首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)–Ras–extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction.  相似文献   

2.
Accurate estimation of diffuse attenuation coefficients in the visible wavelengths K d(λ) from remotely sensed data is particularly challenging in global oceanic and coastal waters. The objectives of the present study are to evaluate the applicability of a semi-analytical K d(λ) retrieval model (SAKM) and Jamet’s neural network model (JNNM), and then develop a new neural network K d(λ) retrieval model (NNKM). Based on the comparison of K d(λ) predicted by these models with in situ measurements taken from the global oceanic and coastal waters, all of the NNKM, SAKM, and JNNM models work well in K d(λ) retrievals, but the NNKM model works more stable and accurate than both SAKM and JNNM models. The near-infrared band-based and shortwave infrared band-based combined model is used to remove the atmospheric effects on MODIS data. The K d(λ) data was determined from the atmospheric corrected MODIS data using the NNKM, JNNM, and SAKM models. The results show that the NNKM model produces <30% uncertainty in deriving K d(λ) from global oceanic and coastal waters, which is 4.88-17.18% more accurate than SAKM and JNNM models. Furthermore, we employ an empirical approach to calculate K par from the NNKM model-derived diffuse attenuation coefficient at visible bands (443, 488, 555, and 667 nm). The results show that our model presents a satisfactory performance in deriving K par from the global oceanic and coastal waters with 20.2% uncertainty. The K par are quantified from MODIS data atmospheric correction using our model. Comparing with field measurements, our model produces ~31.0% uncertainty in deriving K par from Bohai Sea. Finally, the applicability of our model for general oceanographic studies is briefly illuminated by applying it to climatological monthly mean remote sensing reflectance for time ranging from July, 2002- July 2014 at the global scale. The results indicate that the high K d(λ) and K par values are usually found around the coastal zones in the high latitude regions, while low K d(λ) and K par values are usually found in the open oceans around the low-latitude regions. These results could improve our knowledge about the light field under waters at either the global or basin scales, and be potentially used into general circulation models to estimate the heat flux between atmosphere and ocean.  相似文献   

3.
4.
5.
Bacia K  Schwille P 《Nature protocols》2007,2(11):2842-2856
Dual-color fluorescence cross-correlation spectroscopy (FCCS) allows for the determination of molecular mobility and concentrations and for the quantitative analysis of molecular interactions such as binding or cleavage at very low concentrations. This protocol discusses considerations for preparing a biological system for FCCS experiments and offers practical advice for performing FCCS on a commercially available setup. Although FCCS is closely related to two-color confocal microscopy, critical adjustments and test measurements are necessary to establish successful FCCS measurements, which are described in a step-by-step manner. Moreover, we discuss control experiments for a negative cross-correlation artifact, arising from a lack of detection volume overlap, and a positive artifact, arising from cross-talk. FCCS has been applied to follow molecular interactions in solutions, on membranes and in cells and to analyze dynamic colocalization during intracellular transport. It is a technique that is expected to see new applications in various fields of biochemical and cell biological research.  相似文献   

6.
Abstract. It has previously been shown that in toad epidermis the cell birth rate (Kb) exceeds the rate of cell loss through moulting (Kb) and that the ‘surplus’ of cells seems to be removed in a controlled manner. Assuming that the epidermis is non-expanding, a Kb/Kd ratio > 1 indicates that cell deletion additional to desquamation takes place. In normal toads this ratio is 2-3. Following implantation of hydrocortisone pellets into intact toads (release rate, 18 μ/g toad/d), the Kb/Kd ratio, over a period of 14 d of hormone treatment, had increased to about 7, due mainly to an increased Kb and to a lesser extent to a decreased Kd. No change in the epidermal cell pool size had taken place. It was previously shown that, following removal of the pars distalis of the pituitary gland, the Kb/Kd ratio decreased with time, due to a decreasing Kb and an increasing Kd, eventually leading to a decreased epidermal cell pool size. In this paper it is shown that, in pars distalisectomized toads with hydrocortisone pellets implanted, the Kb/Kd ratio is restored to control levels by a restoration of the Kb as well as the Kd. the results differ from those of previous studies in which ACTH or adrenocortico-steroids were administered discontinuously (by injection). Thus, by experimental manipulation, different Kb/Kd ratios can be obtained: low (< 1, pars distalis ablation), medium (2-3, normal toads) and high (7, hydrocortisone implantation). the potentiality of this unique situation in analysing the important question of how the ‘surplus’ cells are deleted is discussed.  相似文献   

7.
Determination of the physical parameters underlying protein-DNA interactions is crucial for understanding the regulation of gene expression. In particular, knowledge of the stoichiometry of the complexes is a prerequisite to determining their energetics and functional molecular mechanisms. However, the experimental determination of protein-DNA complex stoichiometries remains challenging. We used fluorescence cross-correlation spectroscopy (FCCS) to investigate the interactions of the control catabolite protein of gluconeogenic genes, a key metabolic regulator in Gram-positive bacteria, with two oligonucleotides derived from its target operator sequences, gapB and pckA. According to our FCCS experiments, the stoichiometry of binding is twofold larger for the pckA target than for gapB. Correcting the FCCS data for protein self-association indicated that control catabolite protein of gluconeogenic genes forms dimeric complexes on the gapB target and tetrameric complexes on the pckA target. Analytical ultracentrifugation coupled with fluorescence anisotropy and hydrodynamic modeling allowed unambiguous confirmation of this result. The use of multiple complementary techniques to characterize these complexes should be employed wherever possible. However, there are cases in which analytical ultracentrifugation is precluded, due to protein stability, solubility, or availability, or, more obviously, when the studies are carried out in live cells. If information concerning the self-association of the protein is available, FCCS can be used for the direct and simultaneous determination of the affinity, cooperativity, and stoichiometry of protein-DNA complexes in a concentration range and conditions relevant to the regulation of these interactions.  相似文献   

8.
BackgroundAminoglycoside O-phosphotransferases make up a large class of bacterial enzymes that is widely distributed among pathogens and confer a high resistance to several clinically used aminoglycoside antibiotics. Aminoglycoside 2″-phosphotransferase IVa, APH(2″)-IVa, is an important member of this class, but there is little information on the thermodynamics of aminoglycoside binding and on the nature of its rate-limiting step.MethodsWe used isothermal titration calorimetry, electrostatic potential calculations, molecular dynamics simulations and X-ray crystallography to study the interactions between the enzyme and different aminoglycosides. We determined the rate-limiting step of the reaction by the means of transient kinetic measurements.ResultsFor the first time, Kd values were determined directly for APH(2″)-IVa and different aminoglycosides. The affinity of the enzyme seems to anti-correlate with the molecular weight of the ligand, suggesting a limited degree of freedom in the binding site. The main interactions are electrostatic bonds between the positively charged amino groups of aminoglycosides and Glu or Asp residues of APH. In spite of the significantly different ratio Kd/Km, there is no large difference in the transient kinetics obtained with the different aminoglycosides. We show that a product release step is rate-limiting for the overall reaction.ConclusionsAPH(2″)-IVa has a higher affinity for aminoglycosides carrying an amino group in 2′ and 6′, but tighter bindings do not correlate with higher catalytic efficiencies. As with APH(3′)-IIIa, an intermediate containing product is preponderant during the steady state.General significanceThis intermediate may constitute a good target for future drug design.  相似文献   

9.
Dual-color fluorescence cross-correlation spectroscopy (FCCS) is a promising technique for quantifying protein-protein interactions. In this technique, two different fluorescent labels are excited and detected simultaneously within a common measurement volume. Difficulties in aligning two laser lines and emission crossover between the two fluorophores, however, make this technique complex. To overcome these limitations, we developed a fluorescent protein with a large Stokes shift. This protein, named Keima, absorbs and emits light maximally at 440 nm and 620 nm, respectively. Combining a monomeric version of Keima with cyan fluorescent protein allowed dual-color FCCS with a single 458-nm laser line and complete separation of the fluorescent protein emissions. This FCCS approach enabled sensitive detection of proteolysis by caspase-3 and the association of calmodulin with calmodulin-dependent enzymes. In addition, Keima and a spectral variant that emits maximally at 570 nm might facilitate simultaneous multicolor imaging with single-wavelength excitation.  相似文献   

