首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the brains of Alzheimer's disease patients, the tau protein abnormally aggregates to form an insoluble paired helical filament (PHF). Since the third repeat structure (R3) of the tau microtubule-binding domain plays an essential role in PHF formation and self-aggregates most significantly in an aqueous solution of 20-40% trifluoroethanol (TFE), its possible conformation was estimated from the combination of (i) the TFE-dependent deviations of NH and CalphaH proton chemical shifts from those of the random structure in water and (ii) the TFE-dependent NOE effect connectivity diagrams between the neighboring protons. Consequently, it was indicated that the extended structure of the N-terminal VQIVYK moiety and the alpha-helical-like structure of the LSKVTSKC region provide a structural scaffold for initiating the self-assembled filament formation of the R3 structure. To the best of our knowledge, this is the first study that demonstrated the initial structural moiety and its structural feature necessary for starting the tau PHF formation.  相似文献   

3.
In the brains of Alzheimer's disease patients, the tau protein dissociates from the axonal microtubule and abnormally aggregates to form a paired helical filament (PHF). One of the priorities in Alzheimer research is to clarify the mechanism of PHF formation. Although several reports on the regulation of tau assembly have been published, it is not yet clear whether in vivo PHFs are composed of beta-structures or alpha-helices. Since the four-repeat microtubule-binding domain (4RMBD) of the tau protein has been considered to play an essential role in PHF formation, its heparin-induced assembly propensity was investigated by the thioflavin fluorescence method to clarify what conformation is most preferred for the assembly. We analyzed the assembly propensity of 4RMBD in Tris-HCl buffer with different trifluoroethanol (TFE) contents, because TFE reversibly induces the transition of the random structure to the alpha-helical structure in an aqueous solution. Consequently, it was observed that the 4RMBD assembly is most significantly favored to proceed in the 10-30% TFE solution, the concentration of which corresponds to the activated transition state of 4RMBD from a random structure to an alpha-helical structure, as determined from the circular dichroism (CD) spectral changes. Since such an assembly does not occur in a buffer containing TFE of < 10% or > 40%, the intermediate conformation between the random and alpha-helical structures could be most responsible for the PHF formation of 4RMBD. This is the first report to clarify that the non-native alpha-helical intermediate in transition from random coil is directly associated with filament formation at the start of PHF formation.  相似文献   

4.
Zhang YJ  Xu YF  Chen XQ  Wang XC  Wang JZ 《FEBS letters》2005,579(11):2421-2427
Abnormally nitrated tau has been found recently in the neurofibrillary tangles of Alzheimer's disease (AD). However, whether and how nitration of tau is involved in AD pathology is not known. Herein, we found that in vitro incubation of peroxynitrite with recombinant tau resulted in nitration and oligomerization of tau in a dosage-dependent manner. Moreover, the nitrated tau showed a significantly decreased binding activity to taxol-stabilized microtubulesin in vitro. Further study demonstrated that peroxynitrite also induced tau nitration in neuroblastoma N2a cell line, and the nitrated tau was accumulated in the cells. We conclude that abnormal nitration of tau contributes to the impaired biological activity of tau in binding to the microtubules and the aggregation of tau, implying a novel mechanism responsible for the neurodegeneration seen in AD brain.  相似文献   

5.
To clarify the contribution of the three- or four-repeated peptide moiety in tau microtubule-binding domain (MBD) to paired helical filament (PHF) formation, conformational transition accompanied by heparin-induced filament formation was investigated stepwise for four repeat peptides (R1-R4), one three-repeated R1-R3-R4 peptide (3RMBD), and one four-repeated R1-R2-R3-R4 peptide (4RMBD) using a combination of thioflavin S fluorescence and circular dichroism (CD) measurements in a neutral buffer (pH 7.6). The comparison of the fluorescence profile of each repeat peptide with those of 3RMBD and 4RMBD showed the synergistic contribution of R1-R4 to PHF formation of MBD. The CD spectrum measured as a function of filament formation time indicates that: (i) two conformational transitions occur for the filament formations of R3 (from the random structure to the beta-sheet structure) and 3RMBD (from the random structure to the alpha-helix structure), (ii) the filament formations of R2 and 4RMBD proceed via the synchronized conformational transitions of the alpha-helix and random structures, and (iii) the filament formation of 4RMBD is dependent on the aggregation behavior of R2. These data are useful for elucidating the MBD conformational transition in tau PHF formation.  相似文献   

6.
7.
Neurofibrillary tangles are composed of insoluble aggregates of the microtubule-associated protein tau. In Alzheimer's disease the accumulation of neurofibrillary tangles occurs in the absence of tau mutations. Here we present mice that develop pathology from non-mutant human tau, in the absence of other exogenous factors, including beta-amyloid. The pathology in these mice is Alzheimer-like, with hyperphosphorylated tau accumulating as aggregated paired helical filaments. This pathologic tau accumulates in the cell bodies and dendrites of neurons in a spatiotemporally relevant distribution.  相似文献   

