首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) block copolymers self-assemble into micelles in aqueous solution. We have examined whether these micelles can internalize into P19 cells in vitro. Fluorescently labeled PEO(45)-b-PCL(23) block copolymer was prepared by conjugating a tetramethylrhodamine molecule to the end of the hydrophobic PCL block. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies yielded 24 +/- 2 and 25 +/- 2 nm, respectively, for the diameters of the micelles. The studies also showed that chemical labeling did not effect the morphology or size. When the rhodamine-labeled PEO(45)-b-PCL(23) block copolymer micelles were tested in vitro, time-, concentration-, and pH-dependence of the internalization process suggested that internalization proceeded by endocytosis. The results from these studies provide the first direct evidence for the internalization of PEO(45)-b-PCL(23) micelles. Future studies will utilize multiple labeling of these micelles, allowing questions to be addressed related to the fate of internalized micelles as drug carriers, the destination of the incorporated drugs or fluorescent probes released from micelles, and the identification of the subcellular localization of the whole drug-carrier system within cells, both in vitro and in vivo.  相似文献   

2.
An arginine-glycine-aspartic acid (RGD) containing model peptide was conjugated to the surface of poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles as a ligand that can recognize adhesion molecules overexpressed on the surface of metastatic cancer cells, that is, integrins, and that can enhance the micellar delivery of encapsulated hydrophobic drug into a tumor cell. Toward this goal, PEO-b-PCL copolymers bearing acetal groups on the PEO end were synthesized, characterized, and assembled to polymeric micelles. The acetal group on the surface of the PEO-b-PCL micelles was converted to reactive aldehyde under acidic condition at room temperature. An RGD-containing linear peptide, GRGDS, was conjugated on the surface of the aldehyde-decorated PEO-b-PCL micelles by incubation at room temperature. A hydrophobic fluorescent probe, that is, DiI, was physically loaded in prepared polymeric micelles to imitate hydrophobic drugs loaded in micellar carrier. The cellular uptake of DiI loaded GRGDS-modified micelles by melanoma B16-F10 cells was investigated at 4 and 37 degrees C by fluorescent spectroscopy and confocal microscopy techniques and was compared to the uptake of DiI loaded valine-PEO-b-PCL micelles (as the irrelevant ligand decorated micelles) and free DiI. GRGDS conjugation to polymeric micelles significantly facilitated the cellular uptake of encapsulated hydrophobic DiI most probably by intergrin-mediated cell attachment and endocytosis. The results indicate that acetal-terminated PEO-b-PCL micelles are amenable for introducing targeting moieties on the surface of polymeric micelles and that RGD-peptide conjugated PEO-b-PCL micelles are promising ligand-targeted carriers for enhanced drug delivery to metastatic tumor cells.  相似文献   

3.
Cao W  Zhou J  Mann A  Wang Y  Zhu L 《Biomacromolecules》2011,12(7):2697-2707
A folate-functionalized degradable amphiphilic dendrimer-like star polymer (FA-DLSP) with a well-defined poly(L-lactide) (PLLA) star polymer core and six hydrophilic polyester dendrons based on 2,2-bis(hydroxymethyl) propionic acid was successfully synthesized to be used as a nanoscale carrier for cancer cell-targeted drug delivery. This FA-DLSP hybrid formed unimolecular micelles in the aqueous solution with a mean particle size of ca. 15 nm as determined by dynamic light scattering and transmission electron microscopy. To study the feasibility of FA-DLSP micelles as a potential nanocarrier for targeted drug delivery, we encapsulated a hydrophobic anticancer drug, doxorubicin (DOX), in the hydrophobic core, and the loading content was determined by UV-vis analysis to be 4 wt %. The DOX-loaded FA-DLSP micelles demonstrated a sustained release of DOX due to the hydrophobic interaction between the polymer core and the drug molecules. The hydrolytic degradation in vitro was monitored by weight loss and proton nuclear magnetic resonance spectroscopy to gain insight into the degradation mechanism of the FA-DLSP micelles. It was found that the degradation was pH-dependent and started from the hydrophilic shell gradually to the hydrophobic core. Flow cytometry and confocal microscope studies revealed that the cellular binding of the FA-DLSP hybrid against human KB cells with overexpressed folate-receptors was about twice that of the neat DLSP (without FA). The in vitro cellular cytotoxicity indicated that the FA-DLSP micelles (without DOX) had good biocompatibility with KB cells, whereas DOX-loaded micelles exhibited a similar degree of cytotoxicity against KB cells as that of free DOX. These results clearly showed that the FA-DLSP unimolecular micelles could be a promising nanosize anticancer drug carrier with excellent targeting property.  相似文献   

4.
A series of novel amphiphilic triblock copolymers of poly(ethyl ethylene phosphate) and poly(-caprolactone) (PEEP-PCL-PEEP) with various PEEP and PCL block lengths were synthesized and characterized. These triblock copolymers formed micelles composed of a hydrophobic core of poly(-caprolactone) (PCL) and a hydrophilic shell of poly(ethyl ethylene phosphate) (PEEP) in aqueous solution. The micelle morphology was spherical, determined by transmission electron microscopy. It was found that the size and critical micelle concentration values of the micelles depended on both hydrophobic PCL block length and PEEP hydrophilic block length. The in vitro degradation characteristics of the triblock copolymers were investigated in micellar form, showing that these copolymers were completely biodegradable under enzymatic catalysis of Pseudomonas lipase and phosphodiesterase I. These triblock copolymers were used for paclitaxel (PTX) encapsulation to demonstrate the potential in drug delivery. PTX was successfully loaded into the micelles, and the in vitro release profile was found to be correlative to the polymer composition. These biodegradable triblock copolymer micelles are potential as novel carriers for hydrophobic drug delivery.  相似文献   

5.
Lee H  Zeng F  Dunne M  Allen C 《Biomacromolecules》2005,6(6):3119-3128
Six amphiphilic diblock copolymers based on methoxy poly(ethylene glycol) (MePEG) and poly(delta-valerolactone) (PVL) with varying hydrophilic and hydrophobic block lengths were synthesized via a metal-free cationic polymerization method. MePEG-b-PVL copolymers were synthesized using MePEG with Mn = 2000 or Mn = 5000 as the macroinitiator. 1H NMR and GPC analyses confirmed the synthesis of diblock copolymers with relatively narrow molecular weight distributions (Mn/Mw = 1.05-1.14). DSC analysis revealed that the melting temperatures (Tm) of the copolymers (47-58 degrees C) approach the Tm of MePEG as the PVL content is decreased. MePEG-b-PVL copolymer aggregates loaded with the hydrophobic anti-cancer drug paclitaxel were found to have effective mean diameters ranging from 31 to 970 nm depending on the composition of the copolymers. A MePEG-b-PVL copolymer of a specific composition was found to form drug-loaded micelles of 31 nm in diameter with a narrow size distribution and improve the apparent aqueous solubility of paclitaxel by more than 9000-fold. The biological activity of paclitaxel formulated in the MePEG-b-PVL micelles was confirmed in human MCF-7 breast and A2780 ovarian cancer cells. Furthermore, the biocompatibility of the copolymers was established in CHO-K1 fibroblast cells using a cell viability assay. The in vitro hydrolytic and enzymatic degradation of the micelles was also evaluated over a period of one month. The present study indicates that the MePEG-b-PVL copolymers are suitable biomaterials for hydrophobic drug formulation and delivery.  相似文献   