10.
Calmodulin (CaM) is a Ca2+ signaling protein that binds to a wide variety of target proteins, and it is important to establish methods for rapid characterization of these interactions. Here we report the use of fluorescence polarization (FP) to measure the Kd for the interaction of CaM with the plasma membrane Ca2+-ATPase (PMCA), a Ca2+ pump regulated by binding of CaM. Previous assays of PMCA-CaM interactions were indirect, based on activity or kinetics measurements. We also investigated the Ca2+ dependence of CaM binding to PMCA. FP assays directly detect CaM-target interactions and are rapid, sensitive, and suitable for high-throughput screening assay formats. Values for the dissociation constant Kd in the nanomolar range are readily measured. We measured the changes in anisotropy of CaM labeled with Oregon Green 488 on titration with PMCA, yielding a Kd value of CaM with PMCA (5.8 ± 0.5 nM) consistent with previous indirect measurements. We also report the binding affinity of CaM with oxidatively modified PMCA (Kd = 9.8 ± 2.0 nM), indicating that the previously reported loss in CaM-stimulated activity for oxidatively modified PMCA is not a result of reduced CaM binding. The Ca2+ dependence follows a simple Hill plot demonstrating cooperative binding of Ca2+ to the binding sites in CaM.  相似文献   

11.
Studies on the quantitative binding of [3H]anisomycin are useful in determining conformational and/or structural changes on eukaryotic ribosomes. We have shown that yeast ribosomes have different structures depending on their functional states during the ribosome cycle as defined by their affinity for [3H]anisomycin.Free ribosomes, either in vivo run-off ribosomes (1 mm-sodium azide treatment or 8 °C incubation of spheroplasts) or puromycin-dependent released ribosomes, have an affinity defined by Kd = 3.3 to 3.6 μm.Ribosomes forming polysomes engaged in protein synthesis have at least two new different conformations (defined by Kd,H = 0.81 μm and Kd,L = 12 μm). These conformations have been ascribed to the pre and post-translocated steps of the elongation cycle in protein synthesis by blocking the polysomes with specific inhibitors of translation. Pre-translocated polysomes (polysomes blocked with cycloheximide) have an affinity of KdCHX = 12 μm and post-translocated polysomes (polysomes blocked with doxycycline) have an affinity of KdDC = 0.82 μm. These dissociation constants are identical to Kd,L and Kd,H obtained with control untreated polysomes, respectively.Moreover, a new ribosome conformation defined by KdDT = 1.5 μm and KdFA = 1.8 μm was found, by blocking the polysomes with the elongation factor, EF-2, bound by using either diphtheria toxin or fusidic acid.We also present evidence of the previously reported heterogeneity of standard preparations of eukaryotic ribosomes (Barbacid & Vazquez, 1974a) being a direct consequence of the high-salt washing treatment of ribosomes.  相似文献   

12.
The cationic β-sheet cyclic tetradecapeptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK4) is a diastereomeric lysine ring-size analog of the potent naturally occurring antimicrobial peptide gramicidin S (GS) which exhibits enhanced antimicrobial but markedly reduced hemolytic activity compared to GS itself. We have previously studied the binding of GS14dK4 to various phospholipid bilayer model membranes using isothermal titration calorimetry [Abraham, T. et al. (2005) Biochemistry 44, 2103-2112]. In the present study, we compare the ability of GS14dK4 to bind to and disrupt these same phospholipid model membranes by employing a fluorescent dye leakage assay to determine the ability of this peptide to permeabilize large unilamellar vesicles. We find that in general, the ability of GS14dK4 to bind to and to permeabilize phospholipid bilayers of different compositions are not well correlated. In particular, the binding affinity of GS14dK4 varies markedly with the charge and to some extent with the polar headgroup structure of the phospholipid and with the cholesterol content of the model membrane. Specifically, this peptide binds much more tightly to anionic than to zwitterionic phospholipids and much less tightly to cholesterol-containing than to cholesterol-free model membranes. In addition, the maximum extent of binding of GS14dK4 can also vary considerably with phospholipid composition in a parallel fashion. In contrast, the ability of this peptide to permeabilize phospholipid vesicles is only weakly dependent on phospholipid charge, polar headgroup structure or cholesterol content. We provide tentative explanations for the observed lack of a correlation between the affinity and extent of GS14dK4 binding to, and degree of disruption of the structure and integrity of, phospholipid bilayers membranes. We also present evidence that the lack of correlation between these two parameters may be a general phenomenon among antimicrobial peptides. Finally, we demonstrate that the affinity of binding of GS14dK4 to various phospholipid bilayer membranes is much more strongly correlated with the antimicrobial and hemolytic activities of this peptide than with its effect on the rate and extent of dye leakage in these model membrane systems.  相似文献   

