首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Action of salicylic acid (SA) on the activity of membrane bound H+-ATPase and passive proton permeability of plasmalemma membrane vesicles (PMV) from parenchyma cells of potato tubers was detected. A correlation between SA action on germination of tubers and activity of plasmalemma H+-ATPase was revealed: the application of growth-stimulating concentrations of SA (10−10–10−8 M) in the system in vitro resulted in activation of plasmalemma H+-ATPase, while the use of growth-inhibiting concentrations (10−4, 10−5 M) provoked inhibition of the enzyme activity. Addition of jasmonic acid (JA) to the incubation mix resulted in increase of SA effect on the accumulation of H+ in PMV.  相似文献   

2.
Synthetic growth regulator melafen (10−5–10−10 M) was tested for aneffect on the Ca2+ accumulation in plasma membrane vesicles (PMVs) isolated from potato Solanum tuberosum L. tubers at forced rest and sprouting. Melafen proved to regulate the Ca2+ accumulation in PMVs by changing the activity of Ca2+, Mg2+-ATPase of the plasma membrane, while no effect was observed with respect to Ca2+ outflow from vesicles. The melafen effect on Ca2+, Mg2+-ATPase activity depended on the physiological condition of tubers and the melafen concentration.  相似文献   

3.
The mechanism of the stimulatory effect of melafen on potato tuber sprouting was studied. The treatment with 10?8 M melafen intensified division and stretching and activated granular endoplasmic reticulum of apical meristem cells. An increase in the activity of membrane-bound H+-ATPase in the plasmalemma of parenchymal cells of melafen-treated potato tubers and enhancement of passive proton permeability of the plasmalemma was observed. In vitro studies showed that melafen at concentrations of 10?5?10?12 M stimulated the activity of plasmalemmal H+-ATPase in a concentration-dependent manner.  相似文献   

4.
Interference of phytohormones (jasmonic, gibberellic, and abscisic acids) and synthetic growth regulator melafen on Ca2+ translocation across the membrane of plasma membrane vesicles prepared from dormant potato (Solanum tuberosum L.) tubers was studied. The activity of plasma membrane Ca2+, Mg2+-ATPase was stimulated by melafen and jasmonic and gibberellic acids and suppressed by abscisic acid. These substrances did not change the passive membrane permeability for Ca2+. The pattern of the effect of melafen on the activity of Ca2+,Mg2+-ATPase depended on the presence of phytohormones in incubation medium. When melafen and each phytohormone were simultaneously added to incubation medium, their effects were not additive, which indicates that the effects of the tested compounds on the Ca2+ uptake into the plasma membrane vesicles are interdependent. Apparently, the interaction between the phytohormones and plasma membrane components modulates the response to melafen.  相似文献   

5.
The introduction of the thaumatin gene into potato plants was accompanied by a decrease in the activity of H+-ATPase in the plasmalemma (PL) of tuber cells. When tubers were released from dormancy, the enzyme was activated in the tuber cells of both the original and transgenic plants. Experiments performed in vitro demonstrated that sensitivities to ambiol (AM) and jasmonic acid (JA) of H+-ATPase in the PL of tubers from the original plants were lower after the release from a period of deep dormancy. In preparations from the tubers of transgenic plants, the situation was reversed. The differences between the activities of H+-ATPase in the PL preparations produced from the original and transgenic tubers that sprouted under the action of AM and JA were detected. Thus, the overexpression of the thaumatin gene in potato plants changed the properties of H+-ATPase from PL.  相似文献   

6.
The effects of phytohormones (abscisic acid, gibberellic acid, and jasmonic acid) and ambiol (a synthetic growth regulator) on processes of H+ transport across the plasmalemma were studied in membrane vesicles isolated from the parenchyma of potato (Solanum tuberosum L.) tubers. Phytohormones and ambiol were tested either individually or in combinations. Each of the substances tested changed the initial rate of H+ uptake by the vesicles. Two signaling substances added to the incubation medium simultaneously modified the activity of each other. It is suggested that the interaction of a signaling substance with components of the plasmalemma alters the responses of the membrane to other signaling molecules.  相似文献   

7.
SODIUM-potassium-activated, magnesium-dependent, adenosine triphosphatase (Na+, K+, Mg2+-ATPase) is widely accepted as an essential factor in sodium transport1 and observations on fish substantiate this view. There are concurrent increases, for example, of both Na+, K+, Mg2+-ATPase activity and osmoregulatory sodium transport2, in the intestinal mucosae3,4 and the gills3,5 of euryhaline teleosts during adaptation to seawater. Furthermore, the gills of stenohaline seawater teleosts, which actively secrete sodium, exhibit higher Na+, K+, Mg2+-ATPase activity than the gills of stenohaline freshwater teleosts, which do not actively secrete sodium3,5. Na+, K+, Mg2+-ATPase therefore seems to be important in maintaining tissue osmolarity well below that of seawater. It is disquieting to report therefore that Na+, K+, Mg2+-ATPase activity in the intestinal mucosae and gills of marine teleosts is inhibited by the organochlorine insecticide DDT. This observation may help to clarify the unexplained sensitivity of teleosts to DDT6.  相似文献   

8.
Changes in protein and fatty acid compositions of flounder sarcoplasmic reticulum during NADH plus ascorbate-dependent lipid peroxidationin vitro were related to the ability of the sarcoplasmic reticulum to sequester Ca+2. Progressive accumulation of high-molecular-weight protein components occurred concomitantly with loss of Ca+2-sequestering activity. Part of this polymerized protein may be the dimer or trimer of Ca+2, Mg+2-ATPase. Loss in Ca+2, Mg+2-ATPase protein could account for over 60% of the polymerized protein. Rate of loss of polyunsaturated fatty acids was C22:6>C20:4>C20:5>C22:5. Loss of polyunsaturated fatty acids and accumulation of thiobarbituric acid-reactive substances occurred concomitantly with protein polymerization.  相似文献   

9.
The effects of a new synthetic growth regulator, preparation melafen, on the growth processes in potato plant tubers and the H+-ATPase activity in cell plasmalemma were studied. It was demonstrated that melafen could both stimulate and inhibit the growth of potato tubers depending on its concentration and the physiological state of the tubers. It is likely that one of the manifestations of melafen action is its influence on the division and extension of apical meristem cells. The growth stimulation caused by melafen is connected with modifications of the plasmalemma of potato tuber cells, namely, the activation of H+-ATPase and increase in the membrane proton permeability.  相似文献   

10.
11.
Effects of the growth regulators epibrassinolide-694 (EB), gibberellic acid (GA), and abscisic acid (ABA) on the ATP-dependent translocation of H+through the membranes of plasma membrane vesicles of potato (Solanum tuberosumL.) tuber cells were studied. The ATP-dependent accumulation of H+in the plasma membrane vesicles from dormant tubers was inhibited by EB and ABA and stimulated by GA. After the break of dormancy, the stimulatory effect of GA increased, the inhibitory effect of ABA decreased, and EB stimulated the accumulation of H+in the vesicles. The data suggest that the plasma membrane H+ATPase is a target of phytohormones that regulate the dormancy of potato tubers.  相似文献   

12.
To date, it has been established that the symbiosome membrane (SM), i.e., plant-derived membrane of symbiosomes, nitrogen-fixing compartments of legume root nodules, is equipped with Ca2+-ATPase transporting Ca2+ ions through the SM from the cytosol of infected cells into the symbiosome space (SS). Earlier in the experiments on the SM vesicles isolated from broad bean root nodules some data indicating the action of the Ca2+-ATPase as ATP-driven Ca2+/H+ antiporter were obtained. In the present work performed on isolated symbiosomes from the same plant object, further evidence in favor of calcium-proton countertransport mechanism of the pump operation was obtained. These were expressed in vanadate-sensitive alkalinization of the SS coupled with Ca2+ uptake by symbiosomes catalyzed by the SM Ca2+-ATPase, stimulation of the kinetics of the latter process in the response to artificial acidification of the SS and expectable modulation of ITP-hydrolyzing activity of this enzyme caused by the variation of pH within this compartment. The above findings are discussed in the framework of the model describing the mechanism of Ca2+-ATPase operation as an ATP-driven Ca2+/H+ exchanger and on this base allow us to put forward the hypothesis about the involvement of this enzyme in symbiosome signaling in a Ca2+- and pH-dependent manner.  相似文献   

13.
Plant cells frequently and rapidly have to respond to environmental changes for survival. Regulation of transport and other energy-requiring processes in the plasmalemma of root cells is therefore one important aspect of the ecological adaptation of plants. Wheat (Triticum aestivum L. cv. Drabant) was grown hydroponically, with or without 50 nM benzyladenine in the medium, and plasma membranes from root cells of 8-day-old plants were prepared by aqueous polymer two-phase partitioning. The influence of Ca2+ and Mg2+ on the plasmalemma ATPase activities was investigated. The presence of benzyladenine during growth increased the ATPase activity, that dependent upon Ca2+ more than that elicited by Mg2+. As a general characteristic, ATP was the preferred substrate, but all nucleotide tri- and diphosphates could be accepted with activities in plasma membranes from control plants of 7-36% (Mg2+) and 40-86% (Ca2+) and in plasma membranes from benzyladenine-treated plants of 12-47% (Mg2+) and 53-102% (Ca2+) as compared with activities obtained with ATP. Nucleotidemonophosphates were not hydrolyzed by the preparations. In preparations from benzyladenine-treated plants one peak of Ca2+-ATPase at pH 5.2–5.6, with a tail from pH 6 and upwards, and one peak of Mg2+-ATPase at pH 6.0–6.5 were observed in the presence of EDTA in the assay media. In preparations from control plants, the addition of EDTA to the assays resulted in a wide optimum between pH 6 and 7 for Mg2+-ATPase and low Ca2+-ATPase activity with no influence of pH in the range 4.5 to 8. Analysis of the pH dependence in the presence of both Ca2+ and Mg2+ indicates that the control plants mainly contain Mg2+-ATPase corresponding to the proton pump. Preparations from benzyladenine-treated wheat roots show, in addition, activation by Ca2+, which, in the slightly alkaline pH range may correspond to a Ca2+-extruding (Ca2++ Mg2+)-ATPase. In the acidic range, the responses are more complicated: the Mg2+-ATPase is inhibited by vanadate, while the Ca2+-ATPase is insensitive, and benzyladenine added during growth influences the interaction between Ca2+ and Mg2+ in a way that parallels the effect of high salt medium.  相似文献   