6.
We report the synthesis of a well-defined hyperbranched double hydrophilic block copolymer of poly(ethylene oxide)-hyperbranched-polyglycerol (PEO-hb-PG) to develop an efficient drug delivery system. In specific, we demonstrate the hyperbranched PEO-hb-PG can form a self-assembled micellar structure on conjugation with the hydrophobic anticancer agent doxorubicin, which is linked to the polymer by pH-sensitive hydrazone bonds, resulting in a pH-responsive controlled release of doxorubicin. Dynamic light scattering, atomic force microscopy, and transmission electron microscopy demonstrated successful formation of the spherical core-shell type micelles with an average size of about 200 nm. Moreover, the pH-responsive release of doxorubicin and in vitro cytotoxicity studies revealed the controlled stimuli-responsive drug delivery system desirable for enhanced efficiency. Benefiting from many desirable features of hyperbranched double hydrophilic block copolymers such as enhanced biocompatibility, increased water solubility, and drug loading efficiency as well as improved clearance of the polymer after drug release, we believe that double hydrophilic block copolymer will provide a versatile platform to develop excellent drug delivery systems for effective treatment of cancer.  相似文献   

7.
Wang W  Ding J  Xiao C  Tang Z  Li D  Chen J  Zhuang X  Chen X 《Biomacromolecules》2011,12(7):2466-2474
Novel amphiphilic alternating polyesters, poly((N-phthaloyl-l-glutamic anhydride)-co-(2-(2-(2-methoxyethoxy)ethoxy)methyl)oxirane) (P(PGA-co-ME(2)MO)), were synthesized by alternating copolymerization of PGA and ME(2)MO. The structures of the synthesized polyesters were characterized by (1)H NMR, (13)C NMR, FT-IR, and GPC analyses. Because of the presence of oligo(ethylene glycol) (OEG) side chains, the polyesters could self-assemble into thermosensitive micelles. Dynamic light scattering (DLS) showed that these micelles underwent thermoinduced size decrease without intermicellar aggregation. In vitro methyl thiazolyl tetrazolium (MTT) assay demonstrated that the polyesters were biocompatible to Henrietta Lacks (HeLa) cells, rendering their potential for drug delivery applications. Two hydrophobic drugs, rifampin and doxorubicin (DOX), were loaded into the polyester micelles and observed to be released in a zero-order sustained manner. The sustained release could be accelerated in lower pH or in the presence of proteinase K, due to the degradation of the polyester under these conditions. Remarkably, in vitro cell experiments showed that the polyester micelles accomplished fast release of DOX inside cells and higher anticancer efficacy as compared with the free DOX. With enhanced stability during circulation condition and accelerated drug release at the target sites (e.g., low pH or enzyme presence), these novel polyesters with amphiphilic structures are promising to be used in sustained release drug delivery systems.  相似文献   

8.
In this work, self-assembled poly(butadiene)-b-poly(ethylene oxide) (PB-PEO) polymersomes (polymer vesicles) and worm micelles were evaluated as paclitaxel carriers. Paclitaxel was successfully incorporated into PB-PEO polymersomes and worm micelles. The loading capacity of paclitaxel inside PB-PEO colloids ranged from 6.7% to 13.7% w/w, depending on the morphology of copolymer colloids and the molecular weight of diblock copolymer. Paclitaxel loaded OB4 (PB219-PEO121) polymersome formulations were colloidally stable for 4 months at 4 degrees C and exhibited slow steady release of paclitaxel over a 5 week period at 37 degrees C. Evaluation of the in vitro cytotoxicity of paclitaxel-polymersome formulations showed that the ability of paclitaxel-loaded polymersomes to inhibit proliferation of MCF-7 human breast cancer cells was less compared to paclitaxel alone. By increasing the concentration of paclitaxel in polymersomes from 0.02 to 0.2 mug/mL, paclitaxel-polymersome formulations showed comparable activity in inhibiting the growth of MCF-7 cells. Taken together, these results demonstrate that paclitaxel-polymersomes have desirable restrained release profile and exhibit long-term stability.  相似文献   

