首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical structures of six lipid A species (A, B, C, D-1, D-2, and E) purified from Rhizobium etli CE3 were investigated by one- and two-dimensional NMR spectroscopy. The R. etli lipid A subtypes each contain an unusual acyloxyacyl residue at position 2' as part of a conserved distal glucosamine moiety but differ in their proximal units. All R. etli lipid A species lack phosphate groups. However, they are derivatized with an alpha-linked galacturonic acid group at position 4', as shown by nuclear Overhauser effect spectroscopy. Component B, which had been not been reported in previous studies, features a beta, 1'-6 linked disaccharide of glucosamine acylated at positions 2, 3, 2', and 3' in a pattern that is typical of lipid A found in other Gram-negative bacteria. D-1 contains an acylated aminogluconate unit in place of the proximal glucosamine residue of B. C and E lack ester-linked beta-hydroxyacyl chains at position 3, as judged by their H-3 chemical shifts, and may be synthesized from B and D-1, respectively, by the R. etli 3-O-deacylase. D-2 is an isomer of D-1 that forms nonenzymatically by acyl chain migration. A may be an elimination product derived from D-1 during hydrolysis at 100 degrees C (pH 4.5), a step needed to release lipid A from lipopolysaccharide. Based on these findings, we propose a biosynthetic scheme for R. etli lipid A in which B is generated first by a variation of the E. coli pathway. The aminogluconate unit of D-1 could then be made from B by enzymatic oxidation of the proximal glucosamine. As predicted by our hypothesis, enzyme(s) can be demonstrated in extracts of R. etli that convert (14)C-labeled B to D-1.  相似文献   

2.
Lipid A of Rhizobium etli CE3 differs dramatically from that of other Gram-negative bacteria. Key features include the presence of an unusual C28 acyl chain, a galacturonic acid moiety at position 4', and an acylated aminogluconate unit in place of the proximal glucosamine. In addition, R. etli lipid A is reported to lack phosphate and acyloxyacyl residues. Most of these remarkable structural claims are consistent with our recent enzymatic studies. However, the proposed R. etli lipid A structure is inconsistent with the ability of the precursor (3-deoxy-D-manno-octulosonic acid)(2)-4'-(32)P-lipid IV(A) to accept a C28 chain in vitro (Brozek, K. A., Carlson, R. W., and Raetz, C. R. H. (1996) J. Biol. Chem. 271, 32126-32136). To re-evaluate the structure, CE3 lipid A was isolated by new chromatographic procedures. CE3 lipid A is now resolved into six related components. Aminogluconate is present in D-1, D-2, and E, whereas B and C contain the typical glucosamine disaccharide seen in lipid A of most other bacteria. All the components possess a peculiar acyloxyacyl moiety at position 2', which includes the ester-linked C28 chain. As judged by mass spectrometry, the distal glucosamine units of A through E are the same, but the proximal units are variable. As described in the accompanying article (Que, N. L. S., Ribeiro, A. A., and Raetz, C. R. H. (2000) J. Biol. Chem. 275, 28017-28027), the discovery of component B suggests a plausible enzymatic pathway for the biosynthesis of the aminogluconate residue found in species D-1, D-2, and E of R. etli lipid A. We suggest that the unusual lipid A species of R. etli might be essential during symbiosis with leguminous host plants.  相似文献   

