首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the differenetial effects of docosahexaenoic (DHA) and eicosapentaenoic (EPA) acid on platelet membrane fluidity under hypercholesterolemic conditions. DHA and EPA were orally administered (300 mg/kg body weight.day) to hypercholesterolemic rats for 12 weeks. Membrane fluidity, evaluated by fluorescence polarization of nonpolar 1,6-diphenyl-1,3,5-hexatriene (DPH), of the platelets of high cholesterol (HC; 1%)-fed rats decreased significantly compared with that of the platelets of normocholesterolemic rats. In HC-fed rats, dietary administration of DHA, unlike that of EPA, significantly increased platelet membrane fluidity. A high cholesterol diet significantly increased platelet aggregation, compared with the platelet aggregation of normocholesterolemic rats. DHA administration significantly decreased the aggregation, whereas EPA had no effect. Levels of EPA in the platelets of the EPA-fed HC rats and those of DHA in the platelets of the DHA-fed HC rats increased by 482 and 174%, respectively, compared with those in the platelets of the HC-fed rats. The unsaturation index and the ratio of saturated to (poly)unsaturated fatty acid of the platelet membrane increased only in the DHA-fed rats. The phospholipid content in platelet membranes remained unaltered in all groups, whereas the cholesterol content decreased significantly in DHA-fed rats, resulting in a significant decrease in the cholesterol/phospholipid molar ratio only in the platelet membranes of DHA-fed rats. These results suggest that DHA is a more potent membrane-fluidizer than EPA in withstanding cholesterol-induced decreases in platelet membrane fluidity and a stronger ameliorative modulator of platelet hyperaggregation.  相似文献   

2.
Interleukin-10 (IL-10) exerts a wide spectrum of regulatory activities in the immune and inflammatory response. The aim of this study was to investigate the role of endogenous IL-10 on the modulation of the secondary events in mice subjected to spinal cord injury induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5–T8 laminectomy. IL-10 wild-type mice developed severe spinal cord damage characterized by oedema, tissue damage and apoptosis (measured by Annexin-V, terminal deoxynucleotidyltransferase-mediated UTP end labeling staining, Bax, Bcl-2, and Fas-L expression). Immunohistochemistry demonstrated a marked increase of localization of TNF-α, IL-1β and S100β, while western blot analysis shown an increased immunoreactivity of inducible nitric oxide synthase in the spinal cord tissues. The absence of IL-10 in IL-10 KO mice resulted in a significant augmentation of all the above described parameters. We have also demonstrated that the genetic absence of IL-10 worsened the recovery of limb function when compared with IL-10 wild-type mice group (evaluated by motor recovery score). Taken together, our results clearly demonstrate that the presence of IL-10 reduces the development of inflammation and tissue injury events associated with spinal cord trauma.  相似文献   

3.
The pathophysiology of spinal cord injury (SCI) involves primary injury and secondary injury. For the irreversibility of primary injury, therapies of SCI mainly focus on secondary injury, whereas inflammation is considered to be a major target for secondary injury; however the regulation of inflammation in SCI is unclear and targeted therapies are still lacking. In this study, we found that the expression of BRD4 was correlated with pro‐inflammatory cytokines after SCI in rats; in vitro study in microglia showed that BRD4 inhibition either by lentivirus or JQ1 may both suppress the MAPK and NF‐κB signalling pathways, which are the two major signalling pathways involved in inflammatory response in microglia. BRD4 inhibition by JQ1 not only blocked microglial M1 polarization, but also repressed the level of pro‐inflammatory cytokines in microglia in vitro and in vivo. Furthermore, BRD4 inhibition by JQ1 can improve functional recovery and structural disorder as well as reduce neuron loss in SCI rats. Overall, this study illustrates that microglial BRD4 level is increased after SCI and BRD4 inhibition is able to suppress M1 polarization and pro‐inflammatory cytokine production in microglia which ultimately promotes functional recovery after SCI.  相似文献   

