首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) FROM SPINACH CHLOROPLASTS IS STRONGLY REGULATED BY THE RATIO OF NADPH/NADP+, with the extent of this regulation controlled by the concentration of ribulose 1,5-diphosphate. Other metabolites of the reductive pentose phosphate cycle are far less effective in mediating the regulation of the enzyme activity by NADPH/NADP+ ratio. With a ratio of NADPH/NADP+ of 2, and a concentration of ribulose 1,5-diphosphate of 0.6 mM, the activity of the enzyme is completely inhibited. This level of ribulose 1,5-diphosphate is well within the concentration range which has been reported for unicellular green algae photosynthesizing in vivo. Ratios of NADPH/NADP+ of 2.0 have been measured for isolated spinach chloroplasts in the light and under physiological conditions. Since ribulose 1,5-diphosphate is a metabolite unique to the reductive pentose phosphate cycle and inhibits glucose-6-phosphate dehydrogenase in the presence of NADPH/NADP+ ratios found in chloroplasts in the light, it is proposed that regulation of the oxidative pentose phosphate cycle is accomplished in vivo by the levels of ribulose 1,5-diphosphate, NADPH, and NADP+. It already has been shown that several key reactions of the reductive pentose phosphate cycle in chloroplasts are regulated by levels of NADPH/NADP+ or other electron-carrying cofactors, and at least one key-regulated step, the carboxylation reaction is strongly affected by 6-phosphogluconate, the metabolic unique to the oxidative pentose phosphate cycle. Thus there is an interesting inverse regulation system in chloroplasts, in which reduced/oxidized coenzymes provide a general regulatory mechanism. The reductive cycle is activated at high NADPH/NADP+ ratios where the oxidative cycle is inhibited, and ribulose 1,5-diphosphate and 6-phosphogluconate provide further control of the cycles, each regulating the cycle in which it is not a metabolite.  相似文献   

2.
Hyperglycemia is associated with metabolic disturbances affecting cell redox potential, particularly the NADPH/NADP+ ratio and reduced glutathione levels. Under oxidative stress, the NADPH supply for reduced glutathione regeneration is dependent on glucose-6-phosphate dehydrogenase. We assessed the effect of different hyperglycemic conditions on enzymatic activities involved in glutathione regeneration (glucose-6-phosphate dehydrogenase and glutathione reductase), NADP(H) and reduced glutathione concentrations in order to analyze the relative role of these enzymes in the control of glutathione restoration. Male Sprague-Dawley rats with mild, moderate and severe hyperglycemia were obtained using different regimens of streptozotocin and nicotinamide. Fifteen days after treatment, rats were killed and enzymatic activities, NADP(H) and reduced glutathione were measured in liver and pancreas. Severe hyperglycemia was associated with decreased body weight, plasma insulin, glucose-6-phosphate dehydrogenase activity, NADPH/NADP+ ratio and glutathione levels in the liver and pancreas, and enhanced NADP+ and glutathione reductase activity in the liver. Moderate hyperglycemia caused similar changes, although body weight and liver NADP+ concentration were not affected and pancreatic glutathione reductase activity decreased. Mild hyperglycemia was associated with a reduction in pancreatic glucose-6-phosphate dehydrogenase activity. Glucose-6-phosphate dehydrogenase, NADPH/NADP+ ratio and glutathione level, vary inversely in relation to blood glucose concentrations, whereas liver glutathione reductase was enhanced during severe hyperglycemia. We conclude that glucose-6-phosphate dehydrogenase and NADPH/NADP+ were highly sensitive to low levels of hyperglycemia. NADPH/NADP+ is regulated by glucose-6-phosphate dehydrogenase in the liver and pancreas, whereas levels of reduced glutathione are mainly dependent on the NADPH supply.  相似文献   

3.
The changes in the activity of the pentose phosphate cycle produced by the activation or inhibition of different NADPH-consuming pathways have been studied. The inhibition of fatty acid synthesis by kynurenate produced to the same extent, inhibition of the pentose phosphate cycle activity and an increase (about twofold) in the NADPH/NADP ratio. The addition of ter-butyl-hydroperoxide or paraquat, which is metabolized via NADPH-consuming pathways, produced the activation of the pentose phosphate cycle and a decrease in the NADPH/NADP ratio (about threefold). The plot of the NADPH/NADP ratio versus the pentose phosphate cycle activity gave a straight line with a regression index of 0.999. The regulation of the pentose phosphate cycle mainly by the intracellular NADPH/NADP ratio is discussed.  相似文献   

4.
Perfusion of rat livers with 10 mM-fructose or pretreatment of the rat with 6-aminonicotinamide (70 mg/kg) 6 h before perfusion decreased intracellular ATP concentrations and increased the rate of p-nitroanisole O-demethylation. This increase was accompanied by a decrease in the free [NADP+]/[NADPH] ratio calculated from concentrations of substrates assumed to be in near-equilibrium with isocitrate dehydrogenase. After pretreatment with 6-aminonicotinamide the [NADP+]/[NADPH] ratio also declined. Reduction of NADP+ during mixed-function oxidation may be explained by inhibition of of one or more NADPH-generating enzymes. Glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase and "malic" enzyme, partially purified from livers of phenobarbital-treated rats, were inhibited by ATP and ADP. Inhibitor constants of ATP for the four dehydrogenases varied considerably, ranging from 9 micrometer for "malic" enzyme to 1.85 mM for glucose 6-phosphate dehydrogenase. NADPH-cytochrome c reductase was also inhibited by ATP (Ki 2.8 mM) and by ADP (Ki 0.9 mM), but not by AMP. Concentrations of ATP and ADP that inhibited glucose 6-phosphate dehydrogenase and the reductase were comparable with concentrations in the intact liver. Thus agents that lower intracellular ATP may accelerate rates of mixed-function oxidation by a concerted mechanism involving deinhibition of NADPH-cytochrome c reductase and one or more NADPH-generating enzymes.  相似文献   

5.
The fate of all aerobic organisms is dependent on the varying intracellular concentrations of NADH and NADPH. The former is the primary ingredient that fuels ATP production via oxidative phosphorylation, while the latter helps maintain the reductive environment necessary for this process and other cellular activities. In this study we demonstrate a metabolic network promoting NADPH production and limiting NADH synthesis as a consequence of an oxidative insult. The activity and expression of glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-isocitrate dehydrogenase, the main generators of NADPH, were markedly increased during oxidative challenge. On the other hand, numerous tricarboxylic acid cycle enzymes that supply the bulk of intracellular NADH were significantly downregulated. These metabolic pathways were further modulated by NAD(+) kinase (NADK) and NADP(+) phosphatase (NADPase), enzymes known to regulate the levels of NAD(+) and NADP(+). While in menadione-challenged cells, the former enzyme was upregulