首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
At mitosis the nuclear envelope (NE) is disassembled to allow chromosome separation. In telophase it is reassembled as the chromosomes decondense. Cell-free extracts of Xenopus eggs have been used extensively to study assembly of the NE and the nuclear pore complexes (NPCs), providing several models for the steps involved. The NE is a surface structure which in cell-free extracts is easily exposed. It is appropriate, therefore, to use a surface imaging technique to study NE dynamics. Field emission in-lens scanning electron microscopy (FEISEM) provides the opportunity to image surfaces, directly, and to visualise details of structures such as the NPC. Here we show the feasibility and value of FEISEM to study the steps of NE formation. Nuclei have been assembled in vitro and fixed at different time points during assembly, followed by conductive staining, platinum coating, and visualisation by FEISEM. Changes on the nuclear surface with time are shown. Details of the surface of chromatin and the cytoplasmic face of NPC structure are demonstrated without the need to isolate the structures from the nucleus.  相似文献   

2.
This protocol details methods for the isolation of yeast nuclei from budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), immuno-gold labeling of proteins and visualization by field emission scanning electron microscopy (FESEM). This involves the removal of the yeast cell wall and isolation of the nucleus from within, followed by subsequent processing for high-resolution microscopy. The nuclear isolation step can be performed in two ways: enzymatic treatment of yeast cells to rupture the cell wall and generate spheroplasts (cells that have partially lost their cell wall and their characteristic shape), followed by isolation of the nuclei by centrifugation or homogenization; and whole cell freezing followed by manual cell rupture and centrifugation. This protocol has been optimized for the visualization of the yeast nuclear envelope (NE), nuclear pore complexes (NPCs) and associated cyto-skeletal structures. Samples once processed for FESEM can be stored under vacuum for weeks, allowing considerable time for image acquisition.  相似文献   

3.
At mitosis the nuclear envelope (NE) is disassembled to allow chromosome separation. In telophase it is reassembled as the chromosomes decondense. Cell-free extracts of Xenopus eggs have been used extensively to study assembly of the NE and the nuclear pore complexes (NPCs), providing several models for the steps involved. The NE is a surface structure which in cell-free extracts is easily exposed. It is appropriate, therefore, to use a surface imaging technique to study NE dynamics. Field emission in-lens scanning electron microscopy (FEISEM) provides the opportunity to image surfaces, directly, and to visualise details of structures such as the NPC. Here we show the feasibility and value of FEISEM to study the steps of NE formation. Nuclei have been assembled in vitro and fixed at different time points during assembly, followed by conductive staining, platinum coating, and visualisation by FEISEM. Changes on the nuclear surface with time are shown. Details of the surface of chromatin and the cytoplasmic face of NPC structure are demonstrated without the need to isolate the structures from the nucleus.  相似文献   

4.
The number of nuclear pore complexes (NPCs) in individual nuclei of the yeast Saccharomyces cerevisiae was determined by computer-aided reconstruction of entire nuclei from electron micrographs of serially sectioned cells. Nuclei of 32 haploid cells at various points in the cell cycle were modeled and found to contain between 65 and 182 NPCs. Morphological markers, such as cell shape and nuclear shape, were used to determine the cell cycle stage of the cell being examined. NPC number was correlated with cell cycle stage to reveal that the number of NPCs increases steadily, beginning in G1-phase, suggesting that NPC assembly occurs continuously throughout the cell cycle. However, the accumulation of nuclear envelope observed during the cell cycle, indicated by nuclear surface area, is not continuous at the same rate, such that the density of NPCs per unit area of nuclear envelope peaks in apparent S-phase cells. Analysis of the nuclear envelope reconstructions also revealed no preferred NPC-to-NPC distance. However, NPCs were found in large clusters over regions of the nuclear envelope. Interestingly, clusters of NPCs were most pronounced in early mitotic nuclei and were found to be associated with the spindle pole bodies, but the functional significance of this association is unknown.  相似文献   

5.
This protocol details methods for the generation of cell-free extracts and DNA templates from the eggs and sperm chromatin, respectively, of the clawed toad Xenopus laevis. We have used this system with scanning electron microscopy (SEM), as detailed herein, to analyze the biochemical requirements and structural pathways for the biogenesis of eukaryotic nuclear envelopes (NEs) and nuclear pore complexes (NPCs). This protocol requires access to female frogs, which are induced to lay eggs, and a male frog, which is killed for preparation of the sperm chromatin. Egg extracts should be prepared in 1 d and can be stored for many months at -80 degrees C. Demembranated sperm chromatin should take only approximately 2-3 h to prepare and can be stored at -80 degrees C almost indefinitely. The time required for assembly of structurally and functionally competent nuclei in vitro depends largely on the quality of the cell-free extracts and, therefore, must be determined for each extract preparation.  相似文献   