3.
An unusual feature of the lipid A from the plant endosymbionts Rhizobium etli and Rhizobium leguminosarum is the presence of a proximal sugar unit consisting of a 2-amino-2-deoxy-gluconate moiety in place of glucosamine. An outer membrane oxidase that generates the 2-amino-2-deoxy-gluconate unit from a glucosamine-containing precursor is present in membranes of R. leguminosarum and R. etli but not in S. meliloti or Escherichia coli. We now report the identification of a hybrid cosmid that directs the overexpression of this activity by screening 1800 lysates of individual colonies of a R. leguminosarum 3841 genomic DNA library in the host strain R. etli CE3. Two cosmids (p1S11D and p1U12G) were identified in this manner and transferred into S. meliloti, in which they also directed the expression of oxidase activity in the absence of any chromosomal background. Subcloning and sequencing of the oxidase gene on a 6.5-kb fragment derived from the approximately 20-kb insert in p1S11D revealed that the enzyme is encoded by a gene (lpxQ) that specifies a protein of 224 amino acid residues with a putative signal sequence cleavage site at position 28. Heterologous expression of lpxQ using the T7lac promoter system in E. coli resulted in the production of catalytically active oxidase that was localized in the outer membrane. A new outer membrane protein of the size expected for LpxQ was present in this construct and was subjected to microsequencing to confirm its identity and the site of signal peptide cleavage. LpxQ expressed in E. coli generates the same products as seen in R. leguminosarum membranes. LpxQ is dependent on O(2) for activity, as demonstrated by inhibition of the reaction under strictly anaerobic conditions. An ortholog of LpxQ is present in the genome of Agrobacterium tumefaciens, as shown by heterologous expression of oxidase activity in E. coli.  相似文献   

4.
A broad-host-range endosymbiont, Sinorhizobium sp. NGR234 is a component of several legume-symbiont model systems; however, there is little structural information on the cell surface glycoconjugates. NGR234 cells in free-living culture produce a major rough lipopolysaccharide (LPS, lacking O-chain) and a minor smooth LPS (containing O-chain), and the structure of the lipid A components was investigated by chemical analyses, mass spectrometry, and NMR spectroscopy of the underivatized lipids A. The lipid A from rough LPS is heterogeneous and consists of six major bisphosphorylated species that differ in acylation. Pentaacyl species (52%) are acylated at positions 2, 3, 2', and 3', and tetraacyl species (46%) lack an acyl group at C-3 of the proximal glucosamine. In contrast to Rhizobium etli and Rhizobium leguminosarum, the NGR234 lipid A contains a bisphosphorylated beta-(1' --> 6)-glucosamine disaccharide, typical of enterobacterial lipid A. However, NGR234 lipid A retains the unusual acylation pattern of R. etli lipid A, including the presence of a distal, amide-linked acyloxyacyl residue containing a long chain fatty acid (LCFA) (e.g. 29-hydroxytriacontanoate) attached as the secondary fatty acid. As in R. etli, a 4-carbon fatty acid, beta-hydroxybutyrate, is esterified to (omega - 1) of the LCFA forming an acyloxyacyl residue at that location. The NGR234 lipid A lacks all other ester-linked acyloxyacyl residues and shows extensive heterogeneity of the amide-linked fatty acids. The N-acyl heterogeneity, including unsaturation, is localized mainly to the proximal glucosamine. The lipid A from smooth LPS contains unique triacyl species (20%) that lack ester-linked fatty acids but retain bisphosphorylation and the LCFA-acyloxyacyl moiety. The unusual structural features shared with R. etli/R. leguminosarum lipid A may be essential for symbiosis.  相似文献   

