首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Beta-DL-Thiaproline (thiazolidine 2-carboxylic acid) is a good substrate for hog kidney D-aminoacid oxidase. Unlike other known substrates, beta-thiaproline is better oxidized at neutral than at alkaline pH. At neutral pH beta-thiaproline is a better substrate than D-proline. Beta-DL-thiaproline is fully oxidized to delta 2 thiazoline 2-carboxylic acid, which in acidic medium is hydrolyzed to N-oxalylcysteamine. These results may support the suggestion that beta-thiaproline, arising in vivo from cysteamine and glyoxylate, can be a possible physiological substrate for D-aminoacid oxidase.  相似文献   

2.
The redox properties of D-amino acid oxidase (D-amino-acid: O2 oxidoreductase (deaminating) EC1.4.3.3) have been measured at 18 degrees C in 20 mM sodium pyrophosphate, pH 8.5, and in 50 mM sodium phosphate, pH 7.0. Over the entire pH range, 2 eq are required per mol of FAD in D-amino acid oxidase for reduction to the anion dihydroquinone. The red anion semiquinone is thermodynamically stable as indicated by the separation of the electron potentials and the quantitative formation of the semiquinone species. The first electron potential is pH-independent at -0.098 +/- 0.004 V versus SHE while the second electron potential is pH-dependent exhibiting a 0.060 mV/pH unit slope. The redox behavior of D-amino acid oxidase is consistent with that observed for other oxidase enzymes. On the other hand, the behavior of the benzoate-bound enzyme under the same conditions is in marked contrast to the thermodynamics of free D-amino acid oxidase. Spectroelectrochemical experiments performed on inhibitor-bound (benzoate) D-amino acid oxidase show that benzoate binding regulates the redox properties of the enzyme, causing the energy levels of the benzoate-bound enzyme to be consistent with the two-electron transfer catalytic function of the enzyme. Our data are consistent with benzoate binding at the enzyme active site destroying the inductive effect of the positively charged arginine residue. Others have postulated that this positively charged group near the N(1)C(2) = O position of the flavin controls the enzyme properties. The data presented here are the clearest examples yet of enzyme regulation by substrate which may be a general characteristic of all flavoprotein oxidases.  相似文献   

3.
A procedure has been developed for the partial purification from Chlorella vulgaris of an enzyme which catalyzes the formation of HCN from D-histidine when supplemented with peroxidase of a metal with redox properties. Some properties of the enzyme are described. Evidence is presented that the catalytic activity for HCN formation is associated with a capacity for catalyzing the oxidation of a wide variety of D-amino acids. With D-leucine, the best substrate for O2 consumption, 1 mol of ammonia is formed for half a mol of O2 consumed in the presence of catalase. An inactive apoenzyme can be obtained by acid ammonium sulfate precipitation, and reactivated by added FAD. On the basis of these criteria, the Chlorella enzyme can be classified as a D-amino acid oxidase (EC 1.4.3.3). Kidney D-amino acid oxidase and snake venom L-amino acid oxidase, which likewise form HCN from histidine on supplementation with peroxidase, have been compared with the Chlorella D-amino acid oxidase. The capacity of these enzymes for causing HCN formation from histidine is about proportional to their ability to catalyze the oxidation of histidine.  相似文献   

4.
Isolation and characterization of glycolic acid oxidase from human liver.   总被引:4,自引:0,他引:4  
Glycolic acid oxidase has been isolated from human liver and purified over 3000-fold to a specific activity of 123 U/mg protein by a 5-step procedure. The preparation gave a single protein band on polyacrylamide gel electrophoresis, required flavin mononucleotide for catalytic activity, had a pH optimum between 8.2-8.8 depending on the substrate, and had a molecular weight of 105 000. The enzyme has a broad specificity towards alpha-hydroxy acids. Glycolate (Km = 3.3 . 10(-4) M) was the most effective substrate. The enzyme was stable for several months when stored as an (NH4)2SO4 precipitate or in 15% glycerol. Since glycolate inhibits the oxidation of glyoxylate to oxalate by glycolic acid oxidase, it is suggested that glycolic acid oxidase contributes to the synthesis of oxalate in vivo when the glyoxylate concentration is high and the glycolate concentration is low.  相似文献   

