首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 26S proteasome proteolyses ubiquitylated proteins and is assembled from a 20S proteolytic core and two 19S regulatory particles (19S-RP). The 19S-RP scaffolding subunits Rpn1 and Rpn2 function to engage ubiquitin receptors. Rpn1 and Rpn2 are characterized by eleven tandem copies of a 35-40 amino acid repeat motif termed the proteasome/cyclosome (PC) repeat. Here, we reveal that the eleven PC repeats of Rpn2 form a closed toroidal structure incorporating two concentric rings of?α helices encircling two axial α helices. A rod-like N-terminal domain consisting of 17 stacked α helices and a globular C-terminal domain emerge from one face of the toroid. Rpn13, an ubiquitin receptor, binds to the C-terminal 20 residues of Rpn2. Rpn1 adopts a similar conformation to Rpn2 but differs in the orientation of its rod-like N-terminal domain. These findings have implications for understanding how 19S-RPs recognize, unfold, and deliver ubiquitylated substrates to the 20S core.  相似文献   

2.
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.  相似文献   

3.
The 26S proteasome, the central eukaryotic protease, comprises a core particle capped by a 19S regulatory particle (RP). The RP is divisible into base and lid subcomplexes. Lid biogenesis and incorporation into the RP remain poorly understood. We report several lid intermediates, including the free Rpn12 subunit and a lid particle (LP) containing the remaining eight subunits, LP2. Rpn12 binds LP2 in vitro, and each requires the other for assembly into 26S proteasomes. Stable Rpn12 incorporation depends on all other lid subunits, indicating that Rpn12 distinguishes LP2 from smaller lid subcomplexes. The highly conserved C terminus of Rpn12 bridges the lid and base, mediating both stable binding to LP2 and lid-base joining. Our data suggest a hierarchical assembly mechanism where Rpn12 binds LP2 only upon correct assembly of all other lid subunits, and the Rpn12 tail then helps drive lid-base joining. Rpn12 incorporation thus links proper lid assembly to subsequent assembly steps.  相似文献   

4.
The yeast (Saccharomyces cerevisiae) contains three N-acetyltransferases, NatA, NatB, and NatC, each of which acetylates proteins with different N-terminal regions. The 19S regulatory particle of the yeast 26S proteasome consists of 17 subunits, 12 of which are N-terminally modified. By using nat1, nat3, and mak3 deletion mutants, we found that 8 subunits, Rpt4, Rpt5, Rpt6, Rpn2, Rpn3, Rpn5, Rpn6, and Rpn8, were NatA substrates, and that 2 subunits, Rpt3 and Rpn11, were NatB substrates. Mass spectrometric analysis revealed that the initiator Met of Rpt2 precursor polypeptide was processed and a part of the mature Rpt2 was N-myristoylated. The crude extracts from the normal strain and the nat1 deletion mutant were similar in chymotrypsin-like activity in the presence of ATP in vitro and in the accumulation level of the 26S proteasome. These characteristics were different from those of the 20S proteasome: the chymotrypsin-like activity and accumulation level of 20S proteasome were appreciably higher from the nat1 deletion mutant than from the normal strain.  相似文献   

5.
The 20S Proteasome as an Assembly Platform for the 19S Regulatory Complex   总被引:1,自引:0,他引:1  
26S proteasomes consist of cylindrical 20S proteasomes with 19S regulatory complexes attached to the ends. Treatment with high concentrations of salt causes the regulatory complexes to separate into two sub-complexes, the base, which is in contact with the 20S proteasome, and the lid, which is the distal part of the 19S complex. Here, we describe two assembly intermediates of the human regulatory complex. One is a dimer of the two ATPase subunits, Rpt3 and Rpt6. The other is a complex of nascent Rpn2, Rpn10, Rpn11, Rpn13, and Txnl1, attached to preexisting 20S proteasomes. This early assembly complex does not yet contain Rpn1 or any of the ATPase subunits of the base. Thus, assembly of 19S regulatory complexes takes place on preexisting 20S proteasomes, and part of the lid is assembled before the base.  相似文献   

6.
The number of proteasomal substrates that are degraded without prior ubiquitylation continues to grow. However, it remains poorly understood how the proteasome recognizes substrates lacking a ubiquitin (Ub) signal. Here we demonstrated that the Ub-independent degradation of Rpn4 requires the 19S regulatory particle (RP). The Ub-independent degron of Rpn4 was mapped to an N-terminal region including the first 80 residues. Inspection of its amino acid sequence revealed that the Ub-independent degron of Rpn4 consists of an intrinsically disordered domain followed by a folded segment. Using a photo-crosslinking-label transfer method, we captured three 19S RP subunits (Rpt1, Rpn2 and Rpn5) that bind the Ub-independent degron of Rpn4. This is the first time that specific 19S RP subunits have been identified interacting with a Ub-independent degron. This study provides insight into the mechanism by which Ub-independent substrates are recruited to the 26S proteasome.  相似文献   