8.
To investigate the importance of the seventh residue of the second and third repeat fragments (R2 and R3 peptides) of the microtubule-binding domain (MBD) for tau filamentous assembly, the residues Lys and Pro were substituted (R2-K7P and R3-P7K). The filament formations of the R2 and R3 peptides were almost lost due to their substitutions despite their overall conformational similarities. The NOE analyses showed the importance of the conformational flexibility for the R2 peptide and the coupled extended and helical conformations for the R3 peptide in their limited N-terminal regions around their seventh residues. The result shows that the filament formation of MBD is initiated from a short fragment region containing the minimal conformational or functional motif.  相似文献   

9.
An extensive loss of a selected population of neurons in Alzheimer's disease is closely related to the formation of paired helical filaments (PHFs). The most striking characteristic of PHFs upon Western blotting is their smearing. According to a previously described protocol (Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Titani, K., and Ihara, Y. (1993) Neuron 10, 1151-1160), smeared tau was purified, and its peptide map was compared with that of soluble (normal) tau. A CNBr fragment from soluble tau (CN5; residues 251-419 according to the 441-residue isoform) containing the microtubule-binding domain migrated at 15 and 18 kDa on SDS-polyacrylamide gel electrophoresis, whereas that from smeared tau exhibited two larger, unusually broad bands at approximately 30 and approximately 45 kDa, presumably representing dimers and trimers of CN5. In the peptide map of smeared tau-derived CN5, distinct peaks eluting at unusual locations were noted. Amino acid sequence and mass spectrometric analyses revealed that these distinct peptides bear isoaspartate at Asn-381 and Asp-387. Because no unusual peptides other than aspartyl or isoaspartyl peptide were found in the digests of smeared tau-derived CN5, it is likely that site-specific deamidation and isoaspartate formation are involved in its dimerization and trimerization and thus in PHF formation in vivo.  相似文献   

10.
Tau proteins are a class of low molecular mass microtubule-associated proteins that are specifically expressed in the nervous system. A cDNA clone of adult rat tau was isolated and sequenced. To analyze functions of tau proteins in vivo, we carried out transfection experiments. A fibroblast cell line, which was transfected with the cDNA, expressed three bands of tau, while six bands were expressed in rat brain. After dephosphorylation, one of the three bands disappeared, demonstrating directly that phosphorylation was involved in the multiplicity of tau. Morphologically, we observed a thick bundle formation of microtubules in the transiently and stably tau-gene-transfected cells. In addition, we found that the production of tubulin was prominently enhanced in the stably transfected cells. Thus, we suppose that tau proteins promote polymerization of tubulin, form bundles of microtubules in vivo, and play important roles in growing and maintaining nerve cell processes.  相似文献   

11.
The cell adhesion molecule neurofascin (NF) has a major neuronal isoform (NF186) containing a mucin-like domain followed by a fifth fibronectin type III repeat while these domains are absent from glial NF155. Neuronal NF isoforms lacking one or both of these domains are expressed transiently in embryonic dorsal root ganglia (DRG). These two domains are co-expressed in mature NF186, which peaks in expression prior to birth and then persists almost exclusively at nodes of Ranvier on myelinated axons. In contrast, glial NF155 is only detected postnatally with the onset of myelination. All these forms of NF bound homophilically and to Schwann cells but only the mature NF186 isoform inhibits cell adhesion, and this activity may be important in formation of the node of Ranvier. Schwann cells deficient in NF155 myelinated DRG axons in a delayed manner and they showed significantly decreased clustering of both NF and Caspr in regions where paranodes normally form. The combined results suggest that NF186 is expressed prenatally on DRG neurons and it may modulate their adhesive interactions with Schwann cells, which express NF155 postnatally and require it for development of axon-glial paranodal junctions.  相似文献   

12.
Human brain encompasses six tau isoforms, containing either three (3R) or four (4R) repeat domains, all of which participate in the pathogenesis of human tauopathies. To investigate the role of tau protein in the disease, transgenic rat models have been created. However, unlike humans, it has been suggested that rat brain expresses only three 4R tau isoforms. Because of the significance of the number of tau isoforms for faithful reproducibility of neurofibrillary pathology in transgenic rat models, we reopened this issue. Surprisingly, our results showed that adult rat brain contains six tau isoforms like humans. Protein expression of 4R tau isoforms was ninefold higher than 3R isoforms. Furthermore, the protein levels of tau isoforms with none, one or two N-terminal inserts were 30%, 35%, and 35% of total tau, respectively. Moreover, amount and ratio of tau isoforms were developmentally regulated. The levels of 4R tau isoforms progressively increased from early postnatal period until adulthood, whereas the expression of 3R tau isoforms reached maximum at P10 and then gradually declined. Our results show that rat brain encompasses full tau proteome similar to humans. These findings support the use of rat as an animal model in human tauopathies research.  相似文献   

13.
Aggregation of abnormally phosphorylated tau in the form of tangs of paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease (AD) and other tauopathies. It is of fundamental importance to study the mechanism of PHF formation and its modulation by phosphorylation. In this work, we have focused on the first microtubule-binding repeat of tau encompassing an abnormal phosphorylation site Ser262. The assembly propensities of this repeat and its corresponding phosphorylated form were investigated by turbidity and electron microscopy. Additionally, conformation of the two peptides is also analyzed through circular dichroism (CD) and NMR spectroscopy. Our results reveal that both of them are capable of self-assembly and phosphorylation at Ser262 could speed up the process of assembly. A possible mechanism of PHF formation is proposed and enhancing effect of phosphorylation on assembly provides an explanation to its toxicity in Alzheimer's disease.  相似文献   

14.
Nacharaju P  Lewis J  Easson C  Yen S  Hackett J  Hutton M  Yen SH 《FEBS letters》1999,447(2-3):195-199
Tau is the major component of the neurofibrillar tangles that are a pathological hallmark of Alzheimers' disease. The identification of missense and splicing mutations in tau associated with the inherited frontotemporal dementia and Parkinsonism linked to chromosome 17 demonstrated that tau dysfunction can cause neurodegeneration. However, the mechanism by which tau dysfunction leads to neurodegeneration remains uncertain. Here, we present evidence that frontotemporal dementia and Parkinsonism linked to chromosome 17 missense mutations, P301L, V337M and R406W, cause an accelerated aggregation of tau into filaments. These results suggest one mechanism by which these mutations can cause neurodegeneration and frontotemporal dementia and Parkinsonism linked to chromosome 17.  相似文献   

15.
The microtubule-associated protein tau is a family of six isoforms that becomes abnormally hyperphosphorylated and accumulates in neurons undergoing neurodegeneration in the brains of patients with Alzheimer disease (AD). We investigated the isoform-specific interaction of normal tau with AD hyperphosphorylated tau (AD P-tau). We found that the binding of AD P-tau to normal human recombinant tau was tau4L > tau4S > tau4 and tau3L > tau3S > tau3, and that its binding to tau4L was greater than to tau3L. AD P-tau also inhibited the assembly of microtubules promoted by each tau isoform and caused disassembly when added to preassembled microtubules. This inhibition and depolymerization of microtubules by the AD P-tau corresponded directly to the degree of its interaction with the different tau isoforms. In vitro hyperphosphorylation of recombinant tau (P-tau) conferred AD P-tau-like characteristics. Like AD P-tau, P-tau interacted with and sequestered normal tau and inhibited microtubule assembly. These studies suggest that the AD P-tau interacts preferentially with the tau isoforms that have the amino-terminal inserts and four microtubule binding domain repeats and that hyperphosphorylation of tau appears to be sufficient to acquire AD P-tau characteristics. Thus, lack of amino-terminal inserts and extra microtubule binding domain repeat in fetal human brain might be protective from Alzheimer's neurofibrillary degeneration.  相似文献   

16.
H Ksiezak-Reding  S H Yen 《Neuron》1991,6(5):717-728
Highly purified and SDS-soluble paired helical filaments (PHFs) were immunogold labeled and immunoblotted with antibodies to tau: Tau 14 (N-terminal half), AH-1 (microtubule-binding domain), and Tau 46 (C-terminal end). The main component of PHFs was modified tau of 68, 64, and 60 kd, also called A68 or PHF-tau. Trypsin digestion reduced the maximum width of PHFs by 10%-20%, increased aggregation of filaments, and abolished the binding of Tau 14, but had no effect on the binding of AH-1. The smallest tau-reactive tryptic fragments were 13 and 7-8 kd, positive with AH-1, and negative with Tau 46. Our results and the model of Crowther and Wischik suggest that by self-association and anti-parallel arrangement of the microtubule-binding domains, PHF-tau forms the backbone of PHFs.  相似文献   