9.
Sun KH  Sohn YS  Jeong B 《Biomacromolecules》2006,7(10):2871-2877
We report a reverse thermogelling poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) disulfide multiblock copolymer as a thiol-sensitive biodegradable polymer. The poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) aqueous solutions studied in this research underwent sol-gel-sol or sol-gel-sol-gel transition depending on the molecular weight and concentration of the polymer, whereas the corresponding disulfide multiblock copolymer aqueous solutions underwent sol-gel transition as the temperature increased in a range of 0-60 degrees C. The hydrophobic dye solubilization and dynamic light scattering of the polymer aqueous solution suggest that the poly(ethylene oxide-b-propylene oxide-b-ethylene oxide)s undergo unimer (3 nm) to micelle (12 nm) transition, whereas the disulfide multiblock copolymers undergo unimer (6 nm) to aggregated polymer (600 nm) transition as the temperature increases. The gel duration increased from 6 h (poly(ethylene oxide-b-propylene oxide-b-ethylene oxide)) to more than 12 days (the corresponding disulfide multiblock copolymer) in phosphate buffer saline, and the gel duration of the latter depended on the glutathione concentration of the medium. The model drug, paclitaxel, was released from the in-situ-formed poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) disulfide multiblock copolymer gel in a glutathione concentration-sensitive manner.  相似文献   

10.
Zhang G  Han B  Lin X  Wu X  Yan H 《Journal of biochemistry》2008,144(6):781-788
PEGylation of peptide drugs prolongs their circulating lifetimes in plasma. However, PEGylation can produce a decrease in the in vitro bioactivity. Longer poly(ethylene glycol) (PEG) chains are favourable for circulating lifetimes but unfavourable for in vitro bioactivities. In order to circumvent the conflicting effects of PEG length, a hydrophobic peptide, using an antimicrobial peptide as a model, was PEGylated with short PEG chains. The PEGylated peptides self-assembled in aqueous solution into micelles with PEG shell and peptide core. In these micelles, the core peptides were protected by the shell, thus reducing proteolytic degradation. Meanwhile, most of the in vitro antimicrobial activities still remained due to the short PEG chain attached. The stabilities of the PEGylated peptides were much higher than that of the unPEGylated peptides in the presence of chymotrypsin and serum. The antimicrobial activities of the PEGylated peptides in the presence of serum, an ex vivo assay, were much higher than that of the unPEGylated peptide.  相似文献   

11.
Hu Y  Zhang L  Cao Y  Ge H  Jiang X  Yang C 《Biomacromolecules》2004,5(5):1756-1762
Poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) triblock copolymers were synthesized by the ring-opening polymerization of epsilon-caprolactone in the presence of hydroxyl-terminated poly(ethylene glycol) with different molecular weights, using stannous octoate catalyst. Micelles prepared by the precipitation method with these triblock copolymers exhibit a core-shell structure. The degradation behaviors of these core-shell micelles in aqueous solution were investigated by FT-IR, 1H NMR, GPC, DLS, TEM, and AFM. It was found that the degradation behavior of micelles in aqueous solution was quite different from that of bulk materials. The size of the micelles increased in the initial degradation stages and decreased gradually when the degradation period was extended. The caprolactone/ethylene oxide (CL/EO) ratio in micelles measured by NMR also shows an increase at the initial degradation stage and a decrease at later stages. The morphology of these micelles became more and more irregular during the degradation period. We explain the observed behavior by a two-stage degradation mechanism with interfacial erosion between the cores and the shells followed by core erosion.  相似文献   

12.
Amphiphilic diblock copolymers with varying compositions of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly[bis(ethyl glycinat-N-yl)phosphazene] (PNgly) were synthesized via the controlled cationic-induced polymerization of a phosphoranimine (Cl(3)P=NSiMe(3)) at ambient temperature using a PEO-phosphoranimine macroinitiator. The aqueous-phase transition behavior of PEO-PNgly-3 (M(n) = 10,000) and micelle formation of both PEO-PNgly-3 and PEO-PNgly-4 (M(n) = 8,500) were investigated using fluorescence techniques and dynamic light scattering. The critical micelle concentrations (cmc's) of PEO-PNgly-3 and PEO-PNgly-4 were determined to be 3 and 12 mg/L with the mean diameters of micelles being 120 and 130 nm, respectively. The hydrolytic degradation of these diblock copolymers was also studied in solution. These studies coupled with the biodegradability of the poly[bis(ethyl glycinat-N-yl)phosphazene] block to give benign products make PEO-PNgly copolymers well-suited for a wide variety of biomedical applications including novel biodegradable drug-delivery systems.  相似文献   

13.
Jin Y  Song L  Su Y  Zhu L  Pang Y  Qiu F  Tong G  Yan D  Zhu B  Zhu X 《Biomacromolecules》2011,12(10):3460-3468
Oxime bonds dispersed in the backbones of the synthetic polymers, while young in the current spectrum of the biomedical application, are rapidly extending into their own niche. In the present work, oxime linkages were confirmed to be a robust tool for the design of pH-sensitive polymeric drug delivery systems. The triblock copolymer (PEG-OPCL-PEG) consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic oxime-tethered polycaprolactone (OPCL) was successfully prepared by aminooxy terminals of OPCL ligating with aldehyde-terminated PEG (PEG-CHO). Owing to its amphiphilic architecture, PEG-OPCL-PEG self-assembled into the micelles in aqueous media, validated by the measurement of critical micelle concentration (CMC). The MTT assay showed that PEG-OPCL-PEG exhibited low cytotoxicity against NIH/3T3 normal cells. Doxorubicin (DOX) as a model drug was encapsulated into the PEG-OPCL-PEG micelles. Drug release study revealed that the DOX release from micelles was significantly accelerated at mildly acid pH of 5.0 compared to physiological pH of 7.4, suggesting the pH-responsive feature of the drug delivery systems with oxime linkages. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells. MTT assay against HeLa cancer cells showed DOX-loaded PEG-OPCL-PEG micelles had a high anticancer efficacy. All of these results demonstrate that these polymeric micelles self-assembled from oxime-tethered block copolymers are promising carriers for the pH-triggered intracellular delivery of hydrophobic anticancer drugs.  相似文献   

14.
Monoacrylate-poly(ethylene glycol)-grafted poly(3-hydroxyoctanoate) (PEGMA-g-PHO) copolymers were synthesized to develop a swelling-controlled release delivery system for ibuprofen as a model drug. The in vitro hydrolytic degradation of and the drug release from a film made of the PEGMA-g-PHO copolymer were carried out in a phosphate buffer saline (pH 7.4) medium. The hydrolytic degradation of the copolymer was strongly dependent on the degree of grafting (DG) of the PEGMA group. The degradation rate of the copolymer films in vitro increased with increasing DG of the PEGMA group on the PHO chain. The copolymer films showed a controlled delivery of ibuprofen to the medium in periods of time that depend on the composition, hydrophilic/hydrophobic characteristics, initial drug loading amount and film thickness of the graft copolymer support. The drug release rate from the grafted copolymer films was faster than the rate of weight loss of the films themselves. In particular, a combination of the low DG of the PEGMA group in the PHO chains with the low ibuprofen solubility in water led to long-term constant release from these matrices in vitro.  相似文献   

15.
Novel micelles, comprising hydrophilic PEG shells, hydrophobic PMMA cores, and thermosensitive P(NIPAAm-co-HMAAm) segments were self-assembled from the biotin-PEG-b-P(NIPAAm-co-HMAAm)-b-PMMA triblock copolymer. The thermosensitive micelles exhibited superior stability and showed thermotriggered drug release behavior upon temperature alterations. The fluorescence spectroscopy and confocal microscopy studies confirmed that the self-assembled biotinylated micelles can be specifically and efficiently bonded to cancer cells with the administration of biotin-transferrin, suggesting that the multifunctional micelles have great potential as drug carriers for tumor targeting chemotherapy.  相似文献   

