首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of heterologous SERCA1a ATPase in Cos-1 cells was optimized to yield levels that account for 10-15% of the microsomal protein, as revealed by protein staining on electrophoretic gels. This high level of expression significantly improved our characterization of mutants, including direct measurements of Ca(2+) binding by the ATPase in the absence of ATP, and measurements of various enzyme functions in the presence of ATP or P(i). Mutational analysis distinguished two groups of amino acids within the transmembrane domain: The first group includes Glu771 (M5), Thr799 (M6), Asp800 (M6), and Glu908 (M8), whose individual mutations totally inhibit binding of the two Ca(2+) required for activation of one ATPase molecule. The second group includes Glu309 (M4) and Asn796 (M6), whose individual or combined mutations inhibit binding of only one and the same Ca(2+). The effects of mutations of these amino acids were interpreted in the light of recent information on the ATPase high-resolution structure, explaining the mechanism of Ca(2+) binding and catalytic activation in terms of two cooperative sites. The Glu771, Thr799, and Asp800 side chains contribute prominently to site 1, together with less prominent contributions by Asn768 and Glu908. The Glu309, Asn796, and Asp800 side chains, as well as the Ala305 (and possibly Val304 and Ile307) carbonyl oxygen, contribute to site 2. Sequential binding begins with Ca(2+) occupancy of site 1, followed by transition to a conformation (E') sensitive to Ca(2+) inhibition of enzyme phosphorylation by P(i), but still unable to utilize ATP. The E' conformation accepts the second Ca(2+) on site 2, producing then a conformation (E' ') which is able to utilize ATP. Mutations of residues (Asp813 and Asp818) in the M6/M7 loop reduce Ca(2+) affinity and catalytic turnover, suggesting a strong influence of this loop on the correct positioning of the M6 helix. Mutation of Asp351 (at the catalytic site within the cytosolic domain) produces total inhibition of ATP utilization and enzyme phosphorylation by P(i), without a significant effect on Ca(2+) binding.  相似文献   

2.
3.
Point mutants with alterations to amino acid residues Thr(247), Pro(248), Glu(340), Asp(813), Arg(819), and Arg(822) of sarcoplasmic reticulum Ca(2+)-ATPase were analyzed by transient kinetic measurements. In the Ca(2+)-ATPase crystal structures, most of these residues participate in a hydrogen-bonding network between the phosphorylation domain (domain P), the third transmembrane helix (M3), and the cytoplasmic loop connecting the sixth and the seventh transmembrane helices (L6-7). In several of the mutants, a pronounced phosphorylation "overshoot" was observed upon reaction of the Ca(2+)-bound enzyme with ATP, because of accumulation of dephosphoenzyme at steady state. Mutations of Glu(340) and its partners, Thr(247) and Arg(822), in the bonding network markedly slowed the Ca(2+) binding transition (E2 --> E1 --> Ca(2)E1) as well as Ca(2+) dissociation from Ca(2+) site II back toward the cytosol but did not affect the apparent affinity for vanadate. These mutations may have caused a slowing, in both directions, of the conformational change associated directly with Ca(2+) interaction at Ca(2+) site II. Because mutation of Asp(813) inhibited the Ca(2+) binding transition, but not Ca(2+) dissociation, and increased the apparent affinity for vanadate, the effect on the Ca(2+) binding transition seems in this case to be exerted by slowing the E2 --> E1 conformational change. Because the rate was not significantly enhanced by a 10-fold increase of the Ca(2+) concentration, the slowing is not the consequence of reduced affinity of any pre-binding site for Ca(2+). Furthermore, the mutations interfered in specific ways with the phosphoenzyme processing steps of the transport cycle; the transition from ADP-sensitive phosphoenzyme to ADP-insensitive phosphoenzyme (Ca(2)E1P --> E2P) was accelerated by mutations perturbing the interactions mediated by Glu(340) and Asp(813) and inhibited by mutation of Pro(248), and mutations of Thr(247) induced charge-specific changes of the rate of dephosphorylation of E2P.  相似文献   

