首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Agrin is a motoneuron‐derived factor that initiates neuromuscular synapse formation; however, the signaling pathway underlying postsynaptic differentiation is not yet understood. We have investigated the role of calcium in agrin signaling through the MuSK receptor tyrosine kinase and in the intracellular signaling cascade that leads to AChR phosphorylation and clustering. We find that agrin‐ and neuramindase‐induced MuSK activation in cultured myotubes is completely blocked by removal of extracellular calcium, but only slightly reduced by clamping of intracellular calcium transients with BAPTA. Following agrin's activation of MuSK, we find that the downstream tyrosine phosphorylation of the AChR β‐subunit was inhibited by BAPTA but not by a slower acting chelator, EGTA. Similarly, agrin‐induced clustering of the AChR was blocked by BAPTA but not EGTA. These findings indicate that extracellular calcium is required for the formation of a MuSK signaling complex, and that intracellular calcium regulates phosphorylation and clustering of the AChR in the postsynaptic membrane. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 69–79, 2002  相似文献   

2.
Agrin is a motoneuron-derived factor that initiates neuromuscular synapse formation; however, the signaling pathway underlying postsynaptic differentiation is not yet understood. We have investigated the role of calcium in agrin signaling through the MuSK receptor tyrosine kinase and in the intracellular signaling cascade that leads to AChR phosphorylation and clustering. We find that agrin- and neuramindase-induced MuSK activation in cultured myotubes is completely blocked by removal of extracellular calcium, but only slightly reduced by clamping of intracellular calcium transients with BAPTA. Following agrin's activation of MuSK, we find that the downstream tyrosine phosphorylation of the AChR beta-subunit was inhibited by BAPTA but not by a slower acting chelator, EGTA. Similarly, agrin-induced clustering of the AChR was blocked by BAPTA but not EGTA. These findings indicate that extracellular calcium is required for the formation of a MuSK signaling complex, and that intracellular calcium regulates phosphorylation and clustering of the AChR in the postsynaptic membrane.  相似文献   

3.
Membrane microdomains denoted commonly as lipid rafts (or membrane rafts) have been implicated in T-cell receptor (TCR), and more generally immunoreceptor, signaling for over 25 years. However, this area of research has been complicated by doubts about the real nature (and even existence) of these membrane entities, especially because of methodological problems connected with possible detergent artefacts. Recent progress in biophysical approaches and functional studies of raft resident proteins apparently clarified many controversial aspects in this area. At present, the prevailing view is that these membrane microdomains are indeed involved in many aspects of cell biology, including immunoreceptor signaling. Moreover, several other types of raft-like microdomains (perhaps better termed nanodomains) have been described, which apparently also play important biological roles.  相似文献   

4.
Receptor clustering and transmembrane signaling in T cells   总被引:5,自引:0,他引:5  
T cells are activated via engagement of their cell-surface receptors with molecules of the major histocompatibility complex (MHC) displayed on another cell surface. This process, which is a key step in the recognition of foreign antigens by the immune system, involves oligomerization of receptor components. Recent characterization of the T-cell response to soluble arrays of MHC-peptide complexes has provided insights into the triggering mechanism for T-cell activation.  相似文献   

5.
赵琼  何文容  张新岩  郭红卫 《生命科学》2010,(11):1167-1172
乙烯信号途径的建立得益于一系列的突变体研究,EIN3是乙烯信号转导通路的核心转录因子,EIN3的蛋白质含量严格受F-BOX蛋白EBF1/EBF2的降解调控。为了进一步挖掘乙烯信号途径的新组分和深入研究EIN3及其下游的信号组分,作者筛选了四个不同来源的T-DNA库,并利用转基因植物EIN3ox作为遗传背景,进行了EIN3下游的抑制子筛选工作,还利用化学遗传学的方法筛选了四个小分子库。  相似文献   

6.
The Reelin signaling cascade plays a crucial role in the correct positioning of neurons during embryonic brain development. Reelin binding to apolipoprotein E receptor 2 (ApoER2) and very-low-density-lipoprotein receptor (VLDLR) leads to phosphorylation of disabled 1 (Dab1), an adaptor protein which associates with the intracellular domains of both receptors. Coreceptors for Reelin have been postulated to be necessary for Dab1 phosphorylation. We show that bivalent agents specifically binding to ApoER2 or VLDLR are sufficient to mimic the Reelin signal. These agents induce Dab1 phosphorylation, activate members of the Src family of nonreceptor tyrosine kinases, modulate protein kinase B/Akt phosphorylation, and increase long-term potentiation in hippocampal slices. Induced dimerization of Dab1 in HEK293 cells leads to its phosphorylation even in the absence of Reelin receptors. The mechanism for and the sites of these phosphorylations are identical to those effected by Reelin in primary neurons. These results suggest that binding of Reelin, which exists as a homodimer in vivo, to ApoER2 and VLDLR induces clustering of ApoER2 and VLDLR. As a consequence, Dab1 becomes dimerized or oligomerized on the cytosolic side of the plasma membrane, constituting the active substrate for the kinase; this process seems to be sufficient to transmit the signal and does not appear to require any coreceptor.  相似文献   

7.
Membrane lipid rafts play a key role in immune cell activation by recruiting and excluding specific signaling components of immune cell surface receptors upon the receptor engagement. Despite this, the role of these microdomains in the regulation of osteoclasts as controlled by receptor activator of nuclear factor kappaB (RANK) has yet to be established. In this study, we demonstrate that the raft microdomain expression plays an essential role in osteoclast function and differentiation. Expression of raft component flotillin greatly increased during osteoclast differentiation, whereas engagement of RANK induced the translocation of tumor necrosis factor receptor-associated factor 6 to rafts where Src was constitutively resident. Disruption of rafts blocked TRAF6 translocation and Akt activation by RANK ligand in osteoclasts and further reduced the survival of osteoclasts. Actin ring formation and bone resorption by osteoclasts were also found to require the integrity of rafts. Our observations demonstrate for the first time that RANK-mediated signaling and osteoclast function are critically dependent on the expression and integrity of raft membrane microdomains.  相似文献   

8.
In this article, we categorize presently available experimental and theoretical knowledge of various physicochemical and biochemical features of amino acids, as collected in the AAindex database of known 544 amino acid (AA) indices. Previously reported 402 indices were categorized into six groups using hierarchical clustering technique and 142 were left unclustered. However, due to the increasing diversity of the database these indices are overlapping, therefore crisp clustering method may not provide optimal results. Moreover, in various large-scale bioinformatics analyses of whole proteomes, the proper selection of amino acid indices representing their biological significance is crucial for efficient and error-prone encoding of the short functional sequence motifs. In most cases, researchers perform exhaustive manual selection of the most informative indices. These two facts motivated us to analyse the widely used AA indices. The main goal of this article is twofold. First, we present a novel method of partitioning the bioinformatics data using consensus fuzzy clustering, where the recently proposed fuzzy clustering techniques are exploited. Second, we prepare three high quality subsets of all available indices. Superiority of the consensus fuzzy clustering method is demonstrated quantitatively, visually and statistically by comparing it with the previously proposed hierarchical clustered results. The processed AAindex1 database, supplementary material and the software are available at http://sysbio.icm.edu.pl/aaindex/ .  相似文献   

9.
10.
11.
The paucimolecular unit membrane model of the structure of the plasma membrane is critically reviewed in relation to current knowledge of the chemical and enzymatic composition of isolated plasma membranes, the properties of phospholipids, the chemistry of fixation for electron microscopy, the conformation of membrane proteins, the nature of the lipid-protein bonds in membranes, and possible mechanisms of transmembrane transport and membrane biosynthesis. It is concluded that the classical models, although not disproven, are not well supported by, and are difficult to reconcile with, the data now available. On the other hand, although a model based on lipoprotein subunits is, from a biochemical perspective, an attractive alternative, it too is far from proven. Many of the questions may be resolved by studies of membrane function and membrane biosynthesis rather than by a direct attack on membrane structure.  相似文献   

12.
Membrane initiated estrogen signaling in breast cancer   总被引:1,自引:0,他引:1  
Recent research has focused on effects of the estrogen receptor acting at the level of the cell membrane in breast cancer. In this review we describe 17beta-estradiol (E2)-initiated membrane signaling pathways involving the activation of several kinases that contribute to the regulation of cell proliferation and prevention of apoptosis. Although classical concepts had assigned priority to the nuclear actions of estrogen receptor, recent studies document the additional importance of estrogen receptor residing in or near the plasma membrane. A small fraction of estrogen receptor is associated with the cell membrane and mediates the rapid effects of E2. Unlike classical growth factor receptors, such as insulin-like growth factor 1 receptor (IGF1R) and epidermal growth factor receptor (EGFR), estrogen receptor has no transmembrane and kinase domains and is known to initiate E2 rapid signals by forming a protein complex with many signaling molecules. The formation of the protein complex is a critical step, leading to the activation of the MAPK1/3 (also known as MAP kinase) and AKT1 (also known as Akt) pathways. A full understanding of the mechanisms underlying these relationships, with the ultimate aim of abrogating specific steps, should lead to more-targeted strategies for treatment of hormone dependent-breast cancer.  相似文献   

13.
Retinoic acid-inducible gene I (RIG-I) is an important pattern recognition receptor that detects viral RNA and triggers the production of type-I interferons through the downstream adaptor MAVS (also called IPS-1, CARDIF, or VISA). A series of structural studies have elaborated some of the mechanisms of dsRNA recognition and activation of RIG-I. Recent studies have proposed that K63-linked ubiquitination of, or unanchored K63-linked polyubiquitin binding to RIG-I positively regulates MAVS-mediated antiviral signaling. Conversely phosphorylation of RIG-I appears to play an inhibitory role in controlling RIG-I antiviral signal transduction. Here we performed a combined structural and biochemical study to further define the regulatory features of RIG-I signaling. ATP and dsRNA binding triggered dimerization of RIG-I with conformational rearrangements of the tandem CARD domains. Full length RIG-I appeared to form a complex with dsRNA in a 2:2 molar ratio. Compared with the previously reported crystal structures of RIG-I in inactive state, our electron microscopic structure of full length RIG-I in complex with blunt-ended dsRNA, for the first time, revealed an exposed active conformation of the CARD domains. Moreover, we found that purified recombinant RIG-I proteins could bind to the CARD domain of MAVS independently of dsRNA, while S8E and T170E phosphorylation-mimicking mutants of RIG-I were defective in binding E3 ligase TRIM25, unanchored K63-linked polyubiquitin, and MAVS regardless of dsRNA. These findings suggested that phosphorylation of RIG inhibited downstream signaling by impairing RIG-I binding with polyubiquitin and its interaction with MAVS.  相似文献   

14.
The structure and dynamics of the plasma membrane are proposed to be critical for the initial steps of signal transduction by the high-affinity immunoglobulin E receptor. Recent experimental advances indicate that interactions between the high-affinity immunoglobulin E receptor and the tyrosine kinase Lyn with cholesterol- and sphingolipid-rich regions within the plasma membrane are important for receptor function. This accumulating evidence points to spatio-temporal control of immunoglobulin E receptor signaling by the organization of the plasma membrane; an attractive hypothesis is that ligand-dependent receptor aggregation causes the segregation of Lyn-containing ordered regions of the plasma membrane from disordered regions.  相似文献   

15.
16.
Bacteriorhodopsin (bR) is characterized by a retinal-protein protonated Schiff base covalent bond, which is stable for light absorption. We have revealed a light-induced protonated Schiff base hydrolysis reaction in a 13-cis locked bR pigment (bR5.13; lambda(max) = 550 nm) in which isomerization around the critical C13==C14 double bond is prevented by a rigid ring structure. The photohydrolysis reaction takes place without isomerization around any of the double bonds along the polyene chain and is indicative of protein conformational alterations probably due to light-induced polarization of the retinal chromophore. Two photointermediates are formed during the hydrolysis reaction, H450 (lambda(max) = 450 nm) and H430 (lambda(max) = 430 nm), which are characterized by a 13-cis configuration as analyzed by high-performance liquid chromatography. Upon blue light irradiation after the hydrolysis reaction, these intermediates rebind to the apomembrane to reform bR5.13. Irradiation of the H450 intermediate forms the original pigment, whereas irradiation of H430 at neutral pH results in a red shifted species (P580), which thermally decays back to bR5.13. Electron paramagnetic resonance (EPR) spectroscopy indicates that the cytoplasmic side of bR5.13 resembles the conformation of the N photointermediate of native bR. Furthermore, using osmotically active solutes, we have observed that the hydrolysis rate is dependent on water activity on the cytoplasmic side. Finally, we suggest that the hydrolysis reaction proceeds via the reversed pathway of the binding process and allows trapping a new intermediate, which is not accumulated in the binding process.  相似文献   

17.
18.
19.
Conversion of mechanical force into biochemical signaling   总被引:7,自引:0,他引:7  
Physical forces play important roles in regulating cell proliferation, differentiation, and death by activating intracellular signal transduction pathways. How cells sense mechanical stimulation, however, is largely unknown. Most studies focus on cellular membrane proteins such as ion channels, integrins, and receptors for growth factors as mechanosensory units. Here we show that mechanical stretch-induced c-Src protein tyrosine kinase activation is mediated through the actin filament-associated protein (AFAP). Distributed along the actin filaments, AFAP can directly active c-Src through binding to its Src homology 3 and/or 2 domains. Mutations at these specific binding sites on AFAP blocked mechanical stretch-induced c-Src activation. Therefore, mechanical force can be transmitted along the cytoskeleton, and interaction between cytoskeletal associated proteins and enzymes related to signal transduction may convert physical forces into biochemical reactions. Cytoskeleton deformation-induced protein-protein interaction via specific binding sites may represent a novel intracellular mechanism for cells to sense mechanical stimulation.  相似文献   

20.
Recent findings on clathrin-dependent and non clathrin-dependent endocytic routes are currently changing our classical view of endocytosis. Originally seen as a way for the cell to internalize membrane, receptors or various soluble molecules, this process is in fact directly linked to complex signaling pathways. Here, we review new insights in endocytosis and present latest development in imaging techniques that allow us to visualize and follow the dynamics of membrane-associated signaling events at the plasma membrane and other intracellular compartments. The immune synapse is taken as an illustration of the importance of membrane reorganization and proteins clustering to initiate and maintain signaling. Future challenges include understanding the crosslink between traffic and signaling and how all compartmentalized signals are integrated inside the cell at a higher level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号