14.
Release of Ca2+ from the (Ca2+ + Mg2+)-ATPase into the interior of intact sarcoplasmic reticulum vesicles was measured using arsenazo III, a metallochromic indicator of Ca2+. Arsenazo III was placed inside the sarcoplasmic reticulum vesicles by making the vesicles transiently leaky with an osmotic gradient in the presence of arsenazo III. External arsenazo III was then removed by centrifugation. Addition of ATP to the (Ca2+ + Mg2+)-ATPase in the presence of Ca2+ causes the rapid phosphorylation of the enzyme at which time the bound Ca2+ becomes inaccessible to external EGTA. The release of Ca2+ from the (Ca2+ + Mg2+)-ATPase to the interior of the vesicle measured with intravesicular arsenazo III was much slower indicating that there is an occluded from the Ca2+-binding site which precedes the release of Ca2+ into the vesicle. The rate of Ca2+ accumulation by sarcoplasmic reticulum vesicles is increased by K+ (5–100 mM) and ATP (50–1000 μM) but the initial rate of Ca2+ translocation measured after the simultaneous addition of ATP and EGTA to vesicles that were preincubated in Ca2+ was not influenced by these concentrations of K+ and ATP.  相似文献   

15.
Schumaker KS  Sze H 《Plant physiology》1985,79(4):1111-1117
Two types of ATP-dependent calcium (Ca2+) transport systems were detected in sealed microsomal vesicles from oat roots. Approximately 80% of the total Ca2+ uptake was associated with vesicles of 1.11 grams per cubic centimeter and was insensitive to vanadate or azide, but inhibited by NO3. The remaining 20% was vanadate-sensitive and mostly associated with the endoplasmic reticulum, as the transport activity comigrated with an endoplasmic reticulum marker (antimycin A-insensitive NADH cytochrome c reductase), which was shifted from 1.11 to 1.20 grams per cubic centimeter by Mg2+.

Like the tonoplast H+-ATPase activity, vanadate-insensitive Ca2+ accumulation was stimulated by 20 millimolar Cl and inhibited by 10 micromolar 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid or 50 micromolar N,N′-dicyclohexylcarbodiimide. This Ca2+ transport system had an apparent Km for Mg-ATP of 0.24 millimolar similar to the tonoplast ATPase. The vanadate-insensitive Ca2+ transport was abolished by compounds that eliminated a pH gradient and Ca2+ dissipated a pH gradient (acid inside) generated by the tonoplast-type H+-ATPase. These results provide compelling evidence that a pH gradient generated by the H+-ATPase drives Ca2+ accumulation into right-side-out tonoplast vesicles via a Ca2+/H+ antiport. This transport system was saturable with respect to Ca2+ (Km apparent = 14 micromolar). The Ca2+/H+ antiport operated independently of the H+-ATPase since an artifically imposed pH gradient (acid inside) could also drive Ca2+ accumulation. Ca2+ transport by this system may be one major way in which vacuoles function in Ca2+ homeostasis in the cytoplasm of plant cells.

  相似文献   

16.
Alterations in the activity of ATPases, peroxidases and lipoxygenases were studied during early stages of post-harvest deterioration of cassava (Manihot esculenta Crantz cv. Oyolu) root tubers. The peak activities of Ca2+-ATPase, (Ca2++Mg2+)-ATPase, Na++K+-ATPase, Mg2+-ATPase and peroxidases were observed after the first 24 h and thereafter decreased. The activity of lipoxygenase was biphasic, probably depicting two distinct isoforms expressed during deterioration. The results indicate that ATPases and peroxidases have a role in the post-harvest deterioration of cassava tuber, but the participation of lipoxygenases seems unlikely.  相似文献   