6.
The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA.  相似文献   

7.
The nuclear envelope (NE) is a fundamental structure of eukaryotic cells with a dual role: it separates two distinct compartments, and enables communication between them via nuclear pore complexes (NPCs). Little is known about NPCs and NE structural organization in plants. We investigated the structure of NPCs from both sides of the NE in tobacco BY-2 cells. We detected structural differences between the NPCs of dividing and quiescent nuclei. Importantly, we also traced the organizational pattern of the NPCs, and observed non-random NPC distribution over the nuclear surface. Lastly, we observed an organized filamentous protein structure that underlies the inner nuclear membrane, and interconnects NPCs. The results are discussed within the context of the current understanding of NE structure and function in higher eukaryotes.  相似文献   

8.
9.
Our previous work characterizing the biogenesis and structural integrity of the nuclear envelope and nuclear pore complexes (NPCs) has been based on amphibian material but has recently progressed into the analysis of tissue-culture cells. This protocol describes methods for the high resolution visualization, by field-emission scanning electron microscopy (FESEM), of the nucleus and associated structures in tissue culture cells. Imaging by fluorescence light microscopy shows general nuclear and NPC information at a resolution of approximately 200 nm, in contrast to the 3-5 nm resolution provided by FESEM or transmission electron microscopy (TEM), which generates detail at the macromolecular level. The protocols described here are applicable to all tissue culture cell lines tested to date (HeLa, A6, DLD, XTC and NIH 3T3). The processed cells can be stored long term under vacuum. The protocol can be completed in 5 d, including 3 d for cell growth, 1 d for processing and 1 d for imaging.  相似文献   

10.
In vivo studies on the dynamics of the nuclear pore complex (NPC) in yeast suggested that NPCs are highly mobile in the nuclear envelope. However, new evidence indicates that in mammalian cells NPCs are stably attached to a flexible lamina framework, but a peripheral component can exchange rapidly with an intranuclear pool.  相似文献   

11.
The nuclear envelope is a double lipid bilayer that physically separates the functions of the nucleus and the cytoplasm of eukaryotic cells. Regulated transport of molecules between the nucleus and the cytoplasm is essential for normal cell metabolism and is mediated by large protein complexes, termed nuclear pore complexes (NPCs), which span the inner and outer membranes of the nuclear envelope. Significant progress has been made in the past 10 years in identifying the protein composition of NPCs and the basic molecular mechanisms by which these complexes facilitate the selective exchange of molecules between the nucleus and the cytoplasm. However, many fundamentally important questions about the functions of NPCs, the specific functions of individual NPC-associated proteins, and the assembly and disassembly of NPCs, remain unanswered. This review describes approaches for isolating and characterizing nuclear envelopes and NPC-associated proteins from mammalian cells. It is anticipated that these procedures can be used as a starting point for further molecular and biochemical analysis of the mammalian nuclear envelope, NPCs, and NPC-associated proteins.  相似文献   

12.
Nuclear import of an intact preassembled proteasome particle   总被引:1,自引:0,他引:1  
The 26S proteasome is a conserved 2.5 MDa protein degradation machine that localizes to different cellular compartments, including the nucleus. Little is known about the specific targeting mechanisms of proteasomes in eukaryotic cells. We used a cell-free nuclear reconstitution system to test for nuclear targeting and import of distinct proteasome species. Three types of stable, proteolytically active proteasomes particles were purified from Xenopus egg cytosol. Two of these, the 26S holoenzyme and the 20S core particle, were targeted to the nuclear periphery but did not reach the nucleoplasm. This targeting depends on the presence of mature nuclear pore complexes (NPCs) in the nuclear envelope. A third, novel form, designated here as 20S+, was actively imported through NPCs. The 20S+ proteasome particle resembles recently described structural intermediates from other systems. Nuclear import of this particle requires functional NPCs, but it is not directly regulated by the Ran GTPase cycle. The mere presence of the associated "+" factors is sufficient to reconstitute nuclear targeting and confer onto isolated 20S core particles the ability to be imported. Stable 20S+ particles found in unfertilized eggs may provide a means for quick mobilization of existing proteasome particles into newly formed nuclear compartments during early development.  相似文献   

