首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Syk, a 72-kDa tyrosine kinase, is involved in development, differentiation, and signal transduction of hematopoietic and some non-hematopoietic cells. This study determined if Syk is expressed in vascular smooth muscle cells (VSMC) and contributes to angiotensin II (Ang II) signaling and protein synthesis. Syk was found in VSMC and was phosphorylated by Ang II through AT1 receptor. Ang II-induced Syk phosphorylation was inhibited by piceatannol and dominant negative but not wild type Syk mutant. Syk phosphorylation by Ang II was attenuated by cytosolic phospholipase A(2) (cPLA(2)) inhibitor pyrrolidine-1 and retrovirus carrying small interfering RNAs (shRNAs) of this enzyme. Arachidonic acid (AA) increased Syk phosphorylation, and AA- and Ang II-induced phosphorylation was diminished by inhibitors of AA metabolism (5,8,11,14-eicosatetraynoic acid) and lipoxygenase (LO; baicalein) but not cyclooxygenase (indomethacin). AA metabolites formed via LO, 5(S)-, 12(S)-, and 15(S)-hydroxyeicosatetraenoic acids, which activate p38 MAPK, increased Syk phosphorylation. p38 MAPK inhibitor SB202190, and dominant negative p38 MAPK mutant attenuated Ang II- and AA-induced Syk phosphorylation. Adenovirus dominant negative c-Src mutant abolished Ang II - and AA-induced Syk phosphorylation and SB202190, and dominant negative p38 MAPK mutant inhibited Ang II-induced c-Src phosphorylation. Syk dominant negative mutant but not epidermal growth factor receptor blocker AG1478 also inhibited Ang II-induced VSMC protein synthesis. These data suggest that Syk expressed in VSMC is activated by Ang II through p38 MAPK-activated c-Src subsequent to cytosolic phospholipase A(2) and generation of AA metabolites via LO, and it mediates Ang II-induced protein synthesis independent of epidermal growth factor receptor transactivation (Ang II --> cPLA(2) --> AA metabolites of LO --> p38 MAPK --> c-Src --> Syk --> protein synthesis).  相似文献   

5.
In a previous study, we had shown that activation of the AT2 (angiotensin type 2) receptor of angiotensin II (Ang II) induced morphological differentiation of the neuronal cell line NG108-15. In the present study, we investigated the nature of the possible intracellular mediators involved in the AT2 effect. We found that stimulation of AT2 receptors in NG108-15 cells resulted in time-dependent modulation of tyrosine phosphorylation of a number of cytoplasmic proteins. Stimulation of NG108-15 cells with Ang II induced a decrease in GTP-bound p21ras but a sustained increase in the activity of p42mapk and p44mapk as well as neurite outgrowth. Similarly, neurite elongation, increased polymerized tubulin levels, and increased mitogen-activated protein kinase (MAPK) activity were also observed in a stably transfected NG108-15 cell line expressing the dominant-negative mutant of p21ras, RasN17. These results support the observation that inhibition of p21ras did not impair the effect of Ang II on its ability to stimulate MAPK activity. While 10 microM of the MEK inhibitor, PD98059, only moderately affected elongation, 50 microM PD98059 completely blocked the Ang II- and the RasN17-mediated induction of neurite outgrowth. These results demonstrate that some of the events associated with the AT2 receptor-induced neuronal morphological differentiation of NG108-15 cells not only include inhibition of p21ras but an increase in MAPK activity as well, which is essential for neurite outgrowth.  相似文献   

6.
Advanced age is associated with decreased stem cell activity. However, the effect of aging on the differentiation capacity of induced pluripotent stem (iPS) cells into cardiovascular cells has not been fully clarified. We investigated whether iPS cells derived from young and old mice are equally capable of differentiating into vascular progenitor cells, and whether these cells regulate vascular responses in vivo. iPS cells from mouse embryonic fibroblasts (young) or 21 month-old mouse bone marrow (old) were used. Fetal liver kinase-1 positive (Flk-1(+)) cells, as a vascular progenitor marker, were induced after 3 to 4 days of culture from iPS cells derived from young and old mice. These Flk-1(+) cells were sorted and shown to differentiate into VE-cadherin(+) endothelial cells and α-SMA(+) smooth muscle cells. Tube-like formation was also successfully induced in both young and old murine Flk-1(+) cells. Next, hindlimb ischemia was surgically induced, and purified Flk-1(+) cells were directly injected into ischemic hindlimbs of nude mice. Revascularization of the ischemic hindlimb was significantly accelerated in mice transplanted with Flk-1(+) cells derived from iPS cells from either young or old mice, as compared to control mice as evaluated by laser Doppler blood flowmetry. The degree of revascularization was similar in the two groups of ischemic mice injected with iPS cell-derived Flk-1(+) cells from young or old mice. Transplantation of Flk-1(+) cells from both young and old murine iPS cells also increased the expression of VEGF, HGF and IGF mRNA in ischemic tissue as compared to controls. iPS cell-derived Flk-1(+) cells differentiated into vascular progenitor cells, and regulated angiogenic vascular responses both in vitro and in vivo. These properties of iPS cells derived from old mice are essentially the same as those of iPS cells from young mice, suggesting the functionality of generated iPS cells themselves to be unaffected by aging.  相似文献   

7.
Leukemia inhibitory factor (LIF), a cytokine at the interface between neurobiology and immunology, is mainly mediated through JAK/STAT pathway and MAPK/ERK pathway. Evidence suggested LIF is related to the higher expression of neurokinin-1 receptor (NK-1R) in asthma. In this study, the immunohistochemistry stain showed the expressions of NK-1R, LIF, p-STAT3, and p-ERK1/2 in the lung tissues of allergic rats were increased compared with the controls, and the main positive cell type was airway epithelial cell. Normal human bronchial epithelial cells were treated with LIF in the presence or absence of AG490 (JAK2 inhibitor), PD98059 (MEK inhibitor), and the siRNA against STAT3. Western blot and RT-PCR indicated that LIF induced the expression of NK-1R, which was inhibited by the inhibitors mentioned above. No significant interaction was found between JAK/STAT pathway and MAPK/ERK pathway. In summary, bronchial epithelial cell changes in asthma are induced by LIF which promotes the expression of NK-1R, and JAK/STAT pathway and MAPK/ERK pathway may participate in this process.  相似文献   

8.
9.
Background: The mechanisms responsible for the accelerated cardiovascular disease in diabetes, as well as the increased hypertrophic effects of angiotensin II (Ang II) under hyperglycemic condition, are not very clear. Evidences show that platelet-derived growth factor (PDGF) and protein kinase C (PKC) play a critical role in this effect. In our study, we examined the role of PKC and PDGF receptor on JAK2 and STAT1 phosphorylation under high glucose (HG) condition (25 mmol/L) in response to Ang II in cultured vascular smooth muscle cells (VSMC).

Methods: VSMCs were isolated from the thoracic aorta of male Wistar rats and were cultured. Growth-arrested VSMCs were placed in either normal glucose (NG) or HG condition for 48?h and then VSMCs were stimulated with agonists and antagonists. The tyrosine phosphorylation of JAK2 or STAT were determined by immunoblotting using specific antibodies.

Results: High glucose markedly increased the phosphorylation of tyrosine residues of JAK2 and serine residues of STAT 1 compared with cells cultured in NG (5.5 mmol/L) with and without Ang II stimulation. Experiments made with specific PDGF-β receptor inhibitor AG1295 and PKC inhibitor GF109203X showed that there were no changes in Ang II-stimulated JAK2 and STAT1 phosphorylation under NG and HG conditions compared with experiments without inhibitors.

Conclusion: According to our findings, Ang II-stimulated JAK2 and STAT1 phosphorylation under either NG or HG condition do not proceed via a different pathway rather than PKC and PDGF-β receptor.  相似文献   