17.
We investigated the effect of the exogenous polyamines spermine, spermidine and putrescine on modulation by ATP, K+, Na+, NH4 + and Mg2+ and on inhibition by ouabain of posterior gill microsomal Na+,K+-ATPase activity in the blue crab, Callinectes ornatus, acclimated to a dilute medium (21‰ salinity). This is the first kinetic demonstration of competition between spermine and spermidine for the cation sites of a crustacean Na+,K+-ATPase. Polyamine inhibition is enhanced at low cation concentrations: spermidine almost completely inhibited total ATPase activity, while spermine inhibition attained 58%; putrescine had a negligible effect on Na+,K+-ATPase activity. Spermine and spermidine affected both V and K for ATP hydrolysis but did not affect ouabain-insensitive ATPase activity. ATP hydrolysis in the absence of spermine and spermidine obeyed Michaelis–Menten behavior, in contrast to the cooperative kinetics seen for both polyamines. Modulation of V and K by K+, Na+, NH4 + and Mg2+ varied considerably in the presence of spermine and spermidine. These findings suggest that polyamine inhibition of Na+,K+-ATPase activity may be of physiological relevance to crustaceans that occupy habitats of variable salinity.  相似文献   

18.
The role of natural and synthetic auxins in regulation of ion transport and ATPase activity was studied in rice roots (Oryza sativa L. cv. Dunghan Shah). In vivo treatment of seedlings with 2,4-dichlorophenoxyacetic acid at 2 × 10?6M for a short period enhanced subsequent Ca2+ stimulated K+ influx and ATPase activity, while a longer treatment diminished both K+ influx and ATPase activity. Indoleacetic acid at 10?10–10?8M induced ATPase activity. In in vitro experiments both 2,4-dichloro phenoxyacetic acid and indoleacetic acid (10?10–10?8M) stimulated Ca2+, K+-ATPase activity of a plasmalemma rich micro somal fraction from the roots. Acetone extracted ATPase preparations lost their activity. The enzyme regained its activity and its sensitivity towards ions (Ca2++ K+) when reconstituted with phosphatidyl choline. Addition of auxins also indicated that the presence of the lipid was necessary in the interaction between the ATPase and auxins. Auxins and ions probably interact with the intact ATPase lipoprotein complex, which may possess a receptor site for the auxins, possibly as a sub unit.  相似文献   

19.
The plasticity of synaptosomal non-mitochondrial ATPases was evaluated in cerebral cortex from 3-month-old normoxic rats and rats subjected to either mild or severe intermittent normobaric hypoxia [12 hr daily exposure to N2O2 (9010 or 91.58.5) for four weeks]. The activities of Na+, K+-ATPase, low- and high-affinity Ca2+-ATPase, Mg2+-ATPase, and Ca2+, Mg2+-ATPase were assayed in synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. The evaluations were performed after a 4-week treatment with saline (controls) or -adrenergic agents (-yohimbine, clonidine), a vasodilator compound (papaverine), and an oxygen-partial pressure increasing agent (almitrine). These treatments differently changed the adaptation to chronic intermittent hypoxia characterized by a decrease in the activity of Na+, K+-ATPase, Ca2+,Mg2+-ATPase, and high-affinity Ca2+-ATPase, concomitant with a modification in the activity of Mg2+-ATPase supported in a different way by the enzymatic forms located into the synaptosomal plasma membranes and synaptic vesicles.  相似文献   

20.
A lipophilic potential-sensitive cationic dye, safranin O was employed to examine the influence of exogenous IAA on plasma membrane electric potential in germinating pollen grains of petunia (Petunia hybrida L.) with the aim of elucidating whether the electrogenic H+-ATPase activity of the plasma membrane is sensitive to this phytohormone. The addition of IAA to pollen grains suspended in a K+-free medium was found to induce significant hyperpolarization of the plasmalemma. This effect was fully blocked by orthovanadate, Ca2+-active reagents (EGTA and verapamil), and by the inhibitor of NADPH oxidase of plasmalemma, diphenyleneiodonium (DPI). It was also strongly inhibited by the presence of K+ at centimolar concentrations in the medium. The hyperpolarizing influence of IAA was mimicked by application of hydrogen peroxide; furthermore, the H2O2-induced shift of the membrane potential was inhibited by the same agents that suppressed the IAA-induced hyperpolarization of the pollen plasmalemma. It is concluded that the IAAinduced hyperpolarization of the plasma membrane in male gametophytes of petunia is caused by the enhanced electrogenic activity of ATP-dependent proton pump in the presence of this phytohormone. It is supposed that the effect of IAA is mediated by the transient increase in cytosolic Ca2+ level and by generation of reactive oxygen species (ROS). Possible mechanisms underlying the mediatory role of calcium and ROS in the auxin signal transduction and the resulting stimulation of electrogenic activity of the plasma membrane H+-ATPase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号