16.
Liu J  Pang Y  Huang W  Huang X  Meng L  Zhu X  Zhou Y  Yan D 《Biomacromolecules》2011,12(5):1567-1577
A new type of biodegradable micelles for glutathione-mediated intracellular drug delivery was developed on the basis of an amphiphilic hyperbranched multiarm copolymer (H40-star-PLA-SS-PEP) with disulfide linkages between the hydrophobic polyester core and hydrophilic polyphosphate arms. The resulting copolymers were characterized by nuclear magnetic resonance (NMR), Fourier transformed infrared (FTIR), gel permeation chromatography (GPC), and differential scanning calorimeter (DSC) techniques. Benefiting from amphiphilic structure, H40-star-PLA-SS-PEP was able to self-assemble into micelles in aqueous solution with an average diameter of 70 nm. Moreover, the hydrophilic polyphosphate shell of these micelles could be detached under reduction-stimulus by in vitro evaluation, which resulted in a rapid drug release due to the destruction of micelle structure. The glutathione-mediated intracellular drug delivery was investigated against a Hela human cervical carcinoma cell line. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements demonstrated that H40-star-PLA-SS-PEP micelles exhibited a faster drug release in glutathione monoester (GSH-OEt) pretreated Hela cells than that in the nonpretreated cells. Cytotoxicity assay of the doxorubicin-loaded (DOX-loaded) micelles indicated the higher cellular proliferation inhibition against 10 mM of GSH-OEt pretreated Hela cells than that of the nonpretreated ones. As expected, the DOX-loaded micelles showed lower inhibition against 0.1 mM of buthionine sulfoximine (BSO) pretreated Hela cells. These reduction-responsive and biodegradable micelles show a potential to improve the antitumor efficacy of hydrophobic chemotherapeutic drugs.  相似文献   

17.
Poly(aspartic acid)-block-polylactide diblock copolymers (PAsp-b-PLAs) having both hydrophilic and hydrophobic segments of various lengths were synthesized. These PAsp-b-PLA diblock copolymers formed polymeric micelles consisting of a hydrophobic PLA core and a hydrophilic, pH-sensitive PAsp shell in aqueous solution. The effects of the segment length of both the PLA and the PAsp portions and the pH of the solution on the shapes and sizes of the PAsp-b-PLA polymeric micelles were investigated. The results indicated a balance between the effects of electrostatic repulsion, hydrogen bonding in the PAsp shell layer, and hydrophobic interactions in the PLA core determine the sizes of the PAsp-b-PLA polymeric micelles. Moreover, the PAsp-b-PLA polymeric micelles did not possess any cytotoxic activity against L929 fibroblast cells. The obtained polymeric micelle should be useful for biodegradable biomedical materials such as drug delivery vehicle.  相似文献   

18.
Wang D  Su Y  Jin C  Zhu B  Pang Y  Zhu L  Liu J  Tu C  Yan D  Zhu X 《Biomacromolecules》2011,12(4):1370-1379
Novel supramolecular copolymer micelles with stimuli-responsive abilities were successfully prepared through the complementary multiple hydrogen bonds of nucleobases and then applied for rapid intracellular release of drugs. First, both adenine-terminated poly(ε-caprolactone) (PCL-A) and uracil-terminated poly(ethylene glycol) (PEG-U) were synthesized. The supramolecular amphiphilic block copolymers (PCL-A:U-PEG) were formed based on multiple hydrogen bonding interactions between PCL-A and PEG-U. The micelles self-assembled from PCL-A:U-PEG were sufficiently stable in water but prone to fast aggregation in acidic condition due to the dynamic and sensitive nature of noncovalent interactions. The low cytotoxicity of supramolecular copolymer micelles was confirmed by MTT assay against NIH/3T3 normal cells. As a hydrophobic anticancer model drug, doxorubicin (DOX) was encapsulated into these supramolecular copolymer micelles. In vitro release studies demonstrated that the release of DOX from micelles was significantly faster at mildly acid pH of 5.0 compared to physiological pH. MTT assay against HeLa cancer cells showed DOX-loaded micelles had high anticancer efficacy. Hence, these supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases are very promising candidates for rapid controlled release of drugs.  相似文献   