4.
Clausen JD  Andersen JP 《Biochemistry》2003,42(9):2585-2594
Point mutants with alterations to Leu249, Lys252, Leu253, Asp254, and Glu255 in membrane segment M3, and Pro824, Lys825, and Glu826 in loop L6-7, of the sarcoplasmic reticulum Ca2+-ATPase were analyzed functionally by steady-state and transient kinetic methods. In mutants Leu249Ala, Lys252Glu, and Leu253Ala, the rate of Ca2+ dissociation from the cytoplasmically facing high-affinity Ca2+ sites was increased 4- to 7-fold relative to wild type, and in Leu249Ala and Lys252Glu the rate of Ca2+ binding was increased as well. Substitution of Lys252 with arginine, alanine, glutamine, or methionine affected Ca2+ interaction much less, indicating that the negative charge of the glutamate is particularly disturbing. These findings may be understood on the basis of the hypothesis that a water-accessible channel leading between membrane segments M1 and M3 in the thapsigargin-bound Ca2+-free structure [Toyoshima, C., and Nomura, H. (2002) Nature 418, 605-611] is closely related to the migration pathway for Ca2+. The effects of alanine mutations to Leu249 and Leu253 on Ca2+ dissociation may arise from destabilization of the hydrophobic wall lining the pathway. In mutant Lys252Glu, unfavorable interaction between the glutamate and L6-7 may open the pathway. In addition, Leu253Ala, and to a lesser extent some of the other mutations, reduced the rate of the E1PCa2 to E2P transition of the phosphoenzyme, enhanced the rate of dephosphorylation of E2P, and reduced the apparent affinity for vanadate, suggesting interference with the conformational change of the phosphoenzyme and the function of the catalytic site in E2 and E2P.  相似文献   

5.
In the absence of ATP the sarcoplasmic reticulum ATPase (SERCA) binds two Ca(2+) with high affinity. The two bound Ca(2+) rapidly undergo reverse dissociation upon addition of EGTA, but can be distinguished by isotopic exchange indicating fast exchange at a superficial site (site II), and retardation of exchange at a deeper site (site I) by occupancy of site II. Site II mutations that allow high affinity binding to site I, but only low affinity binding to site II, show that retardation of isotopic exchange requires higher Ca(2+) concentrations with the N796A mutant, and is not observed with the E309Q mutant even at millimolar Ca(2+). Fluoroaluminate forms a complex at the catalytic site yielding stable analogs of the phosphoenzyme intermediate, with properties similar to E2-P or E1-P.Ca(2). Mutational analysis indicates that Asp(351), Lys(352), Thr(353), Asp(703), Asn(706), Asp(707), Thr(625), and Lys(684) participate in stabilization of fluoroaluminate and Mg(2+) at the phosphorylation site. In the presence of fluoroaluminate and Ca(2+), ADP (or AMP-PCP) favors formation of a stable ADP.E1-P.Ca(2) analog. This produces strong occlusion of Ca(2+) bound to both sites (I and II), whereby dissociation occurs very slowly even following addition of EGTA. Occlusion by fluoraluminate and ADP is not observed with the E309Q mutant, suggesting a gating function of Glu(309) at the mouth of a binding cavity with a single path of entry. This phenomenon corresponds to the earliest step of the catalytic cycle following utilization of ATP. Experiments on limited proteolysis reveal that a long range conformational change, involving displacement of headpiece domains and transmembrane helices, plays a mechanistic role.  相似文献   

6.
Mutations Ile279 --> Ala, Ile283 --> Ala, Glu284 --> Ala, His285 --> Ala, His285 --> Lys, His285 --> Glu, Phe286 --> Ala, and His288 --> Ala in transmembrane helix M3 of the Na+,K(+)-ATPase were studied. Except for His285 --> Ala, these mutations were compatible with cell viability, permitting analysis of their effects on the overall and partial reactions of the Na+,K(+)-transport cycle. In Ile279 --> Ala and Ile283 --> Ala, the E1 form accumulated, whereas in His285 --> Lys and His285 --> Glu, E1P accumulated. Phe286 --> Ala displaced the conformational equilibria of dephosphoenzyme and phosphoenzyme in parallel in favor of E2 and E2P, respectively, and showed a unique enhancement of the E1P --> E2P transition rate. These effects suggest that M3 undergoes significant rearrangements in relation to E1-E2 and E1P-E2P conformational changes. Because the E1-E2 and E1P-E2P conformational equilibria were differentially affected by some of the mutations, the phosphorylated conformations seem to differ significantly from the dephospho forms in the M3 region. Mutation of His285 furthermore increased the Na(+)-activated ATPase activity in the absence of K+ ("Na(+)-ATPase activity"). Ile279 --> Ala, Ile283 --> Ala, and His288 --> Ala showed reduced Na+ affinity of the E1 form. The rate of Na(+)-activated phosphorylation from ATP was reduced in Ile279 --> Ala and Ile283 --> Ala, and these mutants showed evidence similar to Glu329 --> Gln of destabilization of the Na(+)-occluded state.  相似文献   

