首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The design of molecules that damage a selected DNA sequence provides a formidable opportunity for basic and applied biology. For example, such molecules offer new prospects for controlled manipulation of the genome. The conjugation of DNA-code reading molecules such as polyamides to reagents that induce DNA damages provides an approach to reach this goal. In this work, we showed that a bipyridine conjugate of polyamides was able to induce sequence-specific DNA breaks in cells. We synthesized compounds based on two polyamide parts linked to bipyridine at different positions. Bipyridine conjugates of polyamides were found to have a high affinity for the DNA target and one of them produced a specific and high-yield cleavage in vitro and in cultured cells. The bipyridine conjugate studied here, also presents cell penetrating properties since it is active when directly added to cell culture medium. Harnessing DNA damaging molecules such as bipyridine to predetermined genomic sites, as achieved here, provides an attractive strategy for targeted genome modification and DNA repair studies.  相似文献   

3.
4.
5.
6.
Methods for sequence-specific detection in double-stranded DNA (dsDNA) are becoming increasingly useful and important as diagnostic and imaging tools. Recently, we designed and synthesized pyrrole (Py)-imidazole (Im) polyamides possessing two pyrene moieties, 1, which showed an increased excimer emission in the presence of (CAG)(12)-containing oligodeoxynucleotides (ODN) 1 and 2. In this study, we synthesized bis-pyrenyl Py-Im polyamides with rigid linkers 2, 3, and 4 to improve their fluorescence properties. Among the conjugates, 2 showed a marked increase in excimer emission, which was dependent on the concentration of the target ODN and the number of CAG repeats in the dsDNA. Unlike conjugate 1, which has flexible linkers, the excimer emission intensity of 2 was retained at over 85%, even after 4h. Py-Im polyamides have the potential to be important diagnostic molecules for detecting genetic differences between individuals.  相似文献   

7.
Pyrrole–imidazole polyamides (Py–Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py–Im polyamides.  相似文献   

8.
9.
We recently developed a new type of pyrrole (Py)–imidazole (Im) polyamide–tetrahydrocyclopropabenzindolone (CBI) conjugate with an indole linker as a stable sequence-specific alkylating agent. In this study, we investigated the gene silencing activities of polyamides A, B and C, which selectively alkylate specific sequences in the promoter region, non-coding strand and coding strand, respectively, of the green fluorescent protein (GFP) gene. GFP vectors were transfected into human colon carcinoma cells (HCT116), and the cells were treated with 100 nM of the polyamides for 24 h. Fluorescence microscopy indicated that a significant reduction of GFP fluorescence was only observed in the cells that were treated with polyamide C. In clear contrast, polyamides A and B did not show such activity. Moreover, real-time PCR demonstrated selective reduction of the expression of GFP mRNA following treatment with polyamide C. These results suggest that alkylating Py–Im polyamides that target the coding strand represent a novel approach for sequence-specific gene silencing.  相似文献   

10.
Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type-specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type-specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation.  相似文献   

11.
12.
Non-covalent ligand/DNA interactions: minor groove binding agents   总被引:1,自引:0,他引:1  
  相似文献   

13.
Abnormal gene expression patterns in somatic cell clones and their attrition in utero are commonly considered a consequence of errors in nuclear reprogramming. We observe that mouse clone blastocysts have less than half the normal cell number, and that higher cell number correlates with correct expression of Oct4, a gene essential for peri-implantation development and embryonic pluripotency. To increase the cell number, we aggregated genetically identical clones at the 4-cell stage. Clone-clone aggregates did not form more blastocysts, but the majority expressed Oct4 normally and had higher rates of fetal and postnatal development. Fertilized blastocysts with low cell numbers, induced by removal of two blastomeres at the 4-cell stage, did not exhibit abnormal Oct4 expression, indicating that improved gene expression and post-implantation development of clone-clone aggregates is not a consequence of increased cell number. Rather, we propose that complementation of non-cell-autonomous defects of genetically identical, but epigenetically different, embryos results in improved gene expression in clone-clone aggregates.  相似文献   

14.
We describe the performance of a new glass attachment chemistry for arrays that is particularly well suited to attachment of small molecules, such as peptides. The attachment chemistry is a protected isocyanate (PI) group. Isocyanate groups are well suited to serving as a glass coating for arrays, in that they are highly reactive with many different types of biological compounds. However, they are generally so reactive as to be unstable. The new feature of the PI slide coating is its stability. It can withstand immersion in water without loss of reactivity and has at least a 1-year shelf life. The high reactivity of the PI group results in a rapid coupling reaction (< 15min) and is particularly useful for attaching small molecules, such as peptides. Since isocyanates bind to both amines (forming a urea linkage) and hydroxyl groups (forming a carbamate bond), we tested the ability of the PI coating to bind to a wide variety of compounds. We found that the PI slide coating can directly attach to peptides, proteins, carbohydrates, lipooligosaccharides, and DNA. The sensitivity of detection for these compounds is comparable to that of other previously published array substrates.  相似文献   

15.
16.
Abstract Human embryonic stem cells (hES) are unique in their pluripotency and capacity for self-renewal. Therefore, we have studied the differences in the level of chromatin condensation in pluripotent and all-trans retinoic acid-differentiated hES cells. Nuclear patterns of the Oct4 (6p21.33) gene, responsible for hES cell pluripotency, the C-myc (8q24.21) gene, which controls cell cycle progression, and HP1 protein (heterochromatin protein 1) were investigated in these cells. Unlike differentiated hES cells, pluripotent hES cell populations were characterized by a high level of decondensation for the territories of both chromosomes 6 (HSA6) and 8 (HSA8). The Oct4 genes were located on greatly extended chromatin loops in pluripotent hES cell nuclei, outside their respective chromosome territories. However, this phenomenon was not observed for the Oct4 gene in differentiated hES cells, for the C-myc gene in the cell types studied. The high level of chromatin decondensation in hES cells also influenced the nuclear distribution of all the variants of HP1 protein, particularly HP1α, which did not form distinct foci, as usually observed in most other cell types. Our experiments showed that unlike C-myc , the Oct4 gene and HP1 proteins undergo a high level of decondensation in hES cells. Therefore, these structures seem to be primarily responsible for hES cell pluripotency due to their accessibility to regulatory molecules. Differentiated hES cells were characterized by a significantly different nuclear arrangement of the structures studied.  相似文献   

17.
18.
BackgroundThe heart is one of the first organs to form during embryonic development and has a very important place. So much that the formation of a functional heart is completed on the 55th day of human development and the 15th day of mouse development. Myocardial, endocardial and epicardial cells, which are derived from the mesoderm layer, are the cells that form the basis of the heart. Cardiac development, like other embryonic developments, is tightly controlled and regulated by various signaling pathways. The WNT signaling pathway is the most studied of these signaling pathways and the one with the clearest relationship with heart development. It is known that boron compounds and the Wnt/β-catenin pathway are highly correlated. Therefore, this study aimed to investigate the role of boron compounds in heart development as well as its effect on pluripotency of mouse embryonic stem cells for the first time in the literature.MethodsToxicity of boron compounds was evaluated by using MTS analysis and obtained results were supported by morphological pictures, Trypan Blue staining and Annexin V staining. Additionally, the possible boron-related change in pluripotency of embryonic stem cells were analyzed with alkaline phosphatase activity and immunocytochemical staining of Oct4 protein as well as gene expression levels of pluripotency related OCT4, SOX2 and KLF4 genes. The alterations in the embryonic body formation capacity of mouse embryonic stem cells due to the application boron derivatives were also evaluated. Three linage differentiation was conducted to clarify the real impact of boron compounds on embryonic development. Lastly, cardiac differentiation of mESCs was investigated by using morphological pictures, cytosolic calcium measurement, gene expression and immunocytochemical analysis of cardiac differentiation related genes and in the presence of boron compounds.ResultsObtained results show that boron treatment maintains the pluripotency of embryonic stem cells at non-toxic concentrations. Additionally, endodermal, and mesodermal fate was found to be triggered after boron treatment. Also, initiation of cardiomyocyte differentiation by boron derivative treatments caused an increased gene expression levels of cardiac differentiation related TNNT2, Nkx2.5 and ISL-1 gene expression levels.ConclusionThis study indicates that boron application, which is responsible for maintaining pluripotency of mESCs, can be used for increased cardiomyocyte differentiation of mESCs.  相似文献   

19.
Pyrrole-imidazole (Py-Im) hairpin polyamides are a class of programmable, sequence-specific DNA binding oligomers capable of disrupting protein-DNA interactions and modulating gene expression in living cells. Methods to control the cellular uptake and nuclear localization of these compounds are essential to their application as molecular probes or therapeutic agents. Here, we explore modifications of the hairpin γ-aminobutyric acid turn unit as a means to enhance cellular uptake and biological activity. Remarkably, introduction of a simple aryl group at the turn potentiates the biological effects of a polyamide targeting the sequence 5'-WGWWCW-3' (W =A/T) by up to two orders of magnitude. Confocal microscopy and quantitative flow cytometry analysis suggest this enhanced potency is due to increased nuclear uptake. Finally, we explore the generality of this approach and find that aryl-turn modifications enhance the uptake of all polyamides tested, while having a variable effect on the upper limit of polyamide nuclear accumulation. Overall this provides a step forward for controlling the intracellular concentration of Py-Im polyamides that will prove valuable for future applications in which biological potency is essential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号