5.
Lipid A from the nitrogen-fixing bacterium Rhizobium leguminosarum displays many structural differences compared with lipid A of Escherichia coli. R. leguminosarum lipid A lacks the usual 1- and 4'-phosphate groups but is derivatized with a galacturonic acid substituent at position 4'. R. leguminosarum lipid A often contains an aminogluconic acid moiety in place of the proximal glucosamine 1-phosphate unit. Striking differences also exist in the secondary acyl chains attached to E. coli versus R. leguminosarum lipid A, specifically the presence of 27-hydroxyoctacosanoate and the absence of laurate and myristate in R. leguminosarum. Recently, we have found that lipid A isolated by pH 4.5 hydrolysis of R. leguminosarum cells is more heterogeneous than previously reported (Que, N. L. S., Basu, S. S., White, K. A., and Raetz, C. R. H. (1998) FASEB J. 12, A1284 (abstr.)). Lipid A species lacking the 3-O-linked beta-hydroxymyristoyl residue on the proximal unit contribute to this heterogeneity. We now describe a membrane-bound deacylase from R. leguminosarum that removes a single ester-linked beta-hydroxymyristoyl moiety from some lipid A precursors, including lipid X, lipid IVA, and (3-deoxy-D-manno-octulosonic acid)2-lipid IVA. The enzyme does not cleave E. coli lipid A or lipid A precursors containing an acyloxyacyl moiety on the distal glucosamine unit. The enzyme is not present in extracts of E. coli or Rhizobium meliloti, but it is readily demonstrable in membranes of Pseudomonas aeruginosa, which also contains a significant proportion of 3-O-deacylated lipid A species. Optimal reaction rates are seen between pH 5.5 and 6.5. The enzyme requires a nonionic detergent and divalent metal ions for activity. It cleaves the monosaccharide lipid X at about 5% the rate of lipid IVA and (3-deoxy-D-manno-octulosonic acid)2-lipid IVA. 1H NMR spectroscopy of the deacylase reaction product, generated with lipid IVA as the substrate, confirms unequivocally that the enzyme cleaves only the ester-linked beta-hydroxymyristoyl residue at the 3-position of the glucosamine disaccharide.  相似文献   

6.
The structure of the lipid A from Rhizobium etli and Rhizobium leguminosarum lipopolysaccharides (LPSs) lacks phosphate and contains a galacturonosyl residue at its 4' position, an acylated 2-aminogluconate in place of the proximal glucosamine, and a very long chain omega-1 hydroxy fatty acid, 27-hydroxyoctacosanoic acid (27OHC28:0). The 27OHC28:0 moiety is common in lipid A's among members of the Rhizobiaceae and also among a number of the facultative intracellular pathogens that form chronic infections, e.g., Brucella abortus, Bartonella henselae, and Legionella pneumophila. In this paper, a mutant of R. leguminosarum was created by placing a kanamycin resistance cassette within acpXL, the gene which encodes the acyl carrier protein for 27OHC28:0. The result was an LPS containing a tetraacylated lipid A lacking 27OHC28:0. A small amount of the mutant lipid A may contain an added palmitic acid residue. The mutant is sensitive to changes in osmolarity and an increase in acidity, growth conditions that likely occur in the nodule microenvironment. In spite of the probably hostile microenvironment of the nodule, the acpXL mutant is still able to form nitrogen-fixing root nodules even though the appearance and development of nodules are delayed. Therefore, it is possible that the acpXL mutant has a host-inducible mechanism which enables it to adapt to these physiological changes.  相似文献   

7.
The lipid A of Rhizobium etli, a nitrogen-fixing plant endosymbiont, displays significant structural differences when compared to that of Escherichia coli. An especially striking feature of R. etli lipid A is that it lacks both the 1- and 4′-phosphate groups. The 4′-phosphate moiety of the distal glucosamine unit is replaced with a galacturonic acid residue. The dephosphorylated proximal unit is present as a mixture of the glucosamine hemiacetal and an oxidized 2-aminogluconate derivative. Distinct lipid A phosphatases directed to the 1 or the 4′-positions have been identified previously in extracts of R. etli and Rhizobium leguminosarum. The corresponding structural genes, lpxE and lpxF, respectively, have also been identified. Here, we describe the isolation and characterization of R. etli deletion mutants in each of these phosphatase genes and the construction of a double phosphatase mutant. Mass spectrometry confirmed that the mutant strains completely lacked the wild-type lipid A species and accumulated the expected phosphate-containing derivatives. Moreover, radiochemical analysis revealed that phosphatase activity was absent in membranes prepared from the mutants. Our results indicate that LpxE and LpxF are solely responsible for selectively dephosphorylating the lipid A molecules of R. etli. All the mutant strains showed an increased sensitivity to polymyxin relative to the wild-type. However, despite the presence of altered lipid A species containing one or both phosphate groups, all the phosphatase mutants formed nitrogen-fixing nodules on Phaseolus vulgaris. Therefore, the dephosphorylation of lipid A molecules in R. etli is not required for nodulation but may instead play a role in protecting the bacteria from cationic antimicrobial peptides or other immune responses of plants.  相似文献   