7.
The functional consequences of a series of point mutations in transmembrane segment M1 of sarcoplasmic reticulum Ca2+-ATPase were analyzed in steady-state and transient kinetic experiments examining the partial reaction steps involved in Ca2+ interaction and phosphoenzyme turnover. Arginine or leucine substitution of Glu51, Glu55, or Glu58, located in the N-terminal third of M1, did not affect these functions. Arginine or leucine substitution of Asp59, located right at the bend of M1 seen in the crystal structure of the thapsigargin-bound form, caused a 10-fold increase of the rate of Ca2+ dissociation toward the cytoplasmic side. Mutation of Leu60 to alanine or proline and of Val62 to alanine also enhanced Ca2+ dissociation, whereas an 11-fold reduction of the rate of Ca2+ dissociation was observed upon alanine substitution of Leu65, thus providing evidence for a relation of the middle part of M1 to a gating mechanism controlling the dissociation of occluded Ca2+ from its membranous binding sites. Moreover, phosphoenzyme processing was affected by some of the latter mutations, in particular leucine substitution of Asp59, and alanine substitution of Leu65 accelerated the transition to ADP-insensitive phosphoenzyme and blocked its dephosphorylation, thus demonstrating that this part of M1, besides being important in Ca2+ interaction, furthermore, is a critical element in the long range signaling between the transmembrane domain and the cytoplasmic catalytic site.  相似文献   