5.
The exchange of bound FAD for free FAD was studied with D-amino acid oxidase (D-amino acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3) and beta-D-glucose oxidase (beta-D-glucose:oxygen 1-oxidoreductase, EC 1.1.3.4). For a simple measurement of the reaction rate, equimolar amounts of the enzyme and [14C]FAD were mixed. The exchange occurred very rapidly in the holoenzyme of D-amino acid oxidase at 25 degrees C, pH 8.3 (half life of the exchange: 0.8 min), but slowly in the presence of the substrate or a competitive inhibitor, benzoate. It also occurred slowly in the purple complex of D-amino acid oxidase. In the case of beta-D-glucose oxidase, however, the exchange occurred very slowly at 25 degrees C, pH 5.6, regardless of the presence of the substrate or p-chloromercuribenzoate. On the basis of these findings, the turnover of the coenzymes of flavin enzymes in mammals is discussed.  相似文献   

6.
Thiazoline-2-carboxylate was chemically synthesized and shown to be identical in all respects to the product formed in a D-amino acid oxidase catalyzed reaction involving cysteamine and glyoxylate. Both the chemically synthesized and enzymically prepared thiazoline-2-carboxylate are effective inhibitors of dopamine β-hydroxylase but they do not appreciably affect the activity of several other metalloenzymes that require copper, iron or zinc. The inhibition of dopamine β-hydroxylase is competitive with respect to the reactant ascorbic acid and uncompetitive with respect to tyramine. The possible physiological significance of this inhibition is briefly considered.  相似文献   

7.
The formation of an initial enzyme-substrate complex of D-amino acid oxidase (D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3) and its substrate, D-alpha-aminobutyric acid, was studied kinetically at lower temperature and pH than their optima. The time course of the absorbance change at 516 nm in an anaerobic reaction was not exponential, but biphasic. The ratio of the rapidly reacting component to the slowly reacting one was decreased upon lowering of the temperature. The reaction rate of the rapidly reacting component depended on substrate concentration and gave a linear Arrhenius plot in the temperature range from -10 to +15 degrees C. The reaction rate of the slowly reacting component also depended on both substrate concentration and temperature. The rapidly reacting and slowly reacting components could be assigned to the substrate binding of the dimer and monomer, respectively, of this enzyme.  相似文献   

8.
Rat kidney L-α-hydroxy acid oxidase (EC 1.1.3.15) catalyzes a rapid O2 uptake at pH 7.5 when both glyoxylate and one of a number of various thiols are present. Thiols which are reactive in this system include: ethanethiol, 1-propanethiol, 2-mercaptoethanol, N-acetylcysteamine, propane-1,3-dithiol, dihydrolipoic acid, Coenzyme A, dephospho Coenzyme A, phosphopantetheine, and pantetheine. Notable physiological thiols that are not very reactive include: glutathione, L-cysteine and cysteamine. Presumably the substrate is a thiol-glyoxylate adduct because both the thiol and glyoxylate must be present in order to obtain a rapid enzyme-catalyzed reaction and oxalyl thioesters are the products of the enzymic reactions. Kinetic studies indicate that some of these adducts are better substrates than any others presently known. These and other results imply that a thiol-glyoxylate adduct may be the physiological substrate for L-α-hydroxy acid oxidase. A possible function for this reaction in metabolic control, mediated either by the oxalyl thioester or by oxalate, is briefly considered.  相似文献   

9.
D-Amino acid oxidase (EC 1.4.3.3) activity in homogenates of Neurospora crassa strain SY7A was found to sediment with the mitochondrial fraction. Digitonin fractionation studies on purified mitochondria have indicated a matrix localization of the enzyme. Additionally, a peroxidase (EC 1.11.1.7) activity, which may remove hydrogen peroxide formed as a product of D-amino acid oxidation, was also found in the mitochondrial matrix. Partial purification (20- to 30-fold) of the mitochondrial D-amino acid oxidase was achieved. The enzyme exhibited a pH optimum between 9.0 and 9.2, temperature optimum between 20 and 30 degrees C, and a molecular weight of 118 000 +/- 6000 as determined by gel electrophoresis and 125 000 as determined by gel chromatography.  相似文献   