8.
Lipid A of Rhizobium leguminosarum, a nitrogen-fixing plant endosymbiont, displays several significant structural differences when compared with Escherichia coli. An especially striking feature of R. leguminosarum lipid A is that it lacks both the 1- and 4'-phosphate groups. Distinct lipid A phosphatases that attack either the 1 or the 4' positions have previously been identified in extracts of R. leguminosarum and Rhizobium etli but not Sinorhizobium meliloti or E. coli. Here we describe the identification of a hybrid cosmid (pMJK-1) containing a 25-kb R. leguminosarum 3841 DNA insert that directs the overexpression of the lipid A 1-phosphatase. Transfer of pMJK-1 into S. meliloti 1021 results in heterologous expression of 1-phosphatase activity, which is normally absent in extracts of strain 1021, and confers resistance to polymyxin. Sequencing of a 7-kb DNA fragment derived from the insert of pMJK-1 revealed the presence of a lipid phosphatase ortholog (designated LpxE). Expression of lpxE in E. coli behind the T7lac promoter results in the appearance of robust 1-phosphatase activity, which is normally absent in E. coli membranes. Matrix-assisted laser-desorption/time of flight and radiochemical analysis of the product generated in vitro from the model substrate lipid IVA confirms the selective removal of the 1-phosphate group. These findings show that lpxE is the structural gene for the 1-phosphatase. The availability of lpxE may facilitate the re-engineering of lipid A structures in diverse Gram-negative bacteria and allow assessment of the role of the 1-phosphatase in R. leguminosarum symbiosis with plants. Possible orthologs of LpxE are present in some intracellular human pathogens, including Francisella tularensis, Brucella melitensis, and Legionella pneumophila.  相似文献   

9.
Rhizobium etli type strain CFN42 contains six plasmids. We analyzed the distribution of genetic markers from some of these plasmids in bean-nodulating strains belonging to different species (Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum, and Sinorhizobium fredii). Our results indicate that independent of geographic origin, R. etli strains usually share not only the pSym plasmid but also other plasmids containing symbiosis-related genes, with a similar organization. In contrast, strains belonging to other bean-nodulating species seem to have acquired only the pSym plasmid from R. etli.  相似文献   

10.
The outer membranes of Gram-negative bacteria are replete with integral membrane proteins that exhibit antiparallel beta-barrel structures, but very few of these proteins function as enzymes. In Escherichia coli, only three beta-barrel enzymes are known to exist in the outer membrane; these are the phospholipase OMPLA, the protease OmpT, and the phospholipidColon, two colonslipid A palmitoyltransferase PagP, all of which have been characterized at the structural level. Structural details have also emerged for the outer membrane beta-barrel enzyme PagL, a lipid A 3-O-deacylase from Pseudomonas aeruginosa. Lipid A can be further modified in the outer membrane by two beta-barrel enzymes of unknown structure; namely, the Salmonella enterica 3'-acyloxyacyl hydrolase LpxR, and the Rhizobium leguminosarum oxidase LpxQ, which employs O(2) to convert the proximal glucosamine unit of lipid A into 2-aminogluconate. Structural biology now indicates how beta-barrel enzymes can function as sentinels that remain dormant when the outer membrane permeability barrier is intact. Host immune defenses and antibiotics that perturb this barrier can directly trigger beta-barrel enzymes in the outer membrane. The ensuing adaptive responses occur instantaneously and rapidly outpace other signal transduction mechanisms that similarly function to restore the outer membrane permeability barrier.  相似文献   

11.
An unusual feature of lipid A from plant endosymbionts of the Rhizobiaceae family is the presence of a 27-hydroxyoctacosanoic acid (C28) moiety. An enzyme that incorporates this acyl chain is present in extracts of Rhizobium leguminosarum, Rhizobium etli, and Sinorhizobium meliloti but not Escherichia coli. The enzyme transfers 27-hydroxyoctacosanate from a specialized acyl carrier protein (AcpXL) to the precursor Kdo2 ((3-deoxy-d-manno-octulosonic acid)2)-lipid IV(A). We now report the identification of five hybrid cosmids that direct the overexpression of this activity by screening approximately 4000 lysates of individual colonies of an R. leguminosarum 3841 genomic DNA library in the host strain S. meliloti 1021. In these heterologous constructs, both the C28 acyltransferase and C28-AcpXL are overproduced. Sequencing of a 9-kb insert from cosmid pSSB-1, which is also present in the other cosmids, shows that acpXL and the lipid A acyltransferase gene (lpxXL) are close to each other but not contiguous. Nine other open reading frames around lpxXL were also sequenced. Four of them encode orthologues of fatty acid and/or polyketide biosynthetic enzymes. AcpXL purified from S. meliloti expressing pSSB-1 is fully acylated, mainly with 27-hydroxyoctacosanoate. Expression of lpxXL in E. coli behind a T7 promoter results in overproduction in vitro of the expected R. leguminosarum acyltransferase, which is C28-AcpXL-dependent and utilizes (3-deoxy-d-manno-octulosonic acid)2-lipid IV(A) as the acceptor. These findings confirm that lpxXL is the structural gene for the C28 acyltransferase. LpxXL is distantly related to the lauroyltransferase (LpxL) of E. coli lipid A biosynthesis, but highly significant LpxXL orthologues are present in Agrobacterium tumefaciens, Brucella melitensis, and all sequenced strains of Rhizobium, consistent with the occurrence of long secondary acyl chains in the lipid A molecules of these organisms.  相似文献   

12.
The lipid A and inner core regions of Rhizobium leguminosarum lipopolysaccharide contain four galacturonic acid (GalA) residues. Two are attached to the outer unit of the 3-deoxy-D-manno-octulosonic acid (Kdo) disaccharide, one to the mannose residue, and one to the 4'-position of lipid A. The enzymes RgtA and RgtB, described in the accompanying article, catalyze GalA transfer to the Kdo residue, whereas RgtC is responsible for modification of the core mannose unit. Heterologous expression of RgtA in Sinorhizhobium meliloti 1021, a strain that normally lacks GalA modifications on its Kdo disaccharide, resulted in detectable GalA transferase activity in isolated membrane preparations, suggesting that the appropriate GalA donor substrate is available in S. meliloti membranes. In contrast, heterologous expression of RgtA in Escherichia coli yielded inactive membranes. However, RgtA activity was detectable in the E. coli system when total lipids from R. leguminosarum 3841 or S. meliloti 1021 were added. We have now purified and characterized dodecaprenyl (C60) phosphate-GalA as a minor novel lipid of R. leguminosarum 3841 and S. meliloti. This substance is stable to mild base hydrolysis and was purified by DEAE-cellulose column chromatography. Its structure was established by a combination of electrospray ionization mass spectrometry and gas-liquid chromatography. Purified dodecaprenyl phosphate-GalA supports the efficient transfer of GalA to Kdo2-1-dephospho-lipid IV(A) by membranes of E. coli cells expressing RgtA, RgtB, and RgtC. The identification of a polyisoprene phosphate-GalA donor substrate suggests that the active site of RgtA faces the periplasmic side of the inner membrane. This work represents the first definitive characterization of a lipid-linked GalA derivative with the proposed structure dodecaprenyl phosphate-beta-D-GalA.  相似文献   

13.
A 130-nucleotide-long rRNA species corresponding to the 5' end of the 23S rRNA gene was found in 96 strains belonging to different Rhizobium, Bradyrhizobium, and Agrobacterium species. Additional fragmentation in the central region of the large-subunit rRNA occurred in all agrobacteria, except Agrobacterium vitis, and in most Rhizobium leguminosarum and Rhizobium etli strains but did not occur in any of the other rhizobia and bradyrhizobia studied.  相似文献   

