首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to identify genetic factors influencing muscle weight and carcass composition in chicken, a linkage analysis was performed with 278 F2 males of reciprocal crosses between the extremely different inbred lines New Hampshire (NHI) and White Leghorn (WL77). The NHI line had been selected for high meat yield and the WL77 for low egg weight before inbreeding. Highly significant quantitative trait loci (QTL) controlling body weight and the weights of carcass, breast muscle, drumsticks–thighs and wings were identified on GGA4 between 151.5 and 160.5 cM and on GGA27 between 4 and 52 cM. These genomic regions explained 13.7–40.2% and 5.3–13.8% of the phenotypic F2 variances of the corresponding traits respectively. Additional genome‐wide highly significant QTL for the weight of drumsticks–thighs were mapped on GGA1, 5 and 7. Moreover, significant QTL controlling body weight were found on GGA2 and 11. The data obtained in this study can be used for increasing the mapping resolution and subsequent gene targeting on GGA4 and 27 by combining data with other crosses where the same QTL were found.  相似文献   

2.
In our previous research, we identified a QTL with an interval of 3.4 Mb for growth on chicken chromosome (GGA) 4 in an advanced intercross population of an initial cross between the New Hampshire inbred line (NHI) and the White Leghorn inbred line (WL77). In the current study, an association analysis was performed in a population of purebred white layers (WLA) with White Leghorn origin. Genotypic data of 130 SNPs within the previously identified 3.4‐Mb region were obtained using a 60K SNP chip. In total, 24 significant SNPs (LOD ≥ 4.44) on GGA4 were detected for daily weigh gain from 8 to 14 weeks and two SNPs (LOD ≥ 4.80) for body weight at 14 weeks. The QTL interval was reduced by 1.9 Mb to an interval of 1.5 Mb (74.6–76.1 Mb) that harbors 15 genes. Furthermore, to identify additional loci for chicken growth, a genome‐wide association study (GWAS) was carried out in a WLA population. The GWAS identified an additional QTL on GGA6 for body weight at six weeks (19.8–21.2 Mb). Our findings showed that by using a WLA population we were able to further reduce the QTL confidence interval previously detected using a NHI × WL77 advanced intercross population.  相似文献   

3.
In this study, a genome scan was performed to detect genomic loci that affect fat deposition in white adipose tissues and muscles in 278 F 2 males of reciprocal crosses between the genetically and phenotypically extreme inbred chicken lines New Hampshire (NHI) and White Leghorn (WL77). Genome‐wide highly significant quantitative trait loci (QTL) influencing fat deposition in white adipose tissues were found on GGA2 and 4. The peak QTL positions for different visceral and subcutaneous white adipose tissues were located between 41.4 and 112.4 Mb on GGA2 and between 76.2 and 78.7 Mb on GGA4, which explained 4.2–10.4% and 4.3–11.6% respectively of the phenotypic F 2 variances. Contrary to our expectations, the QTL allele descending from the lean line WL77 on GGA4 led to increased fat deposition. We suggest a transgressive action of the obesity allele only if it is not in the genetic background of the line WL77. Additional highly significant loci for subcutaneous adipose tissue mass were identified on GGA12 and 15. For intramuscular fat content, a suggestive QTL was located on GGA14. The analysed crosses provide a valuable resource for further fine mapping of fatness genes and subsequent gene discovery.  相似文献   

4.
Phenotypic measurements of chicken egg character and production traits are restricted to mature females only. Marker assisted selection of immature chickens using quantitative trait loci (QTL) has the potential to accelerate the genetic improvement of these traits in the chicken population. The QTL for 12 traits (i.e. body weight (BW), six for egg character, three for egg shell colour and two for egg production) of chickens were identified. An F2 population comprising 265 female chickens obtained by crossing White Leghorn and Rhode Island Red breeds and genotyped for 123 microsatellite markers was used for detecting QTL. Ninety-six markers were mapped on 25 autosomal linkage groups, and 13 markers were mapped on one Z chromosomal linkage group. Eight previous unmapped markers were assigned to their respective chromosomes in this study. Significant QTL were detected for BW on chromosomes 4 and 27, egg weight on chromosome 4, the short length of egg on chromosome 4, and redness of egg shell colour (using the L*a*b* colour system) on chromosome 11. A significant QTL on the Z chromosome was linked with age at first egg. Significant QTL could account for 6-19% of the phenotypic variance in the F2 population.  相似文献   