10.
Computer-based approaches identified three distinct human 2-hydroxy acid oxidase genes, HAOX1, HAOX2, and HAOX3, that encode proteins with significant sequence similarity to plant glycolate oxidase, a prototypical 2-hydroxy acid oxidase. The products of these genes are targeted to peroxisomes and have 2-hydroxy acid oxidase activities. Each gene displays a distinct tissue-specific pattern of expression, and each enzyme exhibits distinct substrate preferences. HAOX1 is expressed primarily in liver and pancreas and is most active on the two-carbon substrate, glycolate, but is also active on 2-hydroxy fatty acids. HAOX2 is expressed predominantly in liver and kidney and displays highest activity toward 2-hydroxypalmitate. HAOX3 expression was detected only in pancreas, and this enzyme displayed a preference for the medium chain substrate 2-hydroxyoctanoate. These results indicate that all three human 2-hydroxy acid oxidases are involved in the oxidation of 2-hydroxy fatty acids and may also contribute to the general pathway of fatty acid alpha-oxidation. Primary hyperoxaluria type 1 (PH1) is caused by defects in peroxisomal alanine-glyoxylate aminotransferase, the enzyme that normally eliminates intraperoxisomal glyoxylate. The presence of HAOX1 in liver and kidney peroxisomes and the ability of HAOX1 to oxidize glyoxylate to oxalate implicate HAOX1 as a mediator of PH1 pathophysiology.  相似文献   

11.
The enzyme concentration dependence of spectrophotometric titrations of hog kidney D-amino acid oxidase [EC 1.4.3.3] with p-aminobenzoate was studied. The monomer-dimer equilibrium constant of the oxidized holoenzyme at 25 degrees C was estimated to be 7 X 10(5)M-1 at pH 7.5 and 4X 10(6)M-1 at pH 8.3. The energetics of subunit association are discussed.  相似文献   

12.
D-amino acid oxidase of carp (Cyprinus carpio) hepatopancreas was overexpressed in Escherichia coli cells and purified to homogeneity for the first time in animal tissues other than pig kidney. The purified preparation had a specific activity of 293 units mg(-1) protein toward D-alanine as a substrate. It showed the highest activity toward D-alanine with a low Km of 0.23 mM and a high kcat of 190 s(-1) compared to 10 s(-1) of the pig kidney enzyme. Nonpolar and polar uncharged D-amino acids were preferable substrates to negatively or positively charged amino acids. The enzyme exhibited better thermal and pH stabilities than several yeast counterparts or the pig kidney enzyme. Secondary structure topology consisted of 11 alpha-helices and 17 beta-strands that differed slightly from pig kidney and Rhodotorula gracilis enzymes. A three-dimensional model of the carp enzyme constructed from a deduced amino acid sequence resembled that of pig kidney D-amino acid oxidase but with a shorter active site loop and a longer C-terminal loop. Judging from these characteristics, carp D-amino acid oxidase is close to the pig kidney enzyme structurally, but analogous to the R. gracilis enzyme enzymatically in turnover rate and pH and temperature stabilities.  相似文献   

13.
P Marcotte  C Walsh 《Biochemistry》1976,15(14):3070-3076
Proparglyglycine (2-amino-4-pentynoate) and vinylglycine (2-amino-3-butenoate) have been examined as substrates and possible inactivators of two flavo enzymes, D-amino acid oxidase from pig kidney and L-amino acid oxidase from Crotalus adamanteus venom. Vinylglycine is rapidly oxidized by both enzymes but only L-amino acid oxidase is inactivated under assay conditions. The loss of activity probably involves covalent modification of an active site residue rather than the flavin adenine dinucleotide coenzyme and occurs once every 20000 turnovers. We have confirmed the recent observation (Horiike, K, Hishina, Y., Miyake, Y., and Yamano, T. (1975) J, Biochem. (Tokyo), 78, 57) that D-proparglglycine is oxidized with a time-dependent loss of activity by D-amino acid oxidase and have examined some mechanistic aspects of this inactivation, The extent of residual oxidase activity, insensitive to further inactivation, is about 2%, at which point 1.7 labels/subunit have been introduced with propargly[2-14C]glycine as substrate. L-Proparglyclycine is a substrate but not an inactivator of L-amino acid oxidase and the product ahat accumulats in the nonnucleophilic N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffer is acetopyruvate. In the presence of butylamine HCl, a species with lambdaman 317 nm (epsilon = 15 000) accumulates that may be a conjugated eneamine adduct. The same species accumulates from D-amino acid oxidase oxidation of D-propargylglycine prior to inactivation; the inactivated apo D-amino acid oxidase has a new peak at 317 nm that is probably a similar eneamine. A likely inactivating species is 2-keto-3,4-pentadienoate arising from facile rearrangement of the expected initial product 2-keto 4 pentynoate. Vinylglycine and proparglyglycine show inactivation specificity, then, for L-and D-amino acid oxidase, respectively.  相似文献   

14.
The 1,646 cm-1 band in a resonance Raman spectrum obtained with excitation in the charge-transfer band of the complex of oxidized D-amino acid oxidase (DAO) with the oxidation product of D-lysine catalyzed by DAO shifted to 1,617 cm-1 upon 2-13C substitution of lysine. Thus, the band is assigned to a C(2) = C(3) stretching mode of the enamine, delta 2-piperideine-2-carboxylate (En). In the enzyme-free solution, the product is preferentially in the cyclic imine form, delta 1-piperideine-2-carboxylate (Im). Thus, DAO has a higher affinity for the enamine form than for the imine form. The pH effects on the affinity of DAO for the product and on the molar absorption coefficient at 630 nm in the charge-transfer band, suggest that the enzyme-bound product is En in the neutral form at the N atom. As the value of observed rate constant between DAO and the product was constant at high product concentrations, the binding mechanism can be explained as follows; E + Im in equilibrium with EIm in equilibrium with EEN: rapid bimolecular and slow unimolecular processes. The isomerization of the imine form to the enamine form proceeds in the slow process. The low affinity of Im for DAO may be due to a steric repulsion of the hydrogen atoms of Im at C(3) in the active site. The hydrogen atoms of a substrate D-amino acid at C(3), which correspond to the C(3) hydrogens of Im, may act repulsively in the active site and the repulsive energy may induce strain or distortion of the substrate and the enzyme, accelerating the catalytic reaction.  相似文献   

15.
Picolinate binds to a reduced form of D-amino acid oxidase, and the complex formed has a broad absorption band around 600 nm as in the case of the purple intermediate of the enzyme with a substrate. The dissociation constant at 25 degrees C was 35 microns at pH 7.0. The pH dependence (pH 8.3-pH 6.4) of the dissociation constant indicates that one proton is associated with the complex formation, and picolinate protonated at the N atom binds to the reduced enzyme. Resonance Raman spectra of the complex support that picolinate in the complex is a cationic form protonated at the N atom. Nicotinate also binds to the reduced enzyme, but isonicotinate does not.  相似文献   

16.
D-amino acid oxidase (DAO) is of considerable practical importance, such as bioconversion and enzymatic assay. In this study, we succeeded in obtaining a thermostable mutant DAO from porcine kidney by a single amino acid substitution. This mutant enzyme, F42C, was stable at 55 degrees C, while the wild-type enzyme was stable only up to 45 degrees C. The Km values of F42C for D-amino acids was about half of those of the wild-type enzyme. This mutant DAO with improved stability and affinity for its substrates is advantageous for the determination of D-amino acids.  相似文献   

17.
Optimal conditions with respect to pH, concentration of glutaraldehyde and enzyme, and order of addition of enzyme and crosslinking reagent were established for the immobilization of hog kidney D-amino acid oxidase to an attapulgite support. Yields of 40 to 70% were generally attained although when low concentrations of enzyme were used yields were consistently greater than 100%. It is suggested that this is due to a dimer leads to monomer shift at low protein concentrations. The stability of soluble D-amino acid oxidase was dependent on the buffer in which it was stored (pyrophosphate-phosphate greater than borate greater than Tris). Stability of immobilized enzyme was less than soluble in pyrophosphate-phosphate buffer, but storage in the presence of FAD improved stability. In addition, treatment of stored, immobilized enzyme with FAD before assay restored some of its activity. The immobilized D-amino acid oxidase was less stable to heat (50 degrees C) than the soluble enzyme from pH 6 to 8 but was more stable above and below these values. Apparent Km values for D-alanine, D-valine, and D-tryptophan decreased for the immobilized enzyme compared to the soluble.  相似文献   

18.
Trigonelline, i.e., N-methylnicotinate, which has a zwitterionic structure similar to a substrate D-amino acid, is a useful active site probe for D-amino acid oxidase (DAO). The affinity of trigonelline for DAO in the deprotonated state at the enzyme bound FAD 3-imino group is higher than in the neutral state, contrary to in the case of benzoate, which is a competitive inhibitor and is in a monoanionic form. The time course of the absorbance change was monitored for the binding of DAO with trigonelline by means of a stopped-flow technique. The reaction, on monitoring at 507 nm, was found to be biphasic at pH 8.3, with fast and slow phases. The dissociation of the 3-imino proton of the enzyme bound FAD was observed in the same time course as the slow phase. These results suggest that the positive charge of trigonelline exists near the 3-imino group of the enzyme bound FAD and interacts repulsively with the proton of the 3-imino group. The absorption spectra of the DAO-trigonelline complex at various pHs also support this hypothesis. In the catalysis of DAO, a similar mechanism may be involved, that is, the positive charge of a D-amino acid may interact repulsively with the 3-imino proton of the enzyme bound FAD, and this interaction may be important for the catalysis.  相似文献   

19.
V Massey  S Ghisla  K Yagi 《Biochemistry》1986,25(24):8103-8112
6-Thiocyanatoflavins have been found to be susceptible to nucleophilic displacement reactions with sulfite and thiols, yielding respectively the 6-S-SO3--flavin and 6-mercaptoflavin, with rate constants at pH 7.0, 20 degrees C, of 55 M-1 min-1 for sulfite and 1000 M-1 min-1 for dithiothreitol. The 6-SCN-flavin binds tightly to riboflavin-binding protein as the riboflavin derivative, to apoflavodoxin, apo-lactate oxidase, and apo-Old Yellow Enzyme as the FMN derivative, and to apo-D-amino acid oxidase as the FAD derivative. The riboflavin-binding protein derivative is inaccessible to dithiothreitol attack, and the lactate oxidase and D-amino acid oxidase derivatives show only limited accessibility. However, the flavodoxin and Old Yellow Enzyme derivatives react readily with dithiothreitol, indicating that the flavin 6-position is exposed to solvent in these proteins. The lactate oxidase and D-amino acid oxidase derivatives convert slowly but spontaneously to the 6-mercaptoflavin enzyme forms in the absence of any added thiol, indicating the presence of a thiol residue in the flavin binding site of these proteins. The reaction rates have been investigated of 6-mercaptoflavins with iodoacetamide, N-ethylmaleimide, methyl methanethiosulfonate, H2O2, and m-chloroperbenzoate, in both the free and protein-bound state. The results confirm the conclusions drawn from the studies with 6-SCN-flavins described above and from 6-N3-flavins [Massey, V., Ghisla, S., & Yagi, K. (1986) Biochemistry (preceding paper in this issue)]. The spectral properties of the protein-bound 6-mercaptoflavin vary widely among the five proteins studied and show stabilization of the neutral flavin with flavodoxin and riboflavin-binding protein and of the anionic species by Old Yellow Enzyme, lactate oxidase, and D-amino acid oxidase. In the case of the latter two enzymes, the stabilization appears to be due to interaction of the negatively charged flavin with a positively charged protein residue located near the flavin pyrimidine ring. This positively charged residue appears to be responsible also for the strong stabilization of the two-electron oxidation state of the mercaptoflavin as the 6-S-oxide. With the other flavoproteins studied this oxidation level is stabilized as the 6-sulfenic acid or 6-sulfenate.  相似文献   

20.
1. D-amino acid oxidase is inactivated by reaction with a low molar excess of dansyl chloride at pH 6.6, with complete inactivation accompanied by incorporation of 1.7 dansyl residues per mol of enzyme-bound flavin. The presence of benzoate, a potent competitive inhibitor, protects substantially against inactivation. Evidence is presented that the inactivation is due to dansylation of an active site histidine residue. Reactivation may be obtained by incubation with hydroxylamine. Diethylpyrocarbonate also inactivates the enzyme and modifies the labeling pattern with dansyl chloride. 2. Butanedione in the presence of borate reacts rapidly to inactivate D-amino acid oxidase. Reactivation is obtained spontaneously on removal of borate, implicating reaction of butanedione with an active site arginine residue. 3. Fluorodinitrobenzene appears to behave as an active site-directed reagent when mixed with D-amino acid oxidase at pH 7.4. Complete inactivation is obtained with incorporation of 2.0 dinitrophenyl residues per mol of enzyme-bound flavin. Again benzoate protects against inactivation; only one dinitrophenyl residue is incorporated in the presence of benzoate. The active site residue attacked by fluorodinitrobenzene has been identified as tyrosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号