14.
Lipopolysaccharides (LPSs) are prominent structural components of the outer membranes of gram-negative bacteria. In Rhizobium spp. LPS functions as a determinant of the nitrogen-fixing symbiosis with legumes. LPS is anchored to the outer surface of the outer membrane by the lipid A moiety, the principal lipid component of the outer bacterial surface. Several notable structural differences exist between the lipid A of Escherichia coli and that of Rhizobium leguminosarum, suggesting that diverse biosynthetic pathways may also exist. These differences include the lack of phosphate groups and the presence of a 4'-linked GalA residue in the latter. However, we now show that UDP-GlcNAc plays a key role in the biosynthesis of lipid A in R. leguminosarum, as it does in E. coli. 32P-labeled monosaccharide and disaccharide lipid A intermediates from E. coli were isolated and tested as substrates in cell extracts of R. leguminosarum biovars phaseoli and viciae. Six enzymes that catalyze the early steps of E. coli lipid A biosynthesis were also present in extracts of R. leguminosarum. Our results show that all the enzymes of the pathway leading to the formation of the intermediate 3-deoxy-D-manno-2-octulosonic acid (Kdo2)-lipid IVA are functional in both R. leguminosarum biovars. These enzymes include (i) UDP-GlcNAc 3-O-acyltransferase; (ii) UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase; (iii) UDP-3-O-(R-3-hydroxymyristoyl)-GlcN N-acyltransferase; (iv) disaccharide synthase; (v) 4'-kinase; and (vi) Kdo transferase. Our data suggest that the early steps in lipid A biosynthesis are conserved and that the divergence leading to rhizobial lipid A may occur at a later stage in the pathway, presumably after the attachment of the Kdo residues.  相似文献   

15.
The diversity and phylogeny of 32 rhizobial strains isolated from nodules of common bean plants grown on 30 sites in Ethiopia were examined using AFLP fingerprinting and MLSA. Based on cluster analysis of AFLP fingerprints, test strains were grouped into six genomic clusters and six single positions. In a tree built from concatenated sequences of recA, glnII, rpoB and partial 16S rRNA genes, the strains were distributed into seven monophyletic groups. The strains in the groups B, D, E, G1 and G2 could be classified as Rhizobium phaseoli, R. etli, R. giardinii, Agrobacterium tumefaciens complex and A. radiobacter, respectively, whereas the strains in group C appeared to represent a novel species. R. phaseoli, R. etli, and the novel group were the major bean nodulating rhizobia in Ethiopia. The strains in group A were linked to R. leguminosarum species lineages but not resolved. Based on recA, rpoB and 16S rRNA genes sequences analysis, a single test strain was assigned as R. leucaenae. In the nodC tree the strains belonging to the major nodulating groups were clustered into two closely linked clades. They also had almost identical nifH gene sequences. The phylogenies of nodC and nifH genes of the strains belonging to R. leguminosarum, R. phaseoli, R. etli and the putative new species (collectively called R. leguminosarum species complex) were not consistent with the housekeeping genes, suggesting symbiotic genes have a common origin which is different from the core genome of the species and indicative of horizontal gene transfer among these rhizobia.  相似文献   

16.
Rhizobium etli is a gram-negative soil bacterium that induces nitrogen-fixing nodules on common bean roots (Phaseolus vulgaris). R. etli encodes two genes homologous to nodT of Rhizobium leguminosarum. nodTch is chromosomal and forms an operon with new genes resembling a multi-drug efflux pump of the resistance-nodulation-cell division (RND) family. nodTch is the last gene of this operon and can also be independently transcribed; the gene product is located in the bacterial outer membrane. Cell survival requires nodTch under all conditions tested. A second nodT gene, nodTpc, is encoded by plasmid c; it is constitutively transcribed but does not complement the essential function encoded by nodTch. NodT proteins belong to the outer membrane efflux proteins of the TolC superfamily. The number of duplications in the tolC gene family positively correlates with genome size in gram-negative bacteria. Nonetheless, some alpha-proteobacteria, including R. etli, encode fewer outer membrane factor exporters than expected suggesting further roles in addition to detoxification.  相似文献   