13.
Functional association of Sun1 with nuclear pore complexes   总被引:5,自引:2,他引:3       下载免费PDF全文
Sun1 and 2 are A-type lamin-binding proteins that, in association with nesprins, form a link between the inner nuclear membranes (INMs) and outer nuclear membranes of mammalian nuclear envelopes. Both immunofluorescence and immunoelectron microscopy reveal that Sun1 but not Sun2 is intimately associated with nuclear pore complexes (NPCs). Topological analyses indicate that Sun1 is a type II integral protein of the INM. Localization of Sun1 to the INM is defined by at least two discrete regions within its nucleoplasmic domain. However, association with NPCs is dependent on the synergy of both nucleoplasmic and lumenal domains. Cells that are either depleted of Sun1 by RNA interference or that overexpress dominant-negative Sun1 fragments exhibit clustering of NPCs. The implication is that Sun1 represents an important determinant of NPC distribution across the nuclear surface.  相似文献   

14.
Mammalian cell-free systems are very useful for the biochemical and structural study of nuclear disassembly and assembly. Through experimental manipulations, the role of specific proteins in these processes can be studied. Recently, we intended to examine the involvement of integral and peripheral inner nuclear membrane proteins in nuclear disassembly and assembly. However, we could not achieve proper disassembly when isolated interphase HeLa nuclei were exposed to mitotic soluble extracts obtained from the same cell line and containing cyclin B1. Homogenates of synchronized mitotic HeLa cells left to reassemble their nuclei generated incomplete nuclear envelopes on chromatin masses. Digitonin-permeabilized mitotic cells also assembled incomplete nuclei, generating a lot of cytoplasmic inclusions of inner nuclear membrane proteins as an intermediate. These results were therefore used as a basis for a critical evaluation of mammalian cell-free systems. We present here evidence that cell synchronization itself can interfere with the progress of nuclear assembly, possibly by causing aberrant nuclear disassembly and/or by inducing the formation of an abnormal number of mitotic spindles.  相似文献   

15.
Rev has been shown to promote the export of HIV-1 RNAs fromXenopus oocyte nuclei, but a system to examine the direct effect of Rev on HIV-1 RNA export in mammalian somatic cells does not exist. In this report, the development of a cell-free RNA export system using COS cells is described. This system is capable of examining the movement of RNA from nuclei of COS cells transfected with an HIV-1 proviral construct into reconstituted cytosol from nontransfected cells. A reproducible preparation of nuclei free of residual cytoplasmic RNA is demonstrated. Export of RNA from these nuclei into reconstituted cell-free extracts was saturable and dependent on temperature and energy. Further validation of the system was obtained by confirming that the nuclear export of HIV-1-unspliced and partially spliced RNAs was dependent upon the expression of HIV-1 Rev and that the presence of Rev appeared to decrease the export of an HIV-1-spliced RNA. The system was also able to demonstrate that Rev did not appear to significantly enhance the export of an HIV-1 protease-containing RNA that has been shown to be dependent upon Rev for maximal expression. Consequently, the system appears useful for the examination of parameters of nuclear export of HIV-1 and cellular RNAs.  相似文献   

16.
Steroids dilate nuclear pores imaged with atomic force microscopy   总被引:4,自引:0,他引:4  
Macromolecules that act in the cell nucleus must overcome the nuclear envelope (NE). This barrier between cytosol and the nucleus is perforated by nuclear pore complexes (NPCs) that serve as translocation machineries. We visualized the translocation process at the NE surface, applying a nanotechnical approach using atomic force microscopy (AFM). In order to initiate protein targeting to NPCs, dexamethasone (dex) was injected into Xenopus laevis oocytes. Dex is a synthetic steroid of great therapeutic relevance that specifically binds to glucocorticoid receptors and thus triggers an intracellular signal cascade involving the cell nucleus. Ninety and 180 sec after dex injection cell nuclei were isolated, the NEs spread on glass and scanned with AFM. With single molecule resolution we observed that dex initiated proteins (DIPs) first bind to NPC-free areas of the outer nuclear membrane. This causes NPCs to dilate. Then, in a second step, DIPs attach directly to NPCs and enter the dilated central channels. DIPs accumulation and NPC conformational changes were blocked by RU486, a specific glucocorticoid receptor antagonist. In conclusion, dex exposure induces NPC dilation. NPCs change conformation already prior to transport. The NPC dilation signal is most likely transmitted through NPC associated filaments or yet unknown structures in the NE outer membrane. NPC dilation could have significant impact on nuclear targeting of therapeutic macromolecules.  相似文献   