7.
The ubiquitin-proteasome pathway is responsible for selective degradation of short-lived and dysfunctional proteins in eukaryotes. The recently demonstrated presence of a functional 26 S proteasome in Trypanosoma brucei led to the identification and isolation of genes encoding all 11 non-ATPase (Rpn) subunit proteins in the trypanosome 19 S regulatory complex. Using the technique of RNA interference, expression of individual RPN genes was disrupted in the procyclic form of T. brucei, resulting, in each case, in intracellular accumulation of polyubiquitinated protein, cell arrest at the G2/M phase, and eventual cell death. With the exception of Rpn10, depletion of individual Rpn proteins disrupted also trypanosome 19 S complex formation, with the complex virtually depleted in the cell lysate. This functional and structural essentiality of 10 of the 11 Rpn proteins in T. brucei differs significantly from that observed in other organisms. When Rpn10 was deficient in trypanosomes, a 19 S complex without Rpn10 was still formed, whereas cell growth was arrested. This structural dispensability but functional indispensability of Rpn10 may constitute another unique aspect of the proteasomes in T. brucei.  相似文献   

8.
Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome   总被引:1,自引:0,他引:1  
Substrates tagged with (poly)ubiquitin for degradation can be targeted directly to the 26 S proteasome where they are proteolyzed. Independently, ubiquitin conjugates may also be delivered by bivalent shuttles. The majority of shuttles attach to the proteasome through a ubiquitin-like domain (UBL) while anchoring cargo at a C-terminal polyubiquitin-binding domain(s). We found that two shuttles of this class, Rad23 and Dsk2, dock at two different receptor sites embedded within a single subunit of the 19 S proteasome regulatory particle, Rpn1. Their association/dissociation constants and affinities for Rpn1 are similar. In contrast, another UBL-containing protein, the deubiquitinase Ubp6, is also anchored by Rpn1, yet it dissociates slower, thus behaving as an occasional proteasome subunit that is distinct from the transiently associated shuttles. Two neighboring subunits, Rpn10 and Rpn13, show a marked preference for polyubiquitin over UBLs. Rpn10 attaches to the central solenoid portion of Rpn1, although this association is stabilized by the presence of a third subunit, Rpn2. Rpn13 binds directly to Rpn2. These intrinsic polyubiquitin receptors may compete with substrate shuttles for their polyubiquitin-conjugate cargos, thereby aiding release of the emptied shuttles. By binding multiple ubiquitin-processing factors simultaneously, Rpn1 is uniquely suited to coordinate substrate recruitment, deubiquitination, and movement toward the catalytic core. The broad range of affinities for ubiquitin, ubiquitin-like, and non-ubiquitin signals by adjacent yet nonoverlapping sites all within the base represents a hub of activity that coordinates the intricate relay of substrates within the proteasome, and consequently it influences substrate residency time and commitment to degradation.  相似文献   

9.
The ubiquitin-binding Rpn10 protein serves as an ubiquitin receptor that delivers client proteins to the 26S proteasome, the protein degradation complex. It has been suggested that the ubiquitin-dependent protein degradation is critical for neuronal differentiation and for preventing neurodegenerative diseases. Our previous study indicated the importance of Rpn10 in control of cellular differentiation (Shimada et al., Mol Biol Cell 17:5356–5371, 2006), though the functional relevance of Rpn10 in neuronal cell differentiation remains a mystery to be uncovered. In the present study, we have examined the level of Rpn10 in a proteasome-containing high molecular weight (HMW) protein fraction prepared from the mouse neuroblastoma cell line Neuro2a. We here report that the protein level of Rpn10 in HMW fraction from un-differentiated Neuro2a cells was significantly lower than that of other cultured cell lines. We have found that retinoic acid-induced neural differentiation of Neuro2a cells significantly stimulates the incorporation of Rpn10 into HMW fractions, although the amounts of 26S proteasome subunits were not changed. Our findings provide the first evidence that the modulation of Rpn10 is linked to the control of retinoic acid-induced differentiation of neuroblastoma cells.  相似文献   