19.
A novel bioeliminable amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer end-capped by a mannose residue was synthesized by sequential controlled polymerization of ethylene oxide and epsilon-caprolactone, followed by the coupling of a reactive mannose derivative to the PEO chain end. The anionic polymerization of ethylene oxide was first initiated by potassium 2-dimethylaminoethanolate. The ring-opening polymerization of epsilon-caprolactone was then initiated by the omega-hydroxy end-group of PEO previously converted into an Al alkoxide. Finally, the saccharidic end-group was attached by quaternization of the tertiary amine alpha-end-group of the PEO-b-PCL with a brominated mannose derivative. The copolymer was fully characterized in terms of chemical composition and purity by high-resolution NMR spectroscopy and size exclusion chromatography. Furthermore, measurements with a pendant drop tensiometer showed that both the mannosylated copolymer and the non-mannosylated counterpart significantly decreased the dichloromethane/water interfacial tension. Moreover, these amphiphilic copolymers formed monodisperse spherical micelles in water with an average diameter of approximately 11 nm as measured by dynamic light scattering and cryo-transmission electron microscopy. The availability of mannose as a specific recognition site at the surface of the micelles was proved by isothermal titration microcalorimetry (ITC), using the BclA lectin (from Burkholderia cenocepacia), which interacts selectively with alpha-D-mannopyranoside derivatives. The thermodynamic parameters of the lectin/mannose interaction were extracted from the ITC data. These colloidal systems have great potential for drug targeting and vaccine delivery systems.  相似文献   

20.
The copolymer of styrene-maleic acid (SMA) was used to construct micelles containing pirarubicin (4'-O-tetrahydropyranyladriamycin, or THP) as a new anticancer drug formulation. The procedure for the preparation of the micelles was simple, the component consisting of only SMA and pirarubicin in a noncovalent association, possibly by hydrophobic interaction between the styrene portion of SMA and pirarubicin chromophore. This method ensures more than 80% recovery of pirarubicin by weight, and 60% of drug loading (by weight) was achieved. The micelles obtained (SMA-THP) showed high solubility in water and a constant pirarubicin release rate of about 3-4%/day in vitro. SMA-THP micelles had an average molecular size of about 34 kDa according to gel chromatography; this size is a marked increase from the 627.6 Da of free THP, which suggests the formation of a micellar structure. When albumin was added, the molecular size of the micelles increased to about 94 kDa, which indicates binding to albumin, a unique characteristic of SMA. SMA-THP micelle preparation had a cytotoxic effect (93-101%) on MCF-7 breast cancer cells and SW480 human colon cancer cells in vitro that was comparable to that of free THP. An in vivo assay of SMA-THP at doses of 20 mg/kg in ddY mice bearing S-180 tumor revealed complete tumor eradication in 100% of tested animals. Mice survived for more than 1 year after treatment with micellar drug doses as high as 100 mg/kg pirarubicin equivalent. This marked antitumor activity can be attributed to the enhanced permeability and retention (EPR) effect of macromolecular drugs seen in solid tumors, which enables selective delivery of drugs to tumor and thus much fewer side effects. Complete blood counts, liver function test, and cardiac histology showed no sign of adverse effects for intravenous doses of the micellar preparation. These data thus suggest that intravenous administration of the SMA-THP micellar formulation can enhance the therapeutic effect of pirarubicin more than 50-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号