8.
Site-specific mutagenesis of the sarcoplasmic reticulum Ca(2+)-ATPase was used to investigate the functional roles of 18 amino acid residues located at or near the "hinge-domain," a highly conserved region of the cation-transporting ATPases. Mutation of Lys684 to arginine, alanine, histidine, and glutamine resulted in complete loss of calcium transport function and ATPase activity. For the Lys684----Ala, histidine, and glutamine mutants, this coincided with a loss of the ability to form a phosphorylated intermediate from ATP or Pi. The Lys684----Arg mutant retained the ability to phorphorylate from ATP with normal apparent affinity, demonstrating the importance of the positive charge. On the other hand, no phosphorylation was observed with Pi as substrate in this mutant. Examination of the partial reactions after phosphorylation from ATP in the Lys684----Arg mutant demonstrated a reduction of the rate of transformation of the ADP-sensitive phosphoenzyme intermediate (E1P) to the ADP-insensitive phosphoenzyme intermediate (E2P), which could account for the loss of transport function. Once accumulated, the E2P intermediate was able to decompose rapidly in the presence of K+ at neutral pH. These results may be interpreted in terms of a preferential destabilization of protein phosphate interactions in the E2P form of this mutant. The Asp703----Ala and Asn-Asp707----Ala-Ala mutants were completely inactive and unable to form phosphoenzyme intermediates from ATP or Pi. In these mutants as well as in the Lys684----Ala mutant, nucleotides were found to protect with normal affinity against intramolecular cross-linking induced with glutaraldehyde, indicating that the nucleotide binding site was intact. Mutation of Glu646, Glu647, Asp659, Asp660, Glu689, Asp695, Glu696, Glu715, and Glu732 to alanine did not affect the maximum rates of calcium transport and ATP hydrolysis or the apparent affinities for calcium and ATP. Mutation of the 2 highly conserved proline residues, Pro681 and Pro709, as well as Lys728, to alanine resulted in partially inhibited Ca(2+)-ATPase enzymes with retention of the ability to form a phosphoenzyme intermediate from ATP or Pi and with normal apparent affinities for ATP and calcium. The proline mutants retained the biphasic ATP concentration dependence of ATPase activity, characteristic of the wild-type, and therefore the partial inhibition of turnover could not be ascribed to a disruption of the low affinity modulatory ATP site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Nine single mutations were introduced to amino acid residues Thr441, Glu442, Lys515, Arg560, Cys561, and Leu562 located in the nucleotide-binding domain of sarcoplasmic reticulum Ca2+-ATPase, and the functional consequences were studied in a direct nucleotide binding assay, as well as by steady-state and transient kinetic measurements of the overall and partial reactions of the transport cycle. Some partial reaction steps were also examined in mutants with alterations to Phe487, Arg489, and Lys492. The results implicate all these residues, except Cys561, in high affinity nucleotide binding at the substrate site. Mutations Thr441 --> Ala, Glu442 --> Ala, and Leu562 --> Phe were more detrimental to MgATP binding than to ATP binding, thus pointing to a role for these residues in the binding of Mg2+ or to a difference between the interactions with MgATP and ATP. Subsequent catalytic steps were also selectively affected by the mutations, showing the involvement of the nucleotide-binding domain in these reactions. Mutation of Arg560 inhibited phosphoryl transfer but enhanced the E1PCa2 --> E2P conformational transition, whereas mutations Thr441 --> Ala, Glu442 --> Ala, Lys492 --> Leu, and Lys515 --> Ala inhibited the E1PCa2 --> E2P transition. Hydrolysis of the E2P phosphoenzyme intermediate was enhanced in Glu442 --> Ala, Lys492 --> Leu, Lys515 --> Ala, and Arg560 --> Glu. None of the mutations affected the low affinity activation by nucleotide of the phosphoenzyme-processing steps, indicating that modulatory nucleotide interacts differently from substrate nucleotide. Mutation Glu442 --> Ala greatly enhanced reaction of Lys515 with fluorescein isothiocyanate, indicating that the two residues form a salt link in the native protein.  相似文献   

10.
The functional importance of the length of the A/M1 linker (Glu(40)-Ser(48)) connecting the actuator domain and the first transmembrane helix of sarcoplasmic reticulum Ca(2+)-ATPase was explored by its elongation with glycine insertion at Pro(42)/Ala(43) and Gly(46)/Lys(47). Two or more glycine insertions at each site completely abolished ATPase activity. The isomerization of phosphoenzyme (EP) intermediate from the ADP-sensitive form (E1P) to the ADP-insensitive form (E2P) was markedly accelerated, but the decay of EP was completely blocked in these mutants. The E2P accumulated was therefore demonstrated to be E2PCa(2) possessing two occluded Ca(2+) ions at the transport sites, and the Ca(2+) deocclusion and release into lumen were blocked in the mutants. By contrast, the hydrolysis of the Ca(2+)-free form of E2P produced from P(i) without Ca(2+) was as rapid in the mutants as in the wild type. Analysis of resistance against trypsin and proteinase K revealed that the structure of E2PCa(2) accumulated is an intermediate state between E1PCa(2) and the Ca(2+)-released E2P state. Namely in E2PCa(2), the actuator domain is already largely rotated from its position in E1PCa(2) and associated with the phosphorylation domain as in the Ca(2+)-released E2P state; however, in E2PCa(2), the hydrophobic interactions among these domains and Leu(119)/Tyr(122) on the top of second transmembrane helix are not yet formed properly. This is consistent with our previous finding that these interactions at Tyr(122) are critical for formation of the Ca(2+)-released E2P structure. Results showed that the EP isomerization/Ca(2+)-release process consists of the following two steps: E1PCa(2) --> E2PCa(2) --> E2P + 2Ca(2+); and the intermediate state E2PCa(2) was identified for the first time. Results further indicated that the A/M1 linker with its appropriately short length, probably because of the strain imposed in E2PCa(2), is critical for the correct positioning and interactions of the actuator and phosphorylation domains to cause structural changes for the Ca(2+) deocclusion and release.  相似文献   