4.
Spinal cord injury (SCI) leads to an increase in extracellular excitatory amino acid (EAA) concentrations resulting in glutamate receptor-mediated excitotoxic events. The glutamate receptors include ionotropic (iGluRs) and metabotropic (mGluR) receptors. Of the three groups of mGluRs, group-I activation can initiate intracellular pathways that lead to further transmitter release. Groups II and III mGluRs function mainly as autoreceptors to regulate neurotransmitter release. In an effort to examine the role of mGluRs in the increase in EAAs following SCI, we administered AIDA, a potent group-I mGluR antagonist immediately after injury. To determine subtype specific roles of the group-I mGluRs, we evaluated EAA release following LY 367385 (mGluR1 antagonist) and MPEP (mGluR5 antagonist) administration. To evaluate group-II and -III mGluRs we administered APDC (group-II agonist) and L-AP4 (group-III agonist) immediately following injury; additionally, we initiated treatment with CPPG (group-II/-III antagonist) and LY 341495 (group-II antagonist) 5 min prior to injury. Subjects were adult male Sprague-Dawley rats (225-250 g), impact injured at T10 with an NYU impactor (12.5 mm drop). Agents were injected into the epicenter of injury, amino acids where collected by microdialysis fibers inserted 0.5 mm caudal from the edge of the impact region and quantified by HPLC. Treatment with AIDA significantly decreased extracellular EAA and GABA concentrations. MPEP reduced EAA concentrations without affecting GABA. Combining LY 367385 and MPEP resulted in a decrease in EAA and GABA concentrations greater than either agent alone. L-AP4 decreased EAA levels, while treatment with LY 341495 increased EAA levels. These results suggest that mGluRs play an important role in EAA toxicity following SCI.  相似文献   

5.
In view of a cytoprotective effect of elastase inhibitor on chemokine-mediated tissue injury, we examined the neuroprotective effect of ONO-5046, a specific inhibitor of neutrophil elastase, in rats with spinal cord injury. Standardized spinal cord compression markedly increased cytokine-induced neutrophil chemo-attractant (CINC)-1 mRNA and protein. Their increases correlated with neurologic severity of injured rats. Immunohistochemically, CINC-1 protein was detected sequentially in vascular endothelial cells at 4 h, in perivascular neutrophils at 8 h, and in neutrophils infiltrating into cord substance at 12 h. Pretreatment with ONO-5046 (50 mg/kg) markedly ameliorated motor disturbance in injured rats, and reduced CINC-1 protein and mRNA expression. ONO-5046 also significantly reduced the increase of neutrophil accumulation or infiltration estimated by myeloperoxidase activity, and the extent of vascular permeability by Evans blue extravasation in the injured cord segment in comparison to control animals receiving vehicle. These results suggest that CINC-1 contributed to inflammation in rat spinal cord injury and ONO-5046 attenuated neurologic damage partly by blocking CINC-1 production of the chemoattractant, preventing neutrophil activation and vascular endothelial cell injury.  相似文献   

6.
脊髓损伤(spinal cord injury, SCI)目前尚无有效的治疗手段。脊髓损伤后,患者常伴有严重的胃肠功能障碍,严重影响患者的生活质量。研究发现,脊髓损伤后肠道菌群的紊乱和脊髓损伤后的胃肠道功能障碍密切相关。因此,本文围绕脊髓损伤后肠道菌群的变化,探讨肠道菌群在迷走神经、下丘脑-垂体-肾上腺和肠道菌群代谢物3个途径中发挥的作用,及与胃肠道炎症反应相关的研究进展。  相似文献   

