首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kei Kamino 《Biofouling》2013,29(7):755-760
Balanomorphan barnacles attach their calcareous bases to a variety of substrata, including others of the same species, through secretion of an underwater adhesive, commonly referred to as cement. In this multi-functional process of underwater attachment, curing of the adhesive is crucial for the formation of a secure attachment. To date, there has been no direct evidence presented to suggest the involvement of cross-linking or polymerization in the cement curing process, despite the emergence of this hypothesis in the recent literature. A recently proposed mechanism for cement curing involves glutamyl-lysine cross-linking via the action of trans-glutaminase. However, in the opinion of the author, inadequate attention may have been paid to sample collection during the study and the conditions used in the analysis may not be adequate to support the conclusions of the paper. Indeed, further investigation, the results of which are presented here, did not provide any evidence to support adhesive curing via glutamyl-lysine cross-linking. Therefore, the hypothesis that the process of cement curing is similar to the clotting system of barnacle hemolymph is not compatible with the data reported so far. In order to allay any potential confusion, a new definition of the barnacle cement is proposed.  相似文献   

2.
Barnacle attachment to various foreign materials in water is guided by an extracellular multiprotein complex. A 19 kDa cement protein was purified from the Megabalanus rosa cement, and its cDNA was cloned and sequenced. The gene was expressed only in the basal portion of the animal, where the histologically identified cement gland is located. The sequence of the protein showed no homology to other known proteins in the databases, indicating that it is a novel protein. Agreement between the molecular mass determined by MS and the molecular weight estimated from the cDNA indicated that the protein bears no post-translational modifications. The bacterial recombinant was prepared in soluble form under physiologic conditions, and was demonstrated to have underwater irreversible adsorption activity to a variety of surface materials, including positively charged, negatively charged and hydrophobic ones. Thus, the function of the protein was suggested to be coupling to foreign material surfaces during underwater attachment. Homologous genes were isolated from Balanus albicostatus and B. improvisus, and their amino acid compositions showed strong resemblance to that of M. rosa, with six amino acids, Ser, Thr, Ala, Gly, Val and Lys, comprising 66-70% of the total, suggesting that such a biased amino acid composition may be important for the function of this protein.  相似文献   

3.
Ziegler T  Schips C 《Nature protocols》2006,1(4):1987-1994
Complex glycosylation patterns on cell surfaces are involved in many fundamental biological processes like specific cell-cell interactions and signal transduction. Furthermore, the glycon part of glycopeptides and glycosylated proteins play a crucial role in numerous ligand-receptor interactions of biological significance. However, the distinct function of complex carbohydrate structures associated with cell surfaces and proteins is still only poorly understood at a molecular level with regard to specific carbohydrate-protein interaction. Here, we present an efficient Mitsunobu protocol for the convenient chemical one-pot preparation of S-glycosyl amino-acid building blocks suitable for automated combinatorial syntheses of highly glycosylated beta-peptides, which, in turn, can serve as potential mimics for complex oligosaccharides or for studying carbohydrate-protein interactions. The protocol also describes the use of the S-glycosyl amino-acid building blocks for combinatorial spot syntheses of glycopeptide libraries and can be used for the construction of other combinatorial peptide libraries as well. This is a procedure that can be completed in approximately 7 days.  相似文献   

4.
Recent advances in molecular force measurements have resulted in the quantification of the nanomechanical properties of single molecular bonds, and elucidated novel relationships between molecular architecture and biomolecular adhesion. The measured forces to rupture single intermolecular bonds revealed novel and unexpected ways that proteins respond to mechanical force. Measurement of the magnitude of interprotein forces and the distances over which they act further determined how protein architecture may contribute to both the stability and structural organization of adhesive junctions.  相似文献   

5.
An underwater bioadhesive generally comprises a multiprotein complex that provides a molecular basis for self-assembly. We report here a new class of self-assembling peptide inspired by a 20 kDa barnacle cement protein. Studies on the chemically synthesized 24-residue peptide have revealed that (1) it underwent irreversible self-assembly upon the addition of salt, (2) the self-assembly was started at a salt concentration close to that of seawater with noncovalent intermolecular interactions, (3) the self-assembled material resembled a macroscopic membrane of interwoven nanofilaments, (4) incubation in an alkaline pH range formed the intramolecular disulfide bond of a peptide molecule, thus triggering a conformation change of the molecule, and (5) conformational change of the building block promoted the formation of a nanofiber, resulting in the display of a three-dimensional meshlike mesoscopic structure with defined pores having a diameter of approximately 200 nm. The peptide is likely to provide a suitable basis for further development of peptide-based materials.  相似文献   

6.
Proteins are the building blocks for almost all the functions in cells. Understanding the molecular evolution of proteins and the forces that shape protein evolution is essential in understanding the basis of function and evolution. Previous studies have shown that adaptation frequently occurs at the protein surface, such as in genes involved in host–pathogen interactions. However, it remains unclear whether adaptive sites are distributed randomly or at regions associated with particular structural or functional characteristics across the genome, since many proteins lack structural or functional annotations. Here, we seek to tackle this question by combining large-scale bioinformatic prediction, structural analysis, phylogenetic inference, and population genomic analysis of Drosophila protein-coding genes. We found that protein sequence adaptation is more relevant to function-related rather than structure-related properties. Interestingly, intermolecular interactions contribute significantly to protein adaptation. We further showed that intermolecular interactions, such as physical interactions, may play a role in the coadaptation of fast-adaptive proteins. We found that strongly differentiated amino acids across geographic regions in protein-coding genes are mostly adaptive, which may contribute to the long-term adaptive evolution. This strongly indicates that a number of adaptive sites tend to be repeatedly mutated and selected throughout evolution in the past, present, and maybe future. Our results highlight the important roles of intermolecular interactions and coadaptation in the adaptive evolution of proteins both at the species and population levels.  相似文献   

7.
It is shown within the framework of stereochemical modeling that disruption of water shells of proteins and nucleic acids is confronted by significant kinetic barriers caused by the breaking of hydrogen bonds. The structure of the water shells is dictated by the surface of proteins and nucleic acids, therefore the kinetic barriers due to disruption of the water shell are strongly distinct from each other on different parts of the shell. This, in turn, means that the probability of participation of different parts of the protein and nucleic acid surfaces in intermolecular interactions should be varied through a wide range, i.e. the water shell should strengthen selectivity of molecular recognition.  相似文献   

8.
Barnacles produce a cement that is a proteinaceous underwater adhesive for their secure attachment to the substratum. The biochemical properties of the cement have not previously been elucidated, because the insolubility of the cement proteins hampers their purification and characterization. We developed a non-hydrolytic method to render soluble most of the cement components, thereby allowing the proteins to be analyzed. Megabalanus rosa cement could be almost completely rendered soluble by its reduction with 0.5 m dithiothreitol at 60 degrees C in a 7 m guanidine hydrochloride solution, the high concentration of dithiothreitol being indispensable to achieve this. The effectiveness of this reduction treatment was confirmed by the detachment of the barnacle from the substratum. Three proteins comprising up to 94% of the whole cement were identified as the major cement components. The cDNA clone of one of these major proteins was isolated, and the site-specific expression of the gene in the basal portion of the adult barnacle, where the cement glands are located, was demonstrated. A sequence analysis revealed this cement component to be a novel protein of 993 amino acid residues, including a signal peptide. This is the first report of the major component of the barnacle cement protein complex.  相似文献   

9.
The invasive freshwater mollusc Dreissena bugensis (quagga mussel) sticks to underwater surfaces via a proteinacious ‘anchor’ (byssus), consisting of a series of threads linked to adhesive plaques. This adhesion results in the biofouling of crucial underwater industry infrastructure, yet little is known about the proteins responsible for the adhesion. Here the identification of byssal proteins extracted from freshly secreted byssal material is described. Several new byssal proteins were observed by gel electrophoresis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to characterize proteins in different regions of the byssus, particularly those localized to the adhesive interface. Byssal plaques and threads contain in common a range of low molecular weight proteins, while several proteins with higher mass were observed only in the plaque. At the adhesive interface, a plaque-specific ~8.1 kDa protein had a relative increase in signal intensity compared to the bulk of the plaque, suggesting it may play a direct role in adhesion.  相似文献   

10.
Gating of the cystic fibrosis transmembrane conductance regulator (CFTR) channels requires interdomain and/or intermolecular interactions involving different parts of the protein, yet the exact nature of those interactions remains unclear. In this study we report that treating wild type CFTR-expressing cells with oxidizing agents results in a significant reduction in the gel mobility of the protein indicative of the formation of disulfide bonds. In contrast, mutant CFTR channels in which cysteine residues in both nucleotide binding domains (NBDs) were mutated to serine, showed little change in gel mobility in oxidizing conditions. Mutation of the two cysteine residues in either the first or the second NBD alone also eliminates the change in gel mobility in oxidizing conditions. Wild type channels treated with oxidizing agents did not appear to form disulfide bonds with other proteins, suggesting that the close association that allows the formation of disulfide bonds occurs only within single proteins and not between separate channels interacting in a multimer.  相似文献   

11.
海洋固着动物分泌的粘胶蛋白在潮湿环境下可以抵御水的阻力而发挥粘性,成为当今生物医学和仿生学领域开发高性能材料的关键候选材料。藤壶作为海洋污损生物之一,通过分泌的藤壶胶可以在水下牢固地附着在不同表面特性的基底材料上。目前,对藤壶的粘附过程已经有了较为深入的了解,但其水下粘附机制尚未特别清晰,还需进一步阐明。为此,本文对藤壶胶及其粘附过程的研究进展进行了综述,介绍了藤壶胶主要粘胶蛋白的研究进展、总结了藤壶胶蛋白的获取方式及其应用,最后提出了可能的研究要点和未来发展方向。  相似文献   

12.
海洋贻贝粘附蛋白类的结构与功能   总被引:3,自引:0,他引:3  
海洋贻贝粘附蛋白具有高强度、高韧性和防水性,以及极强的黏附基体的功能,这与其特殊的分子结构、多巴(DOPA)介导的链间交联和与底材之间的相互作用方式有关,并且,它还具有很好的生物相容性和可降解性,是一类极具优势和潜力的生物胶黏剂.本文主要就粘附蛋白分子的结构和功能、粘附蛋白的粘附机理以及有关粘附蛋白生物粘剂等问题对其进行综述  相似文献   

13.
Calcite-specific coupling protein in barnacle underwater cement   总被引:1,自引:0,他引:1  
The barnacle relies for its attachment to underwater foreign substrata on the formation of a multiprotein complex called cement. The 20 kDa cement protein is a component of Megabalanus rosa cement, although its specific function in underwater attachment has not, until now, been known. The recombinant form of the protein expressed in bacteria was purified in soluble form under physiological conditions, and confirmed to retain almost the same structure as that of the native protein. Both the protein from the adhesive layer of the barnacle and the recombinant protein were characterized. This revealed that abundant Cys residues, which accounted for 17% of the total residues, were in the intramolecular disulfide form, and were essential for the proper folding of the monomeric protein structure. The recombinant protein was adsorbed to calcite and metal oxides in seawater, but not to glass and synthetic polymers. The adsorption isotherm for adsorption to calcite fitted the Langmuir model well, indicating that the protein is a calcite-specific adsorbent. An evaluation of the distribution of the molecular size in solution by analytical ultracentrifugation indicated that the recombinant protein exists as a monomer in 100 mm to 1 m NaCl solution; thus, the protein acts as a monomer when interacting with the calcite surface. cDNA encoding a homologous protein was isolated from Balanus albicostatus, and its derived amino acid sequence was compared with that from M. rosa. Calcite is the major constituent in both the shell of barnacle base and the periphery, which is also a possible target for the cement, due to the gregarious nature of the organisms. The specificity of the protein for calcite may be related to the fact that calcite is the most frequent material attached by the cement.  相似文献   

14.
Increasing efforts are being invested in the construction of nanostructures with desired shapes and physical and chemical properties. Our strategy involves nanostructure design using naturally occurring protein building blocks. Inspection of the protein structural database (PDB) reveals the richness of the conformations, shapes, and chemistries of proteins and their building blocks. To increase the population of the native fold in the selected building block, we mutate natural residues by engineered, constrained residues that restrict the conformational freedom at the targeted site and have favorable interactions, geometry, and size. Here, as a model system, we construct nanotubes using building blocks from left-handed beta-helices which are commonly occurring repeat protein architectures. We pick two-turn beta-helical segments, duplicate and stack them, and using all-atom molecular dynamics simulations (MD) with explicit solvent probe the structural stability of these nanotubular structures as indicated by their capacity to retain the initial organization and their conformational dynamics. Comparison of the results for the wild-type and mutated sequences shows that the introduction of the conformationally restricted 1-aminocyclopropanecarboxylic acid (Ac3c) residue in loop regions greatly enhances the stability of beta-helix nanotubes. The Ac3c geometrical confinement effect is sequence-specific and position-specific. The achievement of high stability of nanotubular structures originates not only from the reduction of mobility at the mutation site induced by Ac3c but also from stabilizing association forces between building blocks such as hydrogen bonds and hydrophobic contacts. For the selected synthetic residue, similar size, hydrophobicity, and backbone conformational tendencies are desirable as in the Ac3c.  相似文献   

15.
The barnacle is well known for its tenacious and permanent attachment to a wide variety of underwater substrates, which is accomplished by synthesizing, secreting and curing a mixture of adhesive proteins termed “barnacle cement”. In order to evaluate interfacial adhesion abilities of barnacle cement proteins, the cp19k homologous gene in Balanus albicostatus (Balcp19k) was cloned and expressed in Escherichia coli. Here, we report an intriguing discovery of a gel-like super adhesive aggregation produced by Trx-Balcp19k, a recombinant Balcp19k fusion protein. The Trx-Balcp19k consists of an 18 kDa fragment at the N-terminus, which is encoded by pET-32a(+) plasmid and mainly comprised of a thioredoxin (Trx) tag, and Balcp19k at the C-terminus. The sticky aggregation was designated as “Trx-Balcp19k gel”, and the bulk adhesion strength, biochemical composition, as well as formation conditions were all carefully investigated. The Trx-Balcp19k gel exhibited strong adhesion strength of 2.10 ± 0.67 MPa, which was approximately fifty folds higher than that of the disaggregated Trx-Balcp19k (40 ± 8 kPa) and rivaled those of commercial polyvinyl acetate (PVA) craft glue (Mont Marte, Australia) and UHU glue (UHU GmbH & Co. KG, Germany). Lipids were absent from the Trx-Balcp19k gel and only a trace amount of carbohydrates was detected. We postulate that the electrostatic interactions play a key role in the formation of Trx-Balcp19k gel, by mediating self-aggregation of Trx-Balcp19k based on its asymmetric distribution pattern of charged amino acids. Taken together, we believe that our discovery not only presents a promising biological adhesive with potential applications in both biomedical and technical fields, but also provides valuable paradigms for molecular design of bio-inspired peptide- or protein-based materials.  相似文献   

16.
Revealing the processes of ligand–protein associations deepens our understanding of molecular recognition and binding kinetics. Hydrogen bonds (H‐bonds) play a crucial role in optimizing ligand–protein interactions and ligand specificity. In addition to the formation of stable H‐bonds in the final bound state, the formation of transient H‐bonds during binding processes contributes binding kinetics that define a ligand as a fast or slow binder, which also affects drug action. However, the effect of forming the transient H‐bonds on the kinetic properties is little understood. Guided by results from coarse‐grained Brownian dynamics simulations, we used classical molecular dynamics simulations in an implicit solvent model and accelerated molecular dynamics simulations in explicit waters to show that the position and distribution of the H‐bond donor or acceptor of a drug result in switching intermolecular and intramolecular H‐bond pairs during ligand recognition processes. We studied two major types of HIV‐1 protease ligands: a fast binder, xk263, and a slow binder, ritonavir. The slow association rate in ritonavir can be attributed to increased flexibility of ritonavir, which yields multistep transitions and stepwise entering patterns and the formation and breaking of complex H‐bond pairs during the binding process. This model suggests the importance of conversions of spatiotemporal H‐bonds during the association of ligands and proteins, which helps in designing inhibitors with preferred binding kinetics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
B cell-activating factor belonging to the TNF family receptor (BAFF-R), a member of the TNFR superfamily, plays a role in autoimmunity after ligation with BAFF ligand (also called TALL-1, BLyS, THANK, or zTNF4). BAFF/BAFF-R interactions are critical for B cell regulation, and signaling from this ligand-receptor complex results in NF-kappaB activation. Most TNFRs transmit signals intracellularly by recruitment of adaptor proteins called TNFR-associated factors (TRAFs). However, BAFF-R binds only one TRAF adaptor, TRAF3, and this interaction negatively regulates activation of NF-kappaB. In this study, we report the crystal structure of a 24-residue fragment of the cytoplasmic portion of BAFF-R bound in complex with TRAF3. The recognition motif (162)PVPAT(166) in BAFF-R is accommodated in the same binding crevice on TRAF3 that binds two related TNFRs, CD40 and LTbetaR, but is presented in a completely different structural framework. This region of BAFF-R assumes an open conformation with two extended strands opposed at right angles that each make contacts with TRAF3. The recognition motif is located in the N-terminal arm and intermolecular contacts mediate TRAF recognition. In the C-terminal arm, key stabilizing contacts are made, including critical hydrogen bonds with Gln(379) in TRAF3 that define the molecular basis for selective binding of BAFF-R solely to this member of the TRAF family. A dynamic conformational adjustment of Tyr(377) in TRAF3 occurs forming a new intermolecular contact with BAFF-R that stabilizes the complex. The structure of the complex provides a molecular explanation for binding affinities and selective protein interactions in TNFR-TRAF interactions.  相似文献   

18.
Stimulus-responsive, or "smart" protein-based hydrogels are of interest for many bioengineering applications, but have yet to include biological activity independent of structural functionality. We have genetically engineered bifunctional building blocks incorporating fluorescent proteins that self-assemble into robust and active hydrogels. Gelation occurs when protein building blocks are cross-linked through native protein-protein interactions and the aggregation of alpha-helical hydrogel-forming appendages. Building blocks constructed from different fluorescent proteins can be mixed to enable tuning of fluorescence loading and hydrogel strength with a high degree of independence. FRET experiments suggest a macro-homogeneous structure and that intragel and interprotein reactions can be engineered. This design approach will enable the facile construction of complex hydrogels with broad applicability.  相似文献   

19.
The cell wall envelope of Gram-positive bacteria can be thought of as a surface organelle for the assembly of macromolecular structures that enable the unique lifestyle of each microorganism. Sortases - enzymes that cleave the sorting signals of secreted proteins to form isopeptide (amide) bonds between the secreted proteins and peptidoglycan or polypeptides - function as the principal architects of the bacterial surface. Acting alone or with other sortase enzymes, sortase construction leads to the anchoring of surface proteins at specific sites in the envelope or to the assembly of pili, which are fibrous structures formed from many protein subunits. The catalysis of intermolecular isopeptide bonds between pilin subunits is intertwined with the assembly of intramolecular isopeptide bonds within pilin subunits. Together, these isopeptide bonds endow these sortase products with adhesive properties and resistance to host proteases.  相似文献   

20.
ADHESION IN BYSSALLY ATTACHED BIVALVES   总被引:2,自引:0,他引:2  
The byssus is a structure produced by marine bivalve molluscs to adhere, usually permanently, to substrata under water. As the adhesion of synthetic polymers to surfaces is predictably compromised by the presence of water, particularly bulk water, it is of particular interest to discover the mechanism of byssal adhesion. In most species, the byssus consists of at least four essential components: acid mucopolysaccharides, adhesive protein, fibrous proteins, and an oxidative enzyme, polyphenoloxidase. The function of the mucopolysaccharide component is still uncertain, but it can conceivably be used by the animal as a temporary adhesive, a surface modifying agent, and/or a stabilizing filler for the permanent adhesive. The adhesive protein known as the polyphenolic protein in Mytilus is but a thin plaque applied to the substrate surface by the foot of the animal. The molecular and physical properties of this adhesive protein conform remarkably well to what one expects of an ideal synthetic polymer, i.e. high molecular weight, abundance of large and polar side chains, near-zero surface contact angle, and total water-insolubility after setting. The fibrous proteins constitute the major portion of the thread or ribbon-like material connecting the animal to the adhesive plaque on the substrate surface. These proteins are packed in ordered crystalline arrays, e.g. β-pleated sheet and collagen helix (in mytilids) as is to be expected from structural tensile elements of Nature. The enzyme polyphenoloxidase is presumed to induce intermolecular cross-linking of proteins in the fibrous and adhesive portions of the byssus. In Mytilus the natural substrates of the enzymc may be the dopa-containing polyphenolic protein and accessory gland protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号