11.
The possible functional abnormalities in three different Darier disease-causing Ca(2+)-ATPase (SERCA2b) mutants, Ile(274) --> Val at the lumenal end of M3, Leu(321) --> Phe on the cytoplasmic part of M4, and Met(719) --> Ile in P domain, were explored, because they exhibited nearly normal expression and localization in COS-1 cells and the high ATPase and coupled Ca(2+) transport activities that were essentially identical (L321F) or slightly lower (I274V by approximately 35% and M719I by approximately 30%) as compared with those of the wild type. These mutations happened to be in Japanese patients found previously by us. Kinetic analyses revealed that each of the mutants possesses distinct types of abnormalities; M719I and L321F possess the 2-3-fold reduced affinity for cytoplasmic Ca(2+), whereas I274V possesses the normal high affinity. L321F exhibited also the remarkably reduced sensitivity to the feedback inhibition of the transport cycle by accumulated lumenal Ca(2+), as demonstrated with the effect of Ca(2+) ionophore on ATPase activity and more specifically with the effects of Ca(2+) (up to 50 mm) on the decay of phosphoenzyme intermediates. The results on I274V and M719I suggest that the physiological requirement for Ca(2+) homeostasis in keratinocytes to avoid haploinsufficiency is very strict, probably much more than considered previously. The insensitivity to lumenal Ca(2+) in L321F likely brings the lumenal Ca(2+) to an abnormally elevated level. The three mutants with their distinctively altered kinetic properties will thus likely cause different types of perturbation of intracellular Ca(2+) homeostasis, but nevertheless all types of perturbation result in Darier disease. It might be possible that the observed unique feature of L321F could possibly be associated with the specific symptoms in the pedigree with this mutation, neuropsychiatric disorder, and behavior problems. The results also provided further insight into the global nature of conformational changes of SERCAs for ATP-driven Ca(2+) transport.  相似文献   

12.
Sixteen residues in stalk segment S5 of the Ca(2+)-ATPase of sarcoplasmic reticulum were studied by site-directed mutagenesis. The rate of the Ca(2+) binding transition, determined at 0 degrees C, was enhanced relative to wild type in mutants Ile(743) --> Ala, Val(747) --> Ala, Glu(748) --> Ala, Glu(749) --> Ala, Met(757) --> Gly, and Gln(759) --> Ala and reduced in mutants Asp(737) --> Ala, Asp(738) --> Ala, Ala(752) --> Leu, and Tyr(754) --> Ala. In mutant Arg(762) --> Ile, the rate of the Ca(2+) binding transition was wild type like at 0 degrees C, whereas it was 3.5-fold reduced relative to wild type at 25 degrees C. The rate of dephosphorylation of the ADP-insensitive phosphoenzyme was increased conspicuously in mutants Ile(743) --> Ala and Tyr(754) --> Ala (close to 20-fold in the absence of K(+)) and increased to a lesser extent in Asn(739) --> Ala, Glu(749) --> Ala, Gly(750) --> Ala, Ala(752) --> Gly, Met(757) --> Gly, and Arg(762) --> Ile, whereas it was reduced in mutants Asp(737) --> Ala, Val(744) --> Gly, Val(744) --> Ala, Val(747) --> Ala, and Ala(752) --> Leu. In mutants Ile(743) --> Ala, Tyr(754) --> Ala, and Arg(762) --> Ile, the apparent affinities for vanadate were enhanced 23-, 30-, and 18-fold, respectively, relative to wild type. The rate of Ca(2+) dissociation was 11-fold increased in Gly(750) --> Ala and 2-fold reduced in Val(747) --> Ala. Mutants with alterations to Arg(751) either were not expressed at a significant level or were completely nonfunctional. The findings show that S5 plays a crucial role in mediating communication between the Ca(2+) binding pocket and the catalytic domain and that Arg(751) is important for both structural and functional integrity of the enzyme.  相似文献   