7.
GeneChip analysis after acute spinal cord injury in rat.   总被引:4,自引:0,他引:4  
  相似文献   

8.
The influence of docosahexaenoic acid (DHA)- and eicosapentaenoic acid (EPA)-enriched phosphatidylcholine (PC) on the permeability, transport and uptake of phospholipids was evaluated in Caco-2 cells. The cells were grown on permeable polycarbonate transwell filters, thus allowing separate access to the apical and basolateral chambers. The monolayers of the cells were used to measure lucifer yellow permeability and transepithelial electrical resistance (TEER). Transcellular transportation of diphenylhexatriene (DPH) labeled-PC small unilamellar vesicles (SUV) from the apical to basolateral chamber, and uptake of the same SUV was monitored in the cell monolayers. Cell-membrane perturbation was evaluated to measure the release of lactate dehydrogenase and to determine the cell viability with sodium 2-(4-iodophenyl)-3-(4-nitrophenyl) -5-(2, 4-disulfophenyl)-2H-tetrazolium dye reduction assay. The lucifer yellow flux was 1.0 and 1.5 nmol/h/cm2 with 50 μM PC, and 17.0 and 23.0 nmol/h/cm2 with 100 μM PC when monolayers of Caco-2 cells were treated with DHA- and EPA-enriched PC, respectively. TEER decreased to 24 and 27% with 50 and 100 μM DHA-enriched PC, and to 25 and 30% with 50 and 100 μM EPA-enriched PC, respectively. Our results show that DHA- and EPA-enriched PC increases tight junction permeability across the Caco-2 cell monolayer whereas soy PC has no effect on tight junction permeability. Transportation and uptake of DHA- and EPA-enriched PC SUV differed significantly (P < 0.01) from those of soy PC SUV at all doses. We found that PC SUV transported across Caco-2 monolayer and was taken up by Caco-2 cells with very slight injury of the cell membrane up to 100 μM PC. Lactate dehydrogenase release and cell viability did not differ significantly between the treatment and control, emphasizing that injury was minimal. Our results suggest that DHA- and EPA-enriched PC enhance the permeability, transport and uptake of PC SUV across monolayers of Caco-2 cells. (Mol Cell Biochem xxx: 1–9, 2005)  相似文献   

9.
10.
Acute spinal cord injury (SCI) has become epidemic in modern society. Despite advances made in the understanding of the pathogenesis and improvements in early recognition and treatment, it remains a devastating event, often producing severe and permanent disability. SCI has two phases: acute and secondary. Although the acute phase is marked by severe local and systemic events such as tissue contusion, ischaemia, haemorrhage and vascular damage, the outcome of SCI are mainly influenced by the secondary phase. SCI causes inflammatory responses through the activation of innate immune responses that contribute to secondary injury, in which polarization‐based macrophage activation is a hallmarker. Macrophages accumulated within the epicentre and the haematoma of the injured spinal cord play a significant role in this inflammation. Depending on their phenotype and activation status, macrophages may initiate secondary injury mechanisms and/or promote CNS regeneration and repair. When it comes to therapies for SCI, very few can be performed in the acute phase. However, as macrophage activation and polarization switch are exquisitely sensitive to changes in microenvironment, some trials have been conducted to modulate macrophage polarization towards benefiting the recovery of SCI. Given this, it is important to understand how macrophages and SCI interrelate and interact on a molecular pathophysiological level. This review provides a comprehensive overview of the immuno‐pathophysiological features of acute SCI mainly from the following perspectives: (i) the overview of the pathophysiology of acute SCI, (ii) the roles of macrophage, especially its polarization switch in acute SCI, and (iii) newly developed neuroprotective therapies modulating macrophage polarization in acute SCI.  相似文献   

11.
Transcutaneous electrical nerve stimulation (TENS) is a commonly utilized non-pharmacological treatment for pain. Studies show that low- and high-frequency TENS utilize opioid, serotonin and/or muscarinic receptors in the spinal cord to reduce hyperalgesia induced by joint inflammation in rats. As there is an increase in glutamate and aspartate levels in the spinal cord after joint inflammation, and opioids reduce glutamate and aspartate release, we hypothesized that TENS reduces release of glutamate and aspartate in animals with joint inflammation by activation of opioid receptors. Using microdialysis and HPLC with fluorescence detection, we examined the release pattern of glutamate and aspartate in the dorsal horn in response to either low-frequency (4 Hz) or high-frequency (100 Hz) TENS. We examined the effects of TENS on glutamate and aspartate release in animals with and without joint inflammation. High-frequency, but not low-frequency, TENS significantly reduced spinal glutamate and aspartate in animals with joint inflammation compared with levels in those without joint inflammation. The reduced release of glutamate and aspartate by high-frequency TENS was prevented by spinal blockade of delta-opioid receptors with naltrindole. Thus, we conclude that high-frequency TENS activates delta-opioid receptors consequently reducing the increased release of glutamate and aspartate in the spinal cord.  相似文献   