17.
Paired helical filaments (PHFs) isolated from patients with Alzheimer's disease (AD) mainly consist of the microtubule-associated protein tau in a hyperphosphorylated form. It has been found that PHFs are the first example of pathological protein aggregation associated with formation of alpha-helices [Biochemistry (2002) 41, 7150-5]. In an effort to investigate the interplay between phosphorylation and the putative role of short regions of alpha-helix in the polymerization of tau, we have focused on the region of tau encompassing residues 317 to 335. This region is able to form protein fibrils in vitro and has two serines that are often found phosphorylated in PHFs. Using trifluoroethanol as an indicator of the alpha-helix, we find that the stability of the alpha-helix conformation is enhanced by phosphorylation. Circular dichroism data show that the phosphorylated peptide in water presents a content in alpha-helix similar to the unphosphorylated peptide at 40% of trifluoroethanol. Phosphorylation also stimulates the effect of juglone in promoting the in vitro polymerization. Furthermore, Fourier transformed infrared spectroscopy of samples of phosphorylated peptide polymerized with juglone renders a spectrum with maxima at approximately 1665 and approximately 1675 cm(-1), which are suggestive of a mixture of turns and alpha-helix conformations. Our results provide a direct mechanistic connection between phosphorylation and polymerization in tau. The connection between phosphorylation and polymerization appears to involve formation of alpha-helix structure.  相似文献   

18.
Tangles containing hyperphosphorylated aggregates of insoluble tau are a pathological hallmark of progressive supranuclear palsy (PSP). Several phosphorylation sites on tau in PSP have been identified using phospho-specific antibodies, but no sites have been determined by direct sequencing due to the difficulty in enriching insoluble tau from PSP brain. We describe a new method to enrich insoluble PSP-tau and report eight phosphorylation sites [Ser46, Thr181, Ser202, Thr217, Thr231, Ser235, Ser396/Ser400 (one site) and Thr403/Ser404 (one site)] identified by mass spectrometry. We also describe a 35 kDa C-terminal tau fragment (tau35), lacking the N-terminus of tau but containing four microtubule-binding repeats (4R), that is present only in neurodegenerative disorders in which 4R tau is over-represented. Tau35 was readily detectable in PSP, corticobasal degeneration and 4R forms of fronto-temporal dementia with parkinsonism linked to chromosome 17, but was absent from control, Alzheimer's disease and Pick's disease brain. Our findings suggest the aggregatory characteristics of PSP-tau differ from those of insoluble tau in Alzheimer's disease brain and this might be related to the presence of a C-terminal cleavage product of tau.  相似文献   

19.
Myo1b is a widely expressed myosin-I isoform that concentrates on endosomal and ruffling membranes and is thought to play roles in membrane trafficking and dynamics. Myo1b is alternatively spliced within the regulatory domain of the molecule, yielding isoforms with six (myo1b(a)), five (myo1b(b)), or four (myo1b(c)) non-identical IQ motifs. The calmodulin binding properties of the myo1b IQ motifs have not been investigated, and the mechanical and cell biological consequences of alternative splicing are not known. Therefore, we expressed the alternatively spliced myo1b isoforms truncated after the final IQ motif and included a sequence at their C termini that is a substrate for bacterial biotin ligase. Site-specific biotinylation allows us to specifically attach the myosin to motility surfaces via a biotin-streptavidin linkage. We measured the ATPase and motile properties of the recombinant myo1b splice isoforms, and we correlated these properties with calmodulin binding. We confirmed that calcium-dependent changes in the ATPase activity are due to calcium binding to the calmodulin closest to the motor. We found that calmodulin binds tightly to some of the IQ motifs (Kd < 0.2 microM) and very weakly to the others (Kd > 5 microM), suggesting that a subset of the IQ motifs are not calmodulin bound under physiological conditions. Finally, we found the in vitro motility rate to be dependent on the myo1b isoform and the calmodulin concentration and that the myo1b regulatory domain acts as a rigid lever arm upon calmodulin binding to the high affinity and low affinity IQ motifs.  相似文献   

20.
The analysis of the self-assembly mechanism of the tau microtubule-binding domain (MBD) could provide the information needed to develop an effective method for the inhibition of the tau filament formation because of its core region that forms the filament. The MBD domain in the living body consists of similar three or four 31- to 32-residue repeats, namely 3RMBD (R134) and 4RMBD (R1234), respectively. The filament formation of the MBD has been mainly investigated by fluorescence spectroscopy utilizing the β-sheet structure-binding signal sensor thioflavin. This method observes the aggregation indirectly, and provides no information on the time-dependent change in aggregation size or volume. Thus, to determine the structure necessary for initiating MBD self-association, the dynamic light scattering (DLS) method was applied to the analysis of the aggregations of 3RMBD, 4RMBD and their component single repeats and shown to be a powerful tool for directly analyzing filament formation. DLS analysis clearly showed that the building unit for initiating the aggregation is the intermolecular R3-R3 disulfide-bonded dimer for 3RMBD and the intramolecular R2-R3 disulfide-bonded monomer for 4RMBD, and their aggregation processes under physiological condition differ from each other, which has not been clearly revealed by the conventional fluorescence method. The repeat-number-dependent aggregation model of MBD, together with the function of each repeat, reported in this paper should help to devise a method of preventing tau PHF formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号