13.
The consequences of mutations Ile(265) --> Ala, Thr(267) --> Ala, Gly(271) --> Ala, and Gly(274) --> Ala for the partial reaction steps of the Na(+),K(+)-ATPase transport cycle were analyzed. The mutated residues are part of the long loop ("A-M3 linker") connecting the cytoplasmic A-domain with transmembrane segment M3. It was found that mutation Ile(265) --> Ala displaces the E(1)-E(2) and E(1)P-E(2)P equilibria in favor of E(1)/E(1)P, whereas mutations Thr(267) --> Ala, Gly(271) --> Ala, and Gly(274) --> Ala displace these conformational equilibria in favor of E(2)/E(2)P. The mutations affect both the rearrangement of the cytoplasmic domains (seen by changes in phosphoenzyme properties and apparent ATP/vanadate affinities) and the membrane sector (indicated by change in K(+)/Rb(+) deocclusion rate). Destabilization of E(2)/E(2)P in Ile(265) --> Ala, as well as a direct effect on the intrinsic affinity of the E(2) form for vanadate, may be explained on the basis of the E(2) crystal structures of the Ca(2+)-ATPase, showing interaction of the equivalent isoleucine with conserved residues near the catalytic region of the P-domain. The rate of phosphorylation from ATP was unaffected in Ile(265) --> Ala, indicating a lack of interference with the catalytic function in E(1)/E(1)P. The effects of mutations Thr(267) --> Ala, Gly(271) --> Ala, and Gly(274) --> Ala provide the first evidence in the literature of a relative stabilization of E(2)/E(2)P resulting from perturbation of the A-M3 linker region. These mutations may lead to increased strain of the A-M3 linker in E(1)/E(1)P, increased stability of the A3 helix of the A-M3 linker in E(2)/E(2)P, and/or a change of the orientation of the A3 helix, facilitating its interaction with the P-domain.  相似文献   

14.
Use of the nonphosphorylating beta,gamma-bidentate chromium(III) complex of ATP to induce a stable Ca(2+)-occluded form of the sarcoplasmic reticulum Ca(2+)-ATPase was combined with molecular sieve high performance liquid chromatography of detergent-solubilized protein to examine the ability of the Ca(2+)-ATPase mutants Gly-233-->Glu, Gly-233-->Val, Glu-309-->Gln, Gly-310-->Pro, Pro-312-->Ala, Ile-315-->Arg, Leu-319-->Arg, Asp-703-->Ala, Gly-770-->Ala, Glu-771-->Gln, Asp-800-->Asn, and Gly-801-->Val to occlude Ca2+. This provided a new approach to identification of amino acid residues involved in Ca2+ binding and in the closure of the gates to the Ca2+ binding pocket of the Ca(2+)-ATPase. The "phosphorylation-negative" mutant Asp-703-->Ala and mutants of ADP-sensitive phosphoenzyme intermediate type were fully capable of occluding Ca2+, as was the mutant Gly-770-->Ala. Mutants in which carboxylic acid-containing residues in the putative transmembrane segments had been substituted ("Ca(2+)-site mutants") and mutant Gly-801-->Val were unable to occlude either of the two calcium ions. In addition, the mutant Gly-310-->Pro, previously classified as ADP-insensitive phosphoenzyme intermediate type (Andersen, J.P., Vilsen, B., and MacLennan, D.H. (1992). J. Biol. Chem. 267, 2767-2774), was unable to occlude Ca2+, even though Ca(2+)-activated phosphorylation from MgATP took place in this mutant.  相似文献   

15.
Two recent X-ray structures have tremendously increased the understanding of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and related proteins. Both structures show the fifth transmembrane span (M5) as a single continuous alpha-helix. The inherent structural and dynamic features of this span (Lys758-Glu785) were studied in isolation in sodium dodecyl sulfate (SDS) micelles using liquid-state nuclear magnetic resonance (NMR) spectroscopy. We find that a flexible region (Ile765-Asn768) is interrupting the alpha-helix. The location of the flexible region near the Ca(2+) binding residues Asn768 and Glu771 suggests that together with a similar region in M6 it has a hinge function that may be important for cooperative Ca(2+) binding and occlusion.  相似文献   