10.
11.
We have investigated signaling pathways leading to angiotensin II (Ang II) activation of mitogen-activated protein kinase (MAPK) in hepatocytes. MAPK activation by Ang II was abolished by the Ang II type 1 (AT1) receptor antagonist losartan, but not by the Ang II type 2 (AT2) receptor antagonist PD123319. Ang II (100 nM) induced a rapid phosphorylation of Src (peak approximately 2 min) and focal adhesion kinase (FAK, peak approximately 5 min) followed by a decrease to basal levels in 30 min. An increased association between FAK and Src in response to Ang II was detected after 1 min, which declined to basal levels after 30 min. Treatment with the Src kinase inhibitor PP-1 inhibited FAK phosphorylation. Downregulation of PKC, intracellular Ca2+ chelator BAPTA or inhibitors of PKC, Src kinase, MAPK kinase (MEK), Ca2+/calmodulin dependent protein kinase, phosphatidylinositol 3-kinase all blocked Ang II-induced MAPK phosphorylation. In contrast to other cells, there was no evidence for the role of EGF receptor transactivation in the activation of MAPK by Ang II. However, PDGF receptor phosphorylation is involved in the Ang II stimulated MAPK activation. Furthermore, Src/FAK and Ca/CaM kinase activation serve as potential links between the Ang II receptor and MAPK activation. These studies offer insight into the signaling network upstream of MAPK activation by AT1 receptor in hepatocytes.  相似文献   

12.
13.
14.
15.
16.
Chan SS  Li HJ  Hsueh YC  Lee DS  Chen JH  Hwang SM  Chen CY  Shih E  Hsieh PC 《PloS one》2010,5(12):e14414

Background

The fibroblast growth factor (FGF) family is essential to normal heart development. Yet, its contribution to cardiomyocyte differentiation from stem cells has not been systemically studied. In this study, we examined the mechanisms and characters of cardiomyocyte differentiation from FGF family protein treated embryonic stem (ES) cells and induced pluripotent stem (iPS) cells.

Methodology/Principal Findings

We used mouse ES cells stably transfected with a cardiac-specific α-myosin heavy chain (αMHC) promoter-driven enhanced green fluorescent protein (EGFP) and mouse iPS cells to investigate cardiomyocyte differentiation. During cardiomyocyte differentiation from mouse ES cells, FGF-3, -8, -10, -11, -13 and -15 showed an expression pattern similar to the mesodermal marker Brachyury and the cardiovascular progenitor marker Flk-1. Among them, FGF-10 induced cardiomyocyte differentiation in a time- and concentration-dependent manner. FGF-10 neutralizing antibody, small molecule FGF receptor antagonist PD173074 and FGF-10 and FGF receptor-2 short hairpin RNAs inhibited cardiomyocyte differentiation. FGF-10 also increased mouse iPS cell differentiation into cardiomyocyte lineage, and this effect was abolished by FGF-10 neutralizing antibody or PD173074. Following Gene Ontology analysis, microarray data indicated that genes involved in cardiac development were upregulated after FGF-10 treatment. In vivo, intramyocardial co-administration of FGF-10 and ES cells demonstrated that FGF-10 also promoted cardiomyocyte differentiation.

Conclusion/Significance

FGF-10 induced cardiomyocyte differentiation from ES cells and iPS cells, which may have potential for translation into clinical applications.  相似文献   

17.
Interleukin-6 (IL-6) subfamily of cytokines, including oncostatin M (OSM), leukemia inhibitory factor (LIF), and IL-6, has been implicated in a variety of physiological responses, such as cell growth, differentiation, and inflammation. In the present study, we demonstrated that both OSM and LIF stimulated the proliferation of human adipose tissue-derived mesenchymal stem cells (hATSCs), however, IL-6 had no effect on cell proliferation. OSM treatment induced phosphorylation of ERK, and pretreatment with U0126, a MEK inhibitor, prevented the OSM-stimulated proliferation of hATSCs, suggesting that the MEK/ERK pathway is involved in the OSM-induced proliferation. Treatment with OSM also induced phosphorylation of JAK2 and JAK3, and pretreatment of the cells with WHI-P131, a JAK3 inhibitor, but not with AG490, a JAK2 inhibitor, attenuated the OSM-induced proliferation of hATSCs. Furthermore, OSM treatment elicited phosphorylation of STAT1 and STAT3, and pretreatment with WHI-P131 specifically prevented the OSM-induced phosphorylation of STAT1, without affecting the OSM-induced phosphorylation of ERK and STAT3. These results suggest that two separate signaling pathways, such as MEK/ERK and JAK3/STAT1, are independently involved in the OSM-stimulated proliferation of hATSCs.  相似文献   