5.
Egg production and egg quality are complex sex-limited traits that may benefit from the implementation of marker-assisted selection. The primary objective of the current study was to identify quantitative trait loci (QTL) associated with egg traits, egg production, and body weight in a chicken resource population. Layer (White Leghorn hens) and broiler (Cobb-Cobb roosters) lines were crossed to generate an F2 population of 508 hens over seven hatches. Phenotypes for 29 traits (weekly body weight from hatch to 6 weeks, egg traits including egg, albumen, yolk, and shell weight, shell thickness, shell puncture score, percentage of shell, and egg shell colour at 35 and 55 weeks of age, as well as egg production between 16 and 55 weeks of age) were measured in hens of the resource population. Genotypes of 120 microsatellite markers on 28 autosomal groups were determined, and interval mapping was conducted to identify putative QTL. Eleven QTL tests representing two regions on chromosomes 2 and 4 surpassed the 5% genome-wise significance threshold. These QTL influenced egg colour, egg and albumen weight, percent shell, body weight, and egg production. The chromosome 4 QTL region is consistent with multiple QTL studies that define chromosome 4 as a critical region significantly associated with a variety of traits across multiple resource populations. An additional 64 QTL tests surpassed the 5% chromosome-wise significance threshold.  相似文献   

6.
Broken and cracked eggshells are major causes of significant economic losses to the egg production industry. The quantitative trait loci (QTL) on chromosome 9 influencing the quality of eggshells were identified by analysing an intercross between two parent lines developed from the same founder population by a two-way selection for eggshell strength with non-destructive deformation conducted over 14 generations. Chromosome-wide highly significant ( P  <   0.01) QTL associated with egg weight (EW), short length of egg (SLE), long length of egg (LLE) and eggshell weight were mapped to the distal region of chromosome 9. Among the QTL affecting EW, SLE and LLE, ovocalyxin-32 was identified as a potential candidate gene influencing eggshell traits. Marker-assisted selection based on these QTL could be used to develop strategies for reducing the breakage and cracking of eggs in commercial layer houses.  相似文献   

7.
Salmonella‐infected poultry products are a major source of human Salmonella infection. The prophylactic use of antimicrobials in poultry production was recently banned in the EU, increasing the need for alternative methods to control Salmonella infections in poultry flocks. Genetic selection of chickens more resistant to Salmonella colonization provides an attractive means of sustainably controlling the pathogen in commercial poultry flocks and its subsequent entry into the food chain. Analysis of different inbred chickens has shown that individual lines are consistently either susceptible or resistant to the many serovars of Salmonella that have been tested. In this study, two inbred chicken lines with differential susceptibility to Salmonella colonization (61(R) and N(S)) were used in a backcross experimental design. Unlike previous studies that used a candidate gene approach or low‐density genome‐wide screens, we have exploited a high‐density marker set of 1255 SNPs covering the whole genome to identify quantitative trait loci (QTL). Analysis of log‐transformed caecal bacterial levels between the parental lines revealed a significant difference at 1, 2, 3 and 4 days post‐infection (P < 0.05). Analysis of the genotypes of the backcross (F1 × N) population (n = 288) revealed four QTL on chromosomes 2, 3, 12 and 25 for the two traits examined in this study: log‐transformed bacterial counts in the caeca and presence of a hardened caseous caecal core. These included one genome‐wide significant QTL on chromosome 2 at 20 Mb and three additional QTL, on chromosomes 3, 12 and 25 at 96, 15 and 1 Mb, respectively, which were significant at the chromosome‐wide level (P < 0.05). The results generated in this study will inform future breeding strategies to control these pathogens in commercial poultry flocks.  相似文献   

8.
We performed quantitative trait locus (QTL) analyses for egg production traits, including age at first egg (AFE) and egg production rates (EPR) measured every 4 weeks from 22 to 62 weeks of hen age, in a population of 421 F2 hens derived from an intercross between the Oh‐Shamo (Japanese Large Game) and White Leghorn breeds of chickens. Simple interval mapping revealed a main‐effect QTL for AFE on chromosome 1 and four main‐effect QTL for EPR on chromosomes 1 and 11 (three on chromosome 1 and one on chromosome 11) at the genome‐wide 5% levels. Among the three EPR QTL on chromosome 1, two were identified at the early stage of egg laying (26–34 weeks of hen age) and the remaining one was discovered at the late stage (54–58 weeks). The alleles at the two EPR QTL derived from the Oh‐Shamo breed unexpectedly increased the trait values, irrespective of the Oh‐Shamo being inferior to the White Leghorn in the trait. This suggests that the Oh‐Shamo, one of the indigenous Japanese breeds, is an untapped resource that is important for further improvement of current elite commercial laying chickens. In addition, six epistatic QTL were identified on chromosomes 2, 4, 7, 8, 17 and 19, where none of the above main‐effect QTL were located. This is the first example of detection of epistatic QTL affecting egg production traits. The main and epistatic QTL identified accounted for 4–8% of the phenotypic variance. The total contribution of all QTL detected for each trait to the phenotypic and genetic variances ranged from 4.1% to 16.9% and from 11.5% to 58.5%, respectively.  相似文献   

9.
Reciprocal crosses between the inbred lines New Hampshire (NHI) and White Leghorn (WL77) comprising 579 F2 individuals were used to map QTL for body weight and composition. Here, we examine the growth performance until 20 weeks of age. Linkage analysis provided evidence for highly significant QTL on GGA1, 2, 4, 10 and 27 which had specific effects on early or late growth. The highest QTL effects, accounting for 4.6–25.6% of the phenotypic F2 variance, were found on the distal region of GGA4 between 142 and 170 cM ( 13.68). The NHI QTL allele increased body mass by 141.86 g at 20 weeks. Using body weight as a covariate in the analysis of body composition traits provided evidence for genes in the GGA4 QTL region affecting fat mass independently of body mass. The QTL effect size differed between sexes and depended on the direction of cross. TBC1D1, CCKAR and PPARGC1A are functional candidate genes in the QTL peak region. Our study confirmed the importance of the distal GGA4 region for chicken growth performance. The strong effect of the GGA4 QTL makes fine mapping and gene discovery feasible.  相似文献   

10.
A genome‐wide association study was conducted using a mixed model analysis for QTL for fertility traits in Danish and Swedish Holstein cattle. The analysis incorporated 2,531 progeny tested bulls, and a total of 36 387 SNP markers on 29 bovine autosomes were used. Eleven fertility traits were analyzed for SNP association. Furthermore, mixed model analysis was used for association analyses where a polygenic effect was fitted as a random effect, and genotypes at single SNPs were successively included as a fixed effect in the model. The Bonferroni correction for multiple testing was applied to adjust the significance threshold. Seventy‐four SNP‐trait combinations showed chromosome‐wide significance, and five of these were significant genome‐wide. Twenty‐four QTL regions on 14 chromosomes were detected. Strong evidence for the presence of QTL that affect fertility traits were observed on chromosomes 3, 5, 10, 13, 19, 20, and 24. The QTL intervals were generally smaller than those described in earlier linkage studies. The identification of fertility trait‐associated SNPs and mapping of the corresponding QTL in small chromosomal regions reported here will facilitate searches for candidate genes and candidate polymorphisms.  相似文献   

11.
In our previous research, QTL analysis in an F2 cross between the inbred New Hampshire (NHI) and White Leghorn (WL77) lines revealed a growth QTL in the distal part of chromosome 4. To physically reduce the chromosomal interval and the number of potential candidate genes, we performed fine mapping using individuals of generations F10, F11 and F12 in an advanced intercross line that had been established from the initial F2 mapping population. Using nine single nucleotide polymorphism (SNP) markers within the QTL region for an association analysis with several growth traits from hatch to 20 weeks and body composition traits at 20 weeks, we could reduce the confidence interval from 26.9 to 3.4 Mb. Within the fine mapped region, markers rs14490774, rs314961352 and rs318175270 were in full linkage disequilibrium (D′ = 1.0) and showed the strongest effect on growth and muscle mass (LOD ≥ 4.00). This reduced region contains 30 genes, compared to 292 genes in the original region. Chicken 60 K and 600 K SNP chips combined with DNA sequencing of the parental lines were used to call mutations in the reduced region. In the narrowed‐down region, 489 sequence variants were detected between NHI and WL77. The most deleterious variants are a missense variant in ADGRA3 (SIFT = 0.02) and a frameshift deletion in the functional unknown gene ENSGALG00000014401 in NHI chicken. In addition, five synonymous variants were discovered in genes PPARGC1A, ADGRA3, PACRGL, SLIT2 and FAM184B. In our study, the confidence interval and the number of potential genes could be reduced 8‐ and 10‐ fold respectively. Further research will focus on functional effects of mutant genes.  相似文献   

12.
A large F2 cross with 920 Japanese quail was used to map QTL for phosphorus utilization, calcium utilization, feed per gain and body weight gain. In addition, four bone ash traits were included, because it is known that they are genetically correlated with the focal trait of phosphorus utilization. Trait recording was done at the juvenile stage of the birds. The individuals were genotyped genome‐wide for about 4k SNPs and a linkage map constructed, which agreed well with the reference genome. QTL linkage mapping was performed using multimarker regression analysis in a line cross model. Single marker association mapping was done within the mapped QTL regions. The results revealed several genome‐wide significant QTL. For the focal trait phosphorus utilization, a QTL on chromosome CJA3 could be detected by linkage mapping, which was substantiated by the results of the SNP association mapping. Four candidate genes were identified for this QTL, which should be investigated in future functional studies. Some overlap of QTL regions for different traits was detected, which is in agreement with the corresponding genetic correlations. It seems that all traits investigated are polygenic in nature with some significant QTL and probably many other small‐effect QTL that were not detectable in this study.  相似文献   

13.
We describe the results from genetic dissection of a QTL region on chicken chromosome 2, shown to affect egg weight and quality in an earlier genome scan of an F2 intercross between two divergent egg layer lines. As the 90% confidence intervals for the detected QTL covered tens of centiMorgans, new analyses were needed. The datasets were reanalysed with denser marker intervals to characterise the QTL region. Analysis of a candidate gene from the original QTL region, vimentin, did not support its role in controlling egg white thinning. Even after reanalysis with additional seven markers in the QTL area, the 90% confidence intervals remained large or even increased, suggesting the presence of multiple linked QTL for the traits. A grid search fitting two QTL on chromosome 2 for each trait suggested that there are two distinct QTL areas affecting egg white thinning in both production periods and egg weight in the late production period. The results indicate possible pleiotropic effects of some of the QTL on egg quality and egg weight. However, it was not possible to make a distinction between close linkage versus pleiotropic effects.  相似文献   

14.
Quantitative trait loci affecting fatness in the chicken   总被引:13,自引:0,他引:13  
An F2 chicken population of 442 individuals from 30 families, obtained by crossing a broiler line with a layer line, was used for detecting and mapping Quantitative Trait Loci (QTL) affecting abdominal fat weight, skin fat weight and fat distribution. Within-family regression analyses using 102 microsatellite markers in 27 linkage groups were carried out with genome-wide significance thresholds. The QTL for abdominal fat weight were found on chromosomes 3, 7, 15 and 28; abdominal fat weight adjusted for carcass weight on chromosomes 1, 5, 7 and 28; skin and subcutaneous fat on chromosomes 3, 7 and 13; skin fat weight adjusted for carcass weight on chromosomes 3 and 28; and skin fat weight adjusted for abdominal fat weight on chromosomes 5, 7 and 15. Interactions of the QTL with sex or family were unimportant and, for each trait, there was no evidence for imprinting or of multiple QTL on any chromosome. Significant dominance effects were obtained for all but one of the significant locations for QTL affecting the weight of abdominal fat, none for skin fat and one of the three QTL affecting fat distribution. The magnitude of each QTL ranged from 3.0 to 5.2% of the residual phenotypic variation or 0.2-0.8 phenotypic standard deviations. The largest additive QTL (on chromosome 7) accounted for more than 20% of the mean weight of abdominal fat. Significant positive and negative QTL were identified from both lines.  相似文献   

15.
Recombinant inbred lines derived from a natural population were used to investigate natural genetic variation for lipid abundance, protein abundance, and weight of Drosophila melanogaster. Females were heavier and contained more lipid and soluble protein than males. Lipid and protein abundance were genetically correlated with female weight, but male weight was not correlated with lipid or protein. Lipid and protein abundance were genetically correlated in males, but not in females. Quantitative trait loci (QTLs) for weight and protein abundance were predominantly on the X chromosome, whereas QTLs for lipid abundance were found on the second and third chromosomes. QTLs for lipid proportion (lipid abundance normalized by weight or protein abundance) were present on all chromosomes; a lipid proportion QTL on the third chromosome correlated with a QTL for starvation resistance observed in a previous study using the same set of recombinant inbred lines, suggesting that it might underlie both traits. Candidate genes are discussed in relationship to lipid abundance, lipid proportion, and starvation resistance.  相似文献   

16.
Good eggshell quality is important for both table egg quality and chicken reproductive performance. Weak eggshells cause economic losses in all production steps. Poor eggshell quality also poses increased risk for Salmonella infections. Eggshell quality has been a difficult trait to improve by traditional breeding, as it can be measured only for females and it is difficult and expensive to measure. Breeding for improved shell quality may therefore benefit from the use of marker-assisted selection. In an effort to find markers linked to eggshell quality, we have used an F(2) population of 668 females to map quantitative trait loci (QTL) affecting eggshell traits (eggshell deformation, breaking force, weight). By using 160 microsatellite markers on 27 chromosomes, we found 11 genome-wide and 15 suggestive QTL for shell traits measured at different times during production. Loci affecting the deformation were found on chromosomes 1, 2, 6, 10, 14 and Z. Loci affecting the breaking force were detected on chromosomes 2, 3, 10, 12 and Z. Loci affecting the shell weight were detected on chromosomes 6, 12, 24 and Z. Each QTL explains between 1.5% and 4.6% of the phenotypic variance, adding up to 10-15% of total phenotypic variance explained for the different traits. No epistatic effects were observed between loci affecting eggshell traits. Because the effects for quality are mainly additive, these results provide a basis for further characterization of the loci to identify closely linked markers to be used in marker-assisted selection.  相似文献   

17.
This study was designed to investigate the genetic basis of growth and egg traits in Dongxiang blue‐shelled chickens and White Leghorn chickens. In this study, we employed a reduced representation sequencing approach called genotyping by genome reducing and sequencing to detect genome‐wide SNPs in 252 Dongxiang blue‐shelled chickens and 252 White Leghorn chickens. The Dongxiang blue‐shelled chicken breed has many specific traits and is characterized by blue‐shelled eggs, black plumage, black skin, black bone and black organs. The White Leghorn chicken is an egg‐type breed with high productivity. As multibreed genome‐wide association studies (GWASs) can improve precision due to less linkage disequilibrium across breeds, a multibreed GWAS was performed with 156 575 SNPs to identify the associated variants underlying growth and egg traits within the two chicken breeds. The analysis revealed 32 SNPs exhibiting a significant genome‐wide association with growth and egg traits. Some of the significant SNPs are located in genes that are known to impact growth and egg traits, but nearly half of the significant SNPs are located in genes with unclear functions in chickens. To our knowledge, this is the first multibreed genome‐wide report for the genetics of growth and egg traits in the Dongxiang blue‐shelled and White Leghorn chickens.  相似文献   

18.
大白×梅山猪资源家系生长性状QTL的检测   总被引:14,自引:4,他引:10  
以大白猪和梅山猪为父母本建立F2 资源家系 ,在 2 0 0 0年 ,随机选留 6 6头F2 代个体 ,获得出生重、6 0日龄体重、出生至 6 0日龄平均日增重及 6 0日龄至屠宰前平均日增重的表型数据。结合 4 8个微卫星标记构建的猪 1、2、3、4、6和 7号染色体遗传连锁图谱 ,用线性模型最小二乘法对各数量性状进行QTL区间作图 ,利用置换法(permutation)确定显著性阈值。研究发现 ,猪 4号染色体上有一个染色体水平极显著 (P <0 0 1)的QTL影响 6 0日龄至屠宰前平均日增重 ,并达到基因组显著水平 (P <0 0 5 )。在染色体水平 ,出生至 6 0日龄平均日增重QTL位于 2号染色体 ,6 0日龄体重QTL位于 1号染色体。 6号染色体的出生至 6 0日龄平均日增重QTL达到建议显著水平  相似文献   

19.
Egg and production traits are of considerable economic importance in chickens. Using a White Leghorn x red junglefowl F(2) intercross, standard production measures of liver weight and colour, egg size, eggshell thickness, egg taste and meat quality were taken. A total of 160 markers covering 29 autosomes and the Z chromosome were genotyped on 175-243 individuals, depending on the trait under consideration. A total of nine significant quantitative trait loci (QTL) and three suggestive QTL were found on chicken chromosomes 1, 2, 4, 5, 7, 8, 10, 12, E47W24 and E22C19W28.  相似文献   

20.
If the poultry industry hopes to continue to flourish, the identification of potential quantitative trait loci (QTL) for production-related traits must be pursued This remains true despite the sequencing of the chicken genome. In view of this need, a scan of the chicken genome using 72 microsatellite markers was carried out on a meat-type x egg-type resource population measured for production and egg quality traits. Using a Bayesian analysis, potential QTL for a number of traits were identified on several chromosomes. Evidence of eight QTL regions associated with a total of eight traits (specific gravity, albumin height, Haugh score, shell shape, total number of eggs, final body weight, gain, and feed efficiency) was found. Two of these regions, one spanning the area of 263/287 cM on GAA01 and the other spanning the area of 23/28 cM on GAA02, were associated with multiple QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号