13.
《Insect Biochemistry》1989,19(3):233-241
Kinetic and other properties of the interaction between two serine proteinases, bovine trypsin and Costelytra zealandica (grass grub) larval trypsin and a range of proteinaceous serine proteinase inhibitors were investigated. Twenty-six inhibitors or isoinhibitors from 10 different inhibitor families were analysed. A 1700-fold range in equilibrium dissociation constant (Kd) values was obtained for bovine trypsin and a 105-fold range for grass grub trypsin. The ratios of Kd (grass grub)/Kd (bovine) also spanned a range of 105-fold. Qualitative observations indicated that the second order association rate constants were high for all except two inhibitors. Two classes of first order dissociation rate constant were determined from the dissociation of trypsin-inhibitor complexes induced by substrate. While most inhibitors were cleaved by grass grub trypsin, they still inhibited larval midgut crude extracts during long incubations. We suggest using the Kd value to assess the potential for any inhibitor to act as a grass grub larval resistance factor in plants, in preference to other parameters.  相似文献   

14.
The influence of K on the performance of vascular smooth muscle was studied by observing the mechanical performance of the muscle under conditions in which the magnitudes of [Ki] and of the [Ki]:[Ko] ratio varied in opposite directions. During prolonged storage at 4°C the artery strips lost K and their ability to respond to stimuli. Subsequently they were transferred to recovery solutions of various [Ko] at 38°C. The initial rate of Ki reaccumulation and steady state [Ki] were greater in solutions of higher [Ko]. Conversely for any time during recovery, the greater [Ko], the smaller the [Ki]:[Ko] ratio. When the strip was placed in the warm recovery solution it first contracted and then relaxed. The initial contraction was not relatable to [Ko] of the recovery solution but the subsequent relaxation was greater in rate and magnitude as [Ko] was greater. As the muscles recovered further they went into tonic contracture. As the [Ko] in the recovery solutions was greater these contractures occurred after shorter recovery times, and attained greater amplitude at a faster rate. Solution-switching experiments indicated a dependence of responses to electrical shocks on both the [Ki]:[Ko] ratio and [Ki]. Conclusions drawn were: (a) increased [Ki] increases contractility, (b) increased [Ki] increases the rate of relaxation, (c) excitability is decreased by too high or low a [Ki]: [Ko] ratio, and (d) the extent of tonic shortening depends on the [Ki]:[Ko] ratio.  相似文献   

15.
An automated procedure allows uptake measurements with incubation times as short as 0.5 s and with volumes of 10–20 μl. Using this technique the kinetic parameters Km and V of d-glucose transport in brush border vesicles from rabbit small intestine could be determined from unidirectional fluxes. A comparison of the data obtained from jejunum and from ileum shows that the Km for d-glucose is the same in both parts of the intestine, whereas the maximum flux is significantly larger in the jejunum.  相似文献   

16.
Characterizing protein-protein interactions is essential for understanding molecular mechanisms, although reproducing cellular conditions in vitro is challenging and some proteins are difficult to purify. We developed a method to measure binding to cellular structures using fission yeast cells as reaction vessels. We varied the concentrations of Sid2p and Mob1p (proteins of the septation initiation network) and measured their binding to spindle pole bodies (SPBs), the centrosome equivalent of yeast. From our measurements we infer that Sid2p and Mob1p both exist as monomeric, heterodimeric, and homodimeric species throughout the cell cycle. During interphase these species have widely different affinities for their common receptor Cdc11p on the SPB. The data support a model with a subset of Cdc11p binding the heterodimeric species with a Kd < 0.1 μM when Sid2p binds Mob1p-Cdc11p and Kd in the micromolar range when Mob1p binds Sid2p-Cdc11p. During mitosis an additional species presumed to be the phosphorylated Sid2p−Mob1p heterodimer binds SPBs with a lower affinity. Homodimers of Sid2p or Mob1p bind to the rest of Cdc11p at SPBs with lower affinity: Kds > 10 μM during interphase and somewhat stronger during mitosis. These measurements allowed us to account for the fluctuations in Sid2p binding to SPBs throughout the cell cycle.  相似文献   