18.
Induced pluripotent stem (iPS) cells are generated from adult somatic cells by transduction of defined factors. Given their unlimited proliferation and differentiation potential, iPS cells represent promising sources for cell therapy and tools for research and drug discovery. However, systems for the directional differentiation of iPS cells toward paraxial mesodermal lineages have not been reported. In the present study, we established a protocol for the differentiation of mouse iPS cells into paraxial mesodermal lineages in serum-free culture. The protocol was dependent on Activin signaling in addition to BMP and Wnt signaling which were previously shown to be effective for mouse ES cell differentiation. Independently of the cell origin, the number of transgenes, or the type of vectors used to generate iPS cells, the use of serum-free monolayer culture stimulated with a combination of BMP4, Activin A, and LiCl enabled preferential promotion of mouse iPS cells to a PDGFR-α+/Flk-1 population, which represents a paraxial mesodermal lineage. The mouse iPS cell-derived paraxial mesodermal cells exhibited differentiation potential into osteogenic, chondrogenic, and myogenic cells both in vitro and in vivo and contributed to muscle regeneration. Moreover, purification of the PDGFR-α+/KDR population after differentiation allowed enrichment of human iPS cell populations with paraxial mesodermal characteristics. The resultant PDGFR-α+/KDR population derived from human iPS cells specifically exhibited osteogenic, chondrogenic, and myogenic differentiation potential in vitro, implying generation of paraxial mesodermal progenitors similar to mouse iPS cell-derived progenitors. These findings highlight the potential of protocols based on the serum-free, stepwise induction and purification of paraxial mesodermal cell lineages for use in stem cell therapies to treat diseased bone, cartilage, and muscle.  相似文献   

19.
白血病抑制因子与胚胎干细胞   总被引:3,自引:0,他引:3  
白血病抑制因子对细胞的生长和分化有多种作用,通过与其受体结合传导信号,gp130与LIF受体β链的结合激活JAK激酶(JAK1和JAK2),JAK激酶磷酸化STAT信号转录子,STAT3的磷酸化对于阻止体外培养的干细胞的分化具有十分重要的作用。  相似文献   

20.
The JAK/STAT pathway is activated in vitro by angiotensin II (ANG II) and endothelin-1 (ET-1), which are implicated in the development of diabetic complications. We hypothesized that ANG II and ET-1 activate the JAK/STAT pathway in vivo to participate in the development of diabetic vascular complications. Using male Sprague-Dawley rats, we performed a time course study [days 7, 14, and 28 after streptozotocin (STZ) injection] to determine changes in phosphorylation of JAK2, STAT1, and STAT3 in thoracic aorta using standard Western blot techniques. On day 7 there was no change in phosphorylation of JAK2, STAT1, and STAT3. Phosphorylation of JAK2, STAT1, and STAT3 was significantly increased on days 14 and 28 and was inhibited by treatment with candesartan (AT(1) receptor antagonist, 10 mg x kg(-1) x day(-1) orally in drinking water), atrasentan (ET(A) receptor antagonist, 10 mg x kg(-1) x day(-1) orally in drinking water), and AG-490 (JAK2 inhibitor, 5 mg x kg(-1) x day(-1) intraperitoneally). On day 28, treatment with all inhibitors prevented the significant increase in systolic blood pressure (SBP; tail cuff) of STZ-induced diabetic rats (SBP: 157 +/- 9.0, 130 +/- 3.3, 128 +/- 6.8, and 131 +/- 10.4 mmHg in STZ, STZ-candesartan, STZ-atrasentan, and STZ-AG-490 rats, respectively). In isolated tissue bath studies, diabetic rats displayed impaired endothelium-dependent relaxation in aorta (maximal relaxation: 95.3 +/- 3.0, 92.6 +/- 7.4, 76.9 +/- 12.1, and 38.3 +/- 13.1% in sham, sham + AG-490, STZ + AG-490, and STZ rats, respectively). Treatment of rats with AG-490 restored endothelium-dependent relaxation in aorta from diabetic rats at 14 and 28 days of treatment. These results demonstrate that JAK2 activation in vivo participates in the development of vascular complications associated with STZ-induced diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号