12.
Spinal cord injury (SCI) results in a wide range of disabilities. Its complex pathophysiological process limits the effectiveness of many clinical treatments. Betulinic acid (BA) has been shown to be an effective treatment for some neurological diseases, but it has not been studied in SCI. In this study, we assessed the role of BA in SCI and investigated its underlying mechanism. We used a mouse model of SCI, and functional outcomes following injury were assessed. Western blotting, ELISA, and immunofluorescence techniques were employed to analyze levels of autophagy, mitophagy, pyroptosis, and AMPK-related signaling pathways were also examined. Our results showed that BA significantly improved functional recovery following SCI. Furthermore, autophagy, mitophagy, ROS level and pyroptosis were implicated in the mechanism of BA in the treatment of SCI. Specifically, our results suggest that BA restored autophagy flux following injury, which induced mitophagy to eliminate the accumulation of ROS and inhibits pyroptosis. Further mechanistic studies revealed that BA likely regulates autophagy and mitophagy via the AMPK-mTOR-TFEB signaling pathway. Those results showed that BA can significantly promote the recovery following SCI and that it may be a promising therapy for SCI.  相似文献   

13.
Changes in the distribution of interstitial cells (IC) are reportedly associated with dysfunctional bladder. This study investigated whether spinal cord injury (SCI) resulted in changes to IC subpopulations (vimentin-positive with the ultrastructural profile of IC), smooth muscle and nerves within the bladder wall and correlated cellular remodelling with functional properties. Bladders from SCI (T8/9 transection) and sham-operated rats 5 weeks post-injury were used for ex vivo pressure-volume experiments or processed for morphological analysis with transmission electron microscopy (TEM) and light/confocal microscopy. Pressure-volume relationships revealed low-pressure, hypercompliance in SCI bladders indicative of decompensation. Extensive networks of vimentin-positive IC were typical in sham lamina propria and detrusor but were markedly reduced post-SCI; semi-quantitative analysis showed significant reduction. Nerves labelled with anti-neurofilament and anti-vAChT were notably decreased post-SCI. TEM revealed lamina propria IC and detrusor IC which formed close synaptic-like contacts with vesicle-containing nerve varicosities in shams. Lamina propria and detrusor IC were ultrastructurally damaged post-SCI with retracted/lost cell processes and were adjacent to areas of cellular debris and neuronal degradation. Smooth muscle hypertrophy was common to SCI tissues. In conclusion, IC populations in bladder wall were decreased 5 weeks post-SCI, accompanied with reduced innervation, smooth muscle hypertrophy and increased compliance. These novel findings indicate that bladder wall remodelling post-SCI affects the integrity of interactions between smooth muscle, nerves and IC, with compromised IC populations. Correlation between IC reduction and a hypercompliant phenotype suggests that disruption to bladder IC contribute to pathophysiological processes underpinning the dysfunctional SCI bladder.  相似文献   

14.
Electrical stimulation (ES) has been shown to improve some of impairments after spinal cord injury (SCI), but the underlying mechanisms remain unclear. The Wnt signaling pathways and the endocannabinoid system appear to be modulated in response to SCI. This study aimed to investigate the effect of ES therapy on the activity of canonical/noncanonical Wnt signaling pathways, brain-derived neurotrophic factor (BDNF), and fatty-acid amide hydrolase (FAAH), which regulate endocannabinoids levels. Forty male Wistar rats were randomly divided into four groups: (a) Sham, (b) laminectomy + epidural subthreshold ES, (c) SCI, and (d) SCI + epidural subthreshold ES. A moderate contusion SCI was performed at the thoracic level (T10). Epidural subthreshold ES was delivered to upper the level of T10 segment every day (1 hr/rat) for 2 weeks. Then, animals were killed and immunoblotting was used to assess spinal cord parameters. Results revealed that ES intervention for 14 days could significantly increase wingless-type3 (Wnt3), Wnt7, β-catenin, Nestin, and cyclin D1 levels, as well as phosphorylation of glycogen synthase kinase 3β and Jun N-terminal kinase. Additionally, SCI reduced BDNF and FAAH levels, and ES increased BDNF and FAAH levels in the injury site. We propose that ES therapy may improve some of impairments after SCI through Wnt signaling pathways. Outcomes also suggest that BDNF and FAAH are important players in the beneficial impacts of ES therapy. However, the precise mechanism of BDNF, FAAH, and Wnt signaling pathways on SCI requires further investigation.  相似文献   