17.
Characterizing protein-protein interactions is essential for understanding molecular mechanisms, although reproducing cellular conditions in vitro is challenging and some proteins are difficult to purify. We developed a method to measure binding to cellular structures using fission yeast cells as reaction vessels. We varied the concentrations of Sid2p and Mob1p (proteins of the septation initiation network) and measured their binding to spindle pole bodies (SPBs), the centrosome equivalent of yeast. From our measurements we infer that Sid2p and Mob1p both exist as monomeric, heterodimeric, and homodimeric species throughout the cell cycle. During interphase these species have widely different affinities for their common receptor Cdc11p on the SPB. The data support a model with a subset of Cdc11p binding the heterodimeric species with a Kd < 0.1 μM when Sid2p binds Mob1p-Cdc11p and Kd in the micromolar range when Mob1p binds Sid2p-Cdc11p. During mitosis an additional species presumed to be the phosphorylated Sid2p−Mob1p heterodimer binds SPBs with a lower affinity. Homodimers of Sid2p or Mob1p bind to the rest of Cdc11p at SPBs with lower affinity: Kds > 10 μM during interphase and somewhat stronger during mitosis. These measurements allowed us to account for the fluctuations in Sid2p binding to SPBs throughout the cell cycle.  相似文献   

18.
(1) The Mg2+-induced low-affinity nucleotide binding by (Na+ + K+)-ATPase has been further investigated. Both heat treatment (50–65°C) and treatment with N-ethylmaleimide reduce the binding capacity irreversibly without altering the Kd value. The rate constant of inactivation is about one-third of that for the high-affinity site and for the (Na+ + K+)-ATPase activity. (2) Thermodynamic parameters (ΔH° and ΔS°) for the apparent affinity in the ATPase reaction (Km ATP) and for the true affinity in the binding of AdoPP[NH]P (Kd and Ki) differ greatly in sign and magnitude, indicating that one or more reaction steps following binding significantly contribute to the Km value, which thus is smaller than the Kd value. (3) Ouabain does not affect the capacity of low-affinity nucleotide binding, but only increases the Kd value to an extent depending on the nucleotide used. GTP and CTP appear to be most sensitive, ATP and ADP intermediately sensitive and AdoPP[NH]P and least sensitive to ouabain. Ouabain reduces the high-affinity nucleotide binding capacity without affecting the Kd value. (4) The nucleotide specificity of low-affinity binding site is the same for binding (competition with AdoPP[NH]P) and for the ATPase activity (competition with ATP): AdoPP[NH]P > ATP > ADP > AMP. (5) The low-affinity nucleotide binding capacity is preserved in the ouabain-stabilized phosphorylated state, and the Kd value is not increased more than by ouabain alone. (6) It is inferred that the low-affinity site is Iocated on the enzyme, more specifically its α-subunit, and not on the surrounding phospholipids. It is situated outside the phosphorylation centre. The possible functional role of the low-affinity binding is discussed.  相似文献   

19.
In the eastern Seto Inland Sea, Japan, phytoplankton abundance in the surface water has gradually declined, whereas Secchi depth has risen in recent years, particularly in offshore areas. Therefore, it may be hypothesized that phytoplankton dominate light attenuation in the offshore area, and that other constituents are less important. To test this hypothesis, we examined the roles of seawater, colored dissolved organic matter (CDOM), non-algal particles (tripton), and phytoplankton in the light attenuation at an offshore station of Harima Sound in the eastern Sea. The magnitude of light attenuation was then determined from the attenuation coefficient of photosynthetically available radiation (PAR) through the water column (K d). During a 13-month period, K d ranged from 0.179 to 0.507 m?1, with a mean of 0.262 m?1. The mean relative contributions of seawater (15%) and CDOM (13%) to K d were small, while the most dominant K d constituent was tripton (45%). The mean contribution of phytoplankton to K d (27%) was consequently less than that of tripton. However, 75% of the temporal variability in K d was attributed to phytoplankton, measured as chlorophyll a. Our results emphasize that the main component of light attenuation does not always govern the temporal variation of light attenuation in coastal regions.  相似文献   