10.
Lier S  Paululat A 《Gene》2002,298(2):109-119
The eukaryotic 26S proteasome plays a central role in ubiquitin-dependent intracellular protein metabolism. The multimeric holoenzyme is composed of two major subcomplexes, known as the 20S proteolytic core particle and the 19S regulatory particle (RP). The RP can be further dissected into two multisubunit complexes, the lid and the base complex. The lid complex shares striking similarities with another multiprotein complex, the COP9 signalosome. Several subunits of both complexes contain the characteristic PCI domain, a structural motif important for complex assembly. The COP9 signalosome was shown to act as a versatile regulator in numerous pathways. To help define the molecular interactions of the signalosome during Drosophila development, we performed a yeast two-hybrid screen to identify proteins that physically interact with subunit 2 of the complex, namely Alien/CSN2. Here, we report that Drosophila Rpn6, a non-ATPase subunit of the RP lid complex, interacts with Alien/CSN2 via its PCI domain. The temporal and spatial expression patterns of Rpn6 and alien/CSN2 overlap on a large scale during development providing additional evidence for their interaction in vivo. Analyses of an Rpn6 P element insertion mutant and newly generated Rpn6 alleles reveal that Rpn6 is essential for Drosophila development.  相似文献   

11.
The 26S proteasome is a multisubunit protein- destroying machinery that degrades ubiquitin-tagged proteins. To date only a single species of Rpn10, which possibly functions as a multiubiquitin chain-binding subunit, has been identified in various organisms. Here we report that mouse Rpn10 mRNAs occur in at least five distinct forms, named Rpn10a to Rpn10e, and that they are generated from a single gene by developmentally regulated, alternative splicing. Rpn10a is ubiquitously expressed, whereas Rpn10e is expressed only in embryos, with the highest levels of expression in the brain. Both forms of Rpn10 are components of the 26S proteasome, with an apparently similar affinity for multiubiquitylated [(125)I]lysozyme in vitro. However, they exert markedly divergent effects on the destruction of B-type cyclin in Xenopus egg extracts. Thus, the 26S proteasome occurs in at least two functionally distinct forms: one containing a ubiquitously expressed Rpn10a and the other a newly identified, embryo-specific Rpn10e. While the former is thought to perform proteolysis constitutively in a wide variety of cells, the latter may play a specialized role in early embryonic development.  相似文献   

12.
Rpn6p is a component of the lid of the 26 S proteasome. We isolated and analyzed two temperature-sensitive rpn6 mutants in the yeast, Saccharomyces cerevisiae. Both mutants showed defects in protein degradation in vivo. However, the affinity-purified 26 S proteasome of the rpn6 mutants grown at the permissive temperature degraded polyubiquitinated Sic1p efficiently, even at a higher temperature. Interestingly, their enzyme activity was even higher at a higher temperature, indicating that once made mutant proteasomes are stable and have little defect in the proteolytic function. These results suggest that the deficiency in protein degradation observed in vivo is rather due to a defect in the assembly of a holoenzyme at the restrictive temperature. Indeed, both rpn6 mutants grown at the restrictive temperature were defective in assembling the 26 S proteasome. A striking feature of the rpn6 mutants at the restrictive temperature was that there appeared a protein complex composed of only four of the nine lid components, Rpn5p, Rpn8p, Rpn9p, and Rpn11p. Altogether, we conclude that Rpn6p is essential for the integrity/assembly of the lid in the sense that it is necessary for the incorporation of Rpn3p, Rpn7p, Rpn12p, and Sem1p (Rpn15p) into the lid, thereby playing an essential role in the proper function of the 26 S proteasome.  相似文献   

13.
The alpha-helical solenoid proteins adopt a variety of elongated curved structures. They have been examined to identify the interactions that determine their curvature. A sequence pattern characteristic for strongly curved alpha-helical solenoids has been constructed and was found to match protein sequences containing the proteasome/cyclosome repeats. Based on this, a structural model of the repeat-containing domains of the Rpn1/S2 and Rpn2/S1 proteins, which represent the largest subunits of the 26 S proteasome, has been proposed. The model has a novel architecture resembling an alpha-helical toroid. Molecular modeling shows that these toroids have a central pore that would allow passage of an unfolded protein substrate through it. This implies that the Rpn1 and Rpn2 toroids are aligned along the common axial pores of the ATPase hexamer and form an "antechamber" of the 26 S proteasome. The proposed quaternary structure agrees with the available experimental data. It is suggested that the function of this antechamber is assistance to the ATPases in the unfolding of protein substrates prior to proteolysis. An evolutionary link between the PC repeat-containing proteins and tetratricopeptide repeat proteins is proposed.  相似文献   