16.
The effects of thapsigargin (TG), a specific inhibitor of intracellular Ca(2+)-ATPases, were studied on vesicular fragments of sarcoplasmic reticulum (SR) membranes. Inhibition of Ca2+ transport and ATPase activity was observed following stoichiometric titration of the membrane bound enzyme with TG. When Ca2+ binding to the enzyme was measured in the absence of ATP, or when one cycle of Ca(2+)-dependent enzyme phosphorylation by ATP was measured under conditions preventing turnover, protection against TG by Ca2+ was observed. The protection by Ca2+ disappeared if the phosphoenzyme was allowed to undergo turnover, indicating that a state reactive to TG is produced during enzyme turnover, whereby a dead end complex with TG is formed. Enzyme phosphorylation with Pi, ATP synthesis, and Ca2+ efflux by the ATPase in its reverse cycling were also inhibited by TG. However, under selected conditions (millimolar Ca2+ in the lumen of the vesicles, and 20% dimethyl sulfoxide in the medium) TG permitted very low rates of enzyme phosphorylation with Pi and ATP synthesis in the presence of ADP. It is concluded that the mechanism of ATPase inhibition by TG involves mutual exclusion of TG and high affinity binding of external Ca2+, as well as strong (but not total) inhibition of other partial reactions of the ATPase cycle. TG reacts selectively with the state acquired by the ATPase in the absence of Ca2+. This state is obtained either by enzyme exposure to EGTA, or by utilization of ATP and consequent displacement of bound Ca2+ during catalytic turnover.  相似文献   

17.
Clotrimazole (CLT) is an antimycotic imidazole derivative that is known to inhibit cytochrome P-450, ergosterol biosynthesis and proliferation of cells in culture, and to interfere with cellular Ca(2+) homeostasis. We found that CLT inhibits the Ca(2+)-ATPase of rabbit fast-twitch skeletal muscle (SERCA1), and we characterized in detail the effect of CLT on this calcium transport ATPase. We used biochemical methods for characterization of the ATPase and its partial reactions, and we also performed measurements of charge movements following adsorption of sarcoplasmic reticulum vesicles containing the ATPase onto a gold-supported biomimetic membrane. CLT inhibits Ca(2+)-ATPase and Ca(2+) transport with a K(I) of 35 mum. Ca(2+) binding in the absence of ATP and phosphoenzyme formation by the utilization of ATP in the presence of Ca(2+) are also inhibited within the same CLT concentration range. On the other hand, phosphoenzyme formation by utilization of P(i) in the absence of Ca(2+) is only minimally inhibited. It is concluded that CLT inhibits primarily Ca(2+) binding and, consequently, the Ca(2+)-dependent reactions of the SERCA cycle. It is suggested that CLT resides within the membrane-bound region of the transport ATPase, thereby interfering with binding and the conformational effects of the activating cation.  相似文献   

18.
ATP plays dual roles in the reaction cycle of the sarcoplasmic reticulum Ca2+-ATPase by acting as the phosphorylating substrate as well as in nonphosphorylating (modulatory) modes accelerating conformational transitions of the enzyme cycle. Here we have examined the involvement of actuator domain residues Arg174, Ile188, Lys204, and Lys205 by mutagenesis. Alanine mutations to these residues had little effect on the interaction of the Ca2E1 state with nucleotide or on the HnE 2 to Ca2E1 transition of the dephosphoenzyme. The phosphoenzyme processing steps, Ca2E1P to E2P and E2P dephosphorylation, and their stimulation by MgATP/ATP were markedly affected by mutations to Arg174, Ile188, and Lys205. Replacement of Ile188 with alanine abolished nucleotide modulation of dephosphorylation but not the modulation of the Ca2E1P to E2P transition. Mutation to Arg174 interfered with nucleotide modulation of either of the phosphoenzyme processing steps, indicating a significant overlap between the modulatory nucleotide-binding sites involved. Mutation to Lys205 enhanced the rates of the phosphoenzyme processing steps in the absence of nucleotide and disrupted the nucleotide modulation of the Ca2E1P to E2P transition. Remarkably, the mutants with alterations to Lys205 showed an anomalous inhibition by ATP of the dephosphorylation, and in the alanine mutant the affinity for the inhibition by ATP was indistinguishable from that for stimulation by ATP of the wild type. Hence, the actuator domain is an important player in the function of ATP as modulator of phosphoenzyme processing, with Arg174, Ile188, and Lys205 all being critically involved, although in different ways. The data support a variable site model for the modulatory effects with the nucleotide binding somewhat differently in each of the conformational states occurring during the transport cycle.  相似文献   