20.
The RhoGTPase Cdc42 coordinates cell morphogenesis, cell cycle, and cell polarity decisions downstream of membrane-bound receptors through distinct effector pathways. Cdc42-effector protein interactions represent important elements of cell signaling pathways that regulate cell biology in systems as diverse as yeast and humans. To derive mechanistic insights into cell signaling pathways, it is vital that we generate quantitative data from in vivo systems. We need to be able to measure parameters such as protein concentrations, rates of diffusion, and dissociation constants (KD) of protein-protein interactions in vivo. Here we show how single wavelength fluorescence cross-correlation spectroscopy in combination with Förster resonance energy transfer analysis can be used to determine KD of Cdc42-effector interactions in live mammalian cells. Constructs encoding green fluorescent protein or monomeric red fluorescent protein fusion proteins of Cdc42, an effector domain (CRIB), and two effectors, neural Wiskott-Aldrich syndrome protein (N-WASP) and insulin receptor substrate protein (IRSp53), were expressed as pairs in Chinese hamster ovary cells, and concentrations of free protein as well as complexed protein were determined. The measured KD for Cdc42V12-N-WASP, Cdc42V12-CRIB, and Cdc42V12-IRSp53 was 27, 250, and 391 nm, respectively. The determination of KD for Cdc42-effector interactions opens the way to describe cell signaling pathways quantitatively in vivo in mammalian cells.Over the last 2 decades, we have been successful in describing a myriad of cell signaling pathways that regulate the biology of cells. These pathways are made of elements incorporating protein-protein, protein-lipid and protein-ligand interactions. With the advent of GFP2 (1, 2) and its variants (3), it is now possible to genetically encode fluorescent probes into any protein of interest. GFP fusion proteins can be used in live cells giving spatial and temporal resolution to cell signaling pathways (4). To gain mechanistic insights into cellular processes, it is crucial that we measure quantitative parameters to describe cell signaling. In this study, we present an approach based on fluorescence cross-correlation spectroscopy (FCCS) (5, 6) and Förster resonance energy transfer (FRET) to determine quantitative parameters of cell signaling pathways, including the determination of the KD for Cdc42-effector interactions in live CHO-K-1 (hereafter referred to as CHO) mammalian cells.The RhoGTPase Cdc42 (7, 8) regulates pathways that coordinate cell cycle, morphogenesis, and polarity. Cdc42 is a molecular switch that cycles between an inactive (GDP-bound) and active (GTP-bound) state. The V12 Cdc42 point mutation freezes the protein in an activated GTP-bound form, which binds effectors strongly. In contrast, Cdc42N17 is a dominant negative protein that is GDP-bound and interacts with effectors weakly if at all (9). A major Cdc42 binding site/domain in effector proteins is known as Cdc42- and Rac-interacting binding region (CRIB)3 and was originally found in activated Cdc42 kinase, p21 activated kinase (PAK), and neural Wiskott-Aldrich syndrome protein (N-WASP) (10). The inverse Bin-amphiphysins-Rvs domain adaptor protein IRSp53 is also an effector but binds Cdc42 through a partial CRIB domain (11, 12). Cdc42 interaction with its effectors has two main consequences, which are not mutually exclusive: (i) unfolding of effector to expose the active site and (ii) relocalization of effector to membrane compartments. Thus Cdc42-effector interactions serve as a good model for cell signaling as a whole.Fluorescence correlation spectroscopy and FCCS measure fluctuations in fluorescence of a small number of molecules as they pass through a defined confocal volume, respectively (13, 14, 15). Since the number of molecules in the confocal volume and the confocal volume itself can be determined, concentrations of protein can be measured by fluorescence correlation spectroscopy. Single wavelength fluorescence cross-correlation spectroscopy (SW-FCCS) is an FCCS variant in which excitation of two or more probes is achieved by single wavelength one-photon excitation. To date SW-FCCS has been used successfully to follow receptors and receptor-ligand interactions in vitro and in vivo (6, 16, 17).In the present analysis, we take a two-step approach to determining the KD of Cdc42 binding to CRIB (domain of PAK), N-WASP, and IRSp53. First, we show that the proteins under investigation are indeed interacting with each other directly in vivo by FRET analysis. Here we use acceptor photobleaching (AP)-FRET as well as changes in lifetime (through fluorescence lifetime imaging microscopy (FLIM)) as indicators of FRET. Second, we use SW-FCCS to determine the KD of Cdc42 interacting with its effectors by measuring the concentration of free protein versus complexed protein. Thus, the combined use of FRET and FCCS allows quantitative analysis of cell signaling pathways in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号