14.
Rpn11 is a proteasome-associated deubiquitinating enzyme that is essential for viability. Recent genetic studies showed that Rpn11 is functionally linked to Rpn10, a major multiubiquitin chain binding receptor in the proteasome. Mutations in Rpn11 and Rpn10 can reduce the level and/or stability of proteasomes, indicating that both proteins influence its structural integrity. To characterize the properties of Rpn11, we examined its interactions with other subunits in the 19S regulatory particle and detected strong binding to Rpn3. Two previously described rpn3 mutants are sensitive to protein translation inhibitors and an amino acid analog. These mutants also display a mitochondrial defect. The abundance of intact proteasomes was significantly reduced in rpn3 mutants, as revealed by strongly reduced binding between 20S catalytic with 19S regulatory particles. Proteasome interaction with the shuttle factor Rad23 was similarly reduced. Consequently, higher levels of multiUb proteins were associated with Rad23, and proteolytic substrates were stabilized. The availability of Rpn11 is important for maintaining adequate levels of intact proteasomes, as its depletion caused growth and proteolytic defects in rpn3. These studies suggest that Rpn11 is stabilized following its incorporation into proteasomes. The instability of Rpn11 and the defects of rpn3 mutants are apparently caused by a failure to recruit Rpn11 into mature proteasomes.  相似文献   

15.
Recognition of polyubiquitinated substrates by the 26S proteasome is a key step in the selective degradation of various cellular proteins. The Rpn10 subunit of the 26S proteasome can bind polyubiquitin conjugates in vitro. We have previously reported the unique diversity of Rpn10, which differs from other multiple proteasome subunits, and that the mouse Rpn10 mRNA family is generated from a single gene by developmentally regulated alternative splicing. To determine whether such alternative splicing mechanisms occur in other species, we searched for Rpn10 isoforms in databases and in our original PCR products. Here we report the genomic organization of the Rpn10 gene in lower vertebrates and provide evidence for the competent generation of distinct forms of Rpn10 by alternative splicing through evolution.  相似文献   

16.
17.
The ubiquitin/proteasome system regulates protein turnover by degrading polyubiquitinated proteins. To date, all studies on the relationship of apoptosis and the proteasome have emphasized the key role of the proteasome in the regulation of apoptosis, by virtue of its ability to degrade regulatory molecules involved in apoptosis. We now demonstrate how induction of apoptosis may regulate the activity of the proteasome. During apoptosis, caspase activation results in the cleavage of three specific subunits of the 19S regulatory complex of the proteasome: S6' (Rpt5) and S5a (Rpn10), whose role is to recognize polyubiquitinated substrates of the proteasome, and S1 (Rpn2), which with S5a and S2 (Rpn1) holds together the lid and base of the 19S regulatory complex. This caspase-mediated cleavage inhibits the proteasomal degradation of ubiquitin-dependent and -independent cellular substrates, including proapoptotic molecules such as Smac, so facilitating the execution of the apoptotic program by providing a feed-forward amplification loop.  相似文献   

18.
19.
Intracellular proteins tagged with ubiquitin chains are targeted to the 26S proteasome for degradation. The two subunits, Rpn10 and Rpn13, function as ubiquitin receptors of the proteasome. However, differences in roles between Rpn10 and Rpn13 in mammals remains to be understood. We analyzed mice deficient for Rpn13 and Rpn10. Liver-specific deletion of either Rpn10 or Rpn13 showed only modest impairment, but simultaneous loss of both caused severe liver injury accompanied by massive accumulation of ubiquitin conjugates, which was recovered by re-expression of either Rpn10 or Rpn13. We also found that mHR23B and ubiquilin/Plic-1 and -4 failed to bind to the proteasome in the absence of both Rpn10 and Rpn13, suggesting that these two subunits are the main receptors for these UBL-UBA proteins that deliver ubiquitinated proteins to the proteasome. Our results indicate that Rpn13 mostly plays a redundant role with Rpn10 in recognition of ubiquitinated proteins and maintaining homeostasis in Mus musculus.  相似文献   

20.
We have isolated the RPN9 gene by two-hybrid screening with, as bait, RPN10 (formerly SUN1), which encodes a multiubiquitin chain receptor residing in the regulatory particle of the 26S proteasome. Rpn9 is a nonessential subunit of the regulatory particle of the 26S proteasome, but the deletion of this gene results in temperature-sensitive growth. At the restrictive temperature, the Deltarpn9 strain accumulated multiubiquitinated proteins, indicating that the RPN9 function is needed for the 26S proteasome activity at a higher temperature. We analyzed the proteasome fractions separated by glycerol density gradient centrifugation by native polyacrylamide gel electrophoresis and found that a smaller amount of the 26S proteasome was produced in the Deltarpn9 cells and that the 26S proteasome was shifted to lighter fractions than expected. The incomplete proteasome complexes were found to accumulate in the Deltarpn9 cells. Furthermore, Rpn10 was not detected in the fractions containing proteasomes of the Deltarpn9 cells. These results indicate that Rpn9 is needed for incorporating Rpn10 into the 26S proteasome and that Rpn9 participates in the assembly and/or stability of the 26S proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号