17.
Previously, the enzymes for trehalose synthesis that are present in Escherichia coli were demonstrated in Bradyrhizobium japonicum and B. elkanii. An alternative mechanism recently reported for the synthesis of trehalose from maltooligosaccharides was considered based on the fact that high concentrations of sugars in liquid culture stimulated the accumulation of trehalose. An assay for the synthesis of trehalose from maltooligosaccharides using crude, gel-filtered protein preparations was developed. Analysis of a variety of the Rhizobiaceae indicates that the "maltooligosaccharide mechanism" is present in B. japonicum, B. elkanii, Rhizobium sp. NGR234, Sinorhizobium meliloti, R. tropici A, R. leguminosarum bv viciae, R. I. bv trifolii, and Azorhizobium caulinodans. Synthesis of trehalose from maltooligosaccharide could not be detected in R. tropici B or R. etli.  相似文献   

18.
Król JE  Mazur A  Marczak M  Skorupska A 《Genomics》2007,89(2):237-247
We applied a genomic approach in the identification of genes required for the biosynthesis of different polysaccharides in Rhizobium leguminosarum bv. trifolii TA1 (RtTA1). Pulsed-field gel electrophoresis analyses of undigested genomic DNA revealed that the RtTA1 genome is partitioned into a chromosome and four large plasmids. The combination of sequencing of RtTA1 library BAC clones and PCR amplification of polysaccharide genes from the RtTA1 genome led to the identification of five large regions and clusters, as well as many separate potential polysaccharide biosynthesis genes dispersed in the genome. We observed an apparent abundance of genes possibly linked to lipopolysaccharide biosynthesis. All RtTA1 polysaccharide biosynthesis regions showed a high degree of conserved synteny between R. leguminosarum bv. viciae and/or Rhizobium etli. A majority of the genes displaying a conserved order also showed high sequence identity levels.  相似文献   

19.
An insertion sequence (IS) element, ISR12, from Rhizobium leguminosarum bv. viciae strain MSDJ4184 was isolated by insertional inactivation of the sacRB gene of pSUP104-sac, which allows positive selection. ISRl2 is 932 bp long, is flanked by 17-bp imperfect terminal inverted repeats, and generated a 3-bp target site duplication. ISRl2 was found to be 63 to 77% homologous to insertion elements of the IS5 group of the IS4 superfamily. A probe incorporating a full-length copy of ISRl2 was used to screen genomic DNAs from a collection of strains and from two field populations of R. leguminosarum to detect and estimate the copy numbers of homologous sequences. Among the collection of 63 strains representing the different species and genera of members of the family Rhizobiaceae, homology to ISRl2 was found within strains belonging to Sinorhizobium meliloti and S. fredii; within four of the six recognized Rhizobium species. R. leguminosarum, R. tropici, R. etli, and R. galegae; and within Rhizobium sp. (Phaseolus) genomic species 2. The apparent copy numbers of ISRl2 varied from one to eight. Among 139 isolates of R. leguminosarum from two field populations, homology to ISRl2 was detected in 91% of the isolates from one site and in 17% from the other. Analysis of the 95 isolates that hybridize to ISRl2 revealed a total of 20 distinct hybridization patterns composed of one to three bands. Probing blots of Eckhardt gels showed that sequences with homology to ISRl2 may be found on plasmids or the chromosome. Analysis of their genomic distribution demonstrated relationships and diversity among the R. leguminosarum isolates tested.  相似文献   

20.
Rhizobium etli is a Gram-negative soil-dwelling alphaproteobacterium that carries out symbiotic biological nitrogen fixation in close association with legume hosts. R. etli strains exhibit high sequence divergence and are geographically structured, with a potentially dramatic influence on the outcome of symbiosis. Here, we present the genome sequence of R. etli CNPAF512, a Brazilian isolate from bean nodules. We anticipate that the availability of genome sequences of R. etli strains from distinctly different areas will provide valuable new insights into the geographic mosaic of the R. etli pangenome and the evolutionary dynamics that shape it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号