15.
目的:观察脊髓损伤后CSPGs的表达及其与GFAP的关系。方法:成年雄性SD大鼠25只,随机分为对照组和损伤组,损伤组分脊髓挤压损伤后0h、72h、1w、4w组,运用免疫荧光双重染色方法观察CSPGs与GFAP的表达。结果:挤压伤后损伤部位的CSPGs和GFAP的表达均增高,但二者的变化趋势并不一样。其中CSPGs从损伤后表达开始增高,此后一直增加,并在1w至4w时逐渐稳定,主要分布逐渐集中于损伤部位;星形胶质细胞的免疫反应也逐渐增加,其分布逐渐集中于损伤区域的边缘,逐渐形成胶质瘢痕界膜。损伤1w至4w,损伤区域内几乎没有了星形胶质细胞表达,但仍留有大量的CSPGs。结论:早期抑制星形胶质细胞分泌CSPGs,可以防止在损伤部位沉积大量的CSPGs,从而减小其对再生纤维的抑制作用。  相似文献   

16.
Spinal cord injury (SCI) elicits a neuroinflammatory reaction dominated by microglia and monocyte-derived macrophages (MDM). Because MDM do not infiltrate the spinal cord until days after injury, it may be possible to control whether they differentiate into neuroprotective or neurotoxic effector cells. However, doing so will require better understanding of the factors controlling MDM differentiation and activation. Our goal was to develop an in vitro model of MDM that is relevant in the context of SCI. This tool would allow future studies to define mechanisms and intracellular signaling pathways that are associated with MDM-mediated neuroprotection or neurotoxicity. We first characterized SCI-induced cytokine expression in MDM using laser capture microdissection and real-time PCR. Based on this data, we assessed which easily procurable primary macrophage subset would mimic this phenotype in vitro. We established the baseline and inductive potential of resident peritoneal, thioglycollate-elicited peritoneal and bone marrow-derived macrophages (BMDM) at the molecular, cellular and functional level. Of these cells, only BMDM retained the phenotypic, molecular and functional characteristics of MDM that infiltrate the injured spinal cord. Thus, peripheral macrophages should not be used interchangeably in vitro to model the functional consequences of the MDM response elicited by SCI.  相似文献   

17.
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood–spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1β (IL-1β) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy.  相似文献   

18.
Blood‐spinal cord barrier (BSCB) disruption is a major process for the secondary injury of spinal cord injury (SCI) and is considered to be a therapeutic target for SCI. Previously, we demonstrated that metformin could improve functional recovery after SCI; however, the effect of metformin on BSCB is still unknown. In this study, we found that metformin could prevent the loss of tight junction (TJ) proteins at day 3 after SCI in vivo, but in vitro there was no significant difference of these proteins between control and metformin treatment in endothelial cells. This indicated that metformin‐induced BSCB protection might not be mediated by up‐regulating TJ proteins directly, but by inhibiting TJ proteins degradation. Thus, we investigated the role of metformin on MMP‐9 and neutrophils infiltration. Neutrophils infiltration is the major source of the enhanced MMP‐9 in SCI. Our results showed that metformin decreased MMP‐9 production and blocked neutrophils infiltration at day 1 after injury, which might be related to ICAM‐1 down‐regulation. Also, our in vitro study showed that metformin inhibited TNF‐α‐induced MMP‐9 up‐regulation in neutrophils, which might be mediated via an AMPK‐dependent pathway. Together, it illustrated that metformin prevented the breakdown of BSCB by inhibiting neutrophils infiltration and MMP‐9 production, but not by up‐regulating TJ proteins expression. Our study may help to better understand the working mechanism of metformin on SCI.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号