19.
The intrinsic activity of coagulation factor VIIa (FVIIa) is dependent on Ca(2+) binding to a loop (residues 210-220) in the protease domain. Structural analysis revealed that Ca(2+) may enhance the activity by attenuating electrostatic repulsion of Glu(296) and/or by facilitating interactions between the loop and Lys(161) in the N-terminal tail. In support of the first mechanism, the mutations E296V and D212N resulted in similar, about 2-fold, enhancements of the amidolytic activity. Moreover, mutation of the Lys(161)-interactive residue Asp(217) or Asp(219) to Ala reduced the amidolytic activity by 40-50%, whereas the K161A mutation resulted in 80% reduction. Hence one of these Asp residues in the Ca(2+)-binding loop appears to suffice for some residual interaction with Lys(161), whereas the more severe effect upon replacement of Lys(161) is due to abrogation of the interaction with the N-terminal tail. However, Ca(2+) attenuation of the repulsion between Asp(212) and Glu(296) keeps the activity above that of apoFVIIa. Altogether, our data suggest that repulsion involving Asp(212) in the Ca(2+)-binding loop suppresses FVIIa activity and that optimal activity requires a favorable interaction between the Ca(2+)-binding loop and the N-terminal tail. Crystal structures of tissue factor-bound FVIIa(D212N) and FVIIa(V158D/E296V/M298Q) revealed altered hydrogen bond networks, resembling those in factor Xa and thrombin, after introduction of the D212N and E296V mutations plausibly responsible for tethering the N-terminal tail to the activation domain. The charge repulsion between the Ca(2+)-binding loop and the activation domain appeared to be either relieved by charge removal and new hydrogen bonds (D212N) or abolished (E296V). We propose that Ca(2+) stimulates the intrinsic FVIIa activity by a combination of charge neutralization and loop stabilization.  相似文献   

20.
The Ca(2+)-ATPase of sarcoplasmic reticulum reacts with N-cyclohexyl-N'-(4-dimethylamino-1-naphthyl) carbodiimide (NCD4) yielding a fluorescence labeling that interferes with calcium binding to activating and transport sites of the enzyme and, thereby, with Ca(2+)-dependent ATPase activity. On the other hand, the catalytic site does not appear altered, as revealed by the normal occurrence of Ca(2+)-independent reactions, such as enzyme phosphorylation with Pi in the reverse direction of the catalytic cycle. This reaction is not inhibited by Ca2+ in the labeled enzyme, while it is inhibited in the native enzyme. The NCD4 reaction which is involved in functional inactivation occurs in the membrane-bound portion of the ATPase. Sodium dodecyl sulfate solubilization of hydrophobic peptides, electrophoresis, and microsequencing of transblotted electrophoretic bands revealed that the fluorescent NCD4 label resides in a segment of tryptic fragment A1, intervening between Glu231 and Glu309. This segment includes two transmembrane helices, and does not include the domain involved in the phosphoryl transfer reaction during catalytic activity. This specific labeling does not occur when the NCD4 derivatization procedure is carried out in the presence of Ca2+ concentrations that also prevent functional inactivation. Fluorescence characterization by steady state and intensity decay measurements shows only negligible energy transfer between the NCD4 label and fluorescein isothiocyanate label of Lys515, indicating that the NCD4 label is unlikely to reside within the extramembranous region of the ATPase. On the other hand, the fluorescence emission of intrinsic tryptophan residues clustered within or near the transmembrane region of the ATPase, is distinctly affected by NCD4 label specifically bound to the ATPase, and NCD4 label nonspecifically bound to the sarcoplasmic reticulum membrane. The combined sequencing and spectroscopic observations indicate that derivatization with NCD4 induces a perturbation within or near the transmembrane region of the ATPase (at a relatively large distance from the catalytic site) that interferes with specific calcium binding. This is in agreement with experiments (Clarke et al., 1989) demonstrating that mutations of any of six amino acids within the transmembrane region of the ATPase interfere with enzyme activation by Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号