26.4 microl/h, P < 0.001) and glucose disposal (88.1 +/- 13.0 vs. 45.2 +/- 6.9 micromol.min(-1).kg(-1), P < 0.001) were enhanced in mice that received OXM. In addition, glucose production was more suppressed during OXM infusion (35.7 +/- 15.5 vs. 15.8 +/- 11.4% inhibition, P < 0.05). However, if these data were expressed per unit concentration of circulating insulin, OXM did not affect insulin action on glucose disposal and production. These results indicate that OXM beneficially affects glucose metabolism in diet-induced insulin-resistant C57Bl/6 mice. It ameliorates glucose intolerance, most likely because it elevates glucose-induced plasma insulin concentrations. OXM does not appear to impact on insulin action.  相似文献   

18.
In view of our previous data, showing that ghrelin and nitric oxide (NO) display apparently parallel effects on insulin secretion (inhibitory) and glucagon secretion (stimulatory), we have now investigated the effect of ghrelin on islet hormone secretion in relation to its effect on NO synthase (NOS) isoenzymes in isolated rat pancreatic islets. Dose-response studies revealed that ghrelin at concentrations of 0.01-1 micromol l-1 inhibited insulin secretion stimulated by 8.3 mmol l-1 glucose, while ghrelin at concentrations lower than the physiological range (0.01 pmol l-1 to 1 nmol l-1) were without effect. In contrast, glucagon secretion was stimulated by 1.0 nmol l-1 to 1 micromol l-1 ghrelin. These effects of ghrelin on insulin and glucagon secretion were accompanied by increased NO production through activation of neuronal constitutive NOS (ncNOS). Ghrelin had no appreciable effect on the activity of inducible NOS (iNOS) in the islets. Addition of an NO scavenger (cPTIO) or the NOS inhibitor L-NAME to the incubation medium prevented the effects of ghrelin on hormone secretion from isolated islets. The present results confirm our previous data showing that ghrelin inhibits insulin and stimulates glucagon secretion from pancreatic islets of the mouse and we now show similar effects in rat islets. The effects of ghrelin were accompanied by an increased rate of NO production. Conceivably, ncNOS activation partly accounts for to the inhibitory effect of ghrelin on insulin secretion and the stimulatory effect of ghrelin on glucagon secretion.  相似文献   

19.
Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7-36) amide is degraded to the metabolite GLP-1-(9-36) amide. The effects of GLP-1-(9-36) amide in humans are less well characterized. Fourteen healthy volunteers were studied with intravenous infusion of GLP-1-(7-36) amide, GLP-1-(9-36) amide, or placebo over 390 min. After 30 min, a solid test meal was served, and gastric emptying was assessed. Blood was drawn for GLP-1 (total and intact), glucose, insulin, C-peptide, and glucagon measurements. Administration of GLP-1-(7-36) amide and GLP-1-(9-36) amide significantly raised total GLP-1 plasma levels. Plasma concentrations of intact GLP-1 increased to 21 +/- 5 pmol/l during the infusion of GLP-1-(7-36) amide but remained unchanged during GLP-1-(9-36) amide infusion [5 +/- 3 pmol/l; P < 0.001 vs. GLP-1-(7-36) amide administration]. GLP-1-(7-36) amide reduced fasting and postprandial glucose concentrations (P < 0.001) and delayed gastric emptying (P < 0.001). The GLP-1 metabolite had no influence on insulin or C-peptide concentrations. Glucagon levels were lowered by GLP-1-(7-36) amide but not by GLP-1-(9-36) amide. However, the postprandial rise in glycemia was reduced significantly (by approximately 6 mg/dl) by GLP-1-(9-36) amide (P < 0.05). In contrast, gastric emptying was completely unaffected by the GLP-1 metabolite. The GLP-1 metabolite lowers postprandial glycemia independently of changes in insulin and glucagon secretion or in the rate of gastric emptying. Most likely, this is because of direct effects on glucose disposal. However, the glucose-lowering potential of GLP-1-(9-36) amide appears to be small compared with that of intact GLP-1-(7-36) amide.  相似文献   

20.
BACKGROUND/AIMS: The term memory effect refers to the phenomenon that B cell stimuli retain some of their insulinotropic effects after they have been removed. Memory effects exist for glucose and sulfonylureas. It is not known whether there is a B-cell memory for incretin hormones such as GLP-1. SUBJECTS/METHODS: Eight healthy young volunteers were studied on four occasions in the fasting state. In one experiment, placebo was administered (a). in three more experiments (random order), synthetic GLP-1 (7 - 36 amide) at 1.2 pmol/kg/min was administered over a period of three hours. At 0 min, a bolus of glucose was injected intravenously (0.33 g/kg body weight). GLP-1 was infused from (b). - 60 to 120 min, (c). - 210 to - 30 min, or (d). - 300 to - 120 min. Glucose (glucose oxidase), insulin, C-peptide, GLP-1, and glucagon (immunoassays) were determined. Statistical analysis was carried out by ANOVA and appropriate post hoc tests. RESULTS: GLP-1 plasma levels during the infusion periods were elevated to 89 +/- 9, 85 +/- 13, and 89 +/- 6 pmol/l (p < 0.0001 vs. placebo, 10 +/- 1 pmol/l). Glucose was eliminated faster (p < 0.0001), with an enhanced negative rebound (p = 0.014), and insulin and C-peptide increments were greater after intravenous glucose administration (p < 0.0001) if GLP-1 was administered during the injection of the glucose bolus, but not if GLP-1 had been administered until 120 or 30 min before the glucose load. There was a trend towards higher insulin concentrations (p = 0.056) five minutes after glucose with GLP-1 administered until - 30 min before the glucose load. Glucagon was suppressed by exogenous glucose, but increased significantly (p = 0.013) during the induction of reactive hypoglycemia after glucose injection during GLP-1 administration. CONCLUSION: 1). No memory effect appears to exist for insulinotropic actions of GLP-1, in line with clinical data. 2). Reactive hypoglycemia causes a prompt rise in glucagon despite pharmacological circulating concentrations of GLP-1. 3). Similar studies should be performed in Type 2-diabetic patients, because exposure to GLP-1 might recruit dormant pancreatic B cells to become glucose-competent, and this might contribute to the overall antidiabetogenic effect of GLP-1 in such patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号