17.
In Vivo Dynamics of Nuclear Pore Complexes in Yeast   总被引:7,自引:1,他引:6       下载免费PDF全文
While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.  相似文献   

18.
In eukaryotic cells the nuclear envelope (NE) serves as a functional barrier between cytosol and nucleoplasm perforated by nuclear pore complexes (NPCs). Both active and passive transport of ions and macromolecules are thought to be mediated by the centrally located large NPC channel. However, 3-dimensional imaging of NPCs based on electron microscopy indicates the existence of additional small channels of unknown function located in the NPC periphery. By means of the recently developed nuclear hourglass technique that measures NE electrical conductance, we evaluated passive electrically driven transport through NPCs. In isolated Xenopus laevis oocyte nuclei, we varied ambient Ca2+ and ATP in the cytosolic solution and/or chelated Ca2+ in the perinuclear stores in order to assess the role of Ca2+ in regulating passive ion transport. We noticed that NE electrical conductance is large under conditions where macromolecule permeability is known to be low. In addition, atomic force microscopy applied to native NPCs detects multiple small pores in the NPC periphery consistent with channel openings. Peripheral pores were detectable only in the presence of ATP. We conclude that NPC transport of ions and macromolecules occurs through different routes. We present a model in which NE ion flux does not occur through the central NPC channel but rather through Ca2+- and ATP-activated peripheral channels of individual NPCs.  相似文献   

19.
The similarity of the Arrhenius plots relating temperature to messenger RNA (mRNA) transport from intact and membrane-denuded rat liver nuclei demonstrates that the ATP and cytosol-dependent transport is independent of the lipid phase of the nuclear membrane. This temperature dependence of RNA release was confirmed for alpha 2u-globulin mRNA by use of a recombinant DNA probe. Ribosomal RNA (rRNA) release showed a similar temperature dependence, suggesting that both mRNA and rRNA share a common temperature-sensitive step. The kinetics of RNA release at different temperatures suggest that RNA transport from mammalian cell nuclei is a rate-controlled rather than a graded unlocking phenomenon. The processing of mRNA precursors also exhibits a temperature dependence as shown by the linear increase in the ratio of total alpha 2u-globulin RNA to alpha 2u-globulin precursor as a function of time at 30 degrees C but not at 14 degrees C in spite of residual transport at the lower temperature. This temperature dependence of mRNA processing was confirmed by Northern blot analysis of the nuclear RNA following a 45 min incubation. Thus, both the processing and transport of RNA show temperature-sensitive steps when analyzed in cell-free systems derived from mammalian cells.  相似文献   

20.
The nuclear hourglass technique (NHT) was recently introduced as a novel technique that measures the electrical nuclear envelope (NE) conductance of isolated Xenopus laevis oocyte nuclei. The main conclusion drawn from NHT work so far is that nuclear pore complexes (NPCs) of oocytes are in an electrically open state under physiological conditions, with a mean conductance of 1.7 nS per NPC. Since nuclear patch-clamp data indicate that usually NPCs are electrically closed, our work has been challenged by the notion that NHT cannot assure a high resistance seal (``gigaseal') between glass wall and NE like that required for patch-clamp experiments. Thus, NHT could have dramatically underestimated NE electrical resistance. Here we demonstrate that NHT does not require a gigaseal for accurate NE conductance measurements. In addition, we present experimental conditions where mean single NPC electrical conductance is reduced 26-fold due to electrophoretic plugging by negatively charged nucleoplasmic macromolecules. In addition, data indicate that under physiological conditions (i.e., when macromolecules are offered in the cytosolic solution) the nuclear surface is heavily folded, underestimating ``true' NE surface by a factor of 2.6. When ``true' NE surface area is taken into consideration, modified values of mean single NPC conductances of 654 pS for electrically open conditions and 25 pS for electrically plugged conditions can be calculated. We conclude that the large overall NE conductance detected with the nuclear hourglass technique in intact Xenopus laevis oocyte nuclei can be explained by the sum of single NPC conductances in the pS range, as long as open probability is high. This confirms previous patch-clamp work concerning single NPC conductance, but disagrees with the view that mean open probability of NPC channels is usually low. Received: 27 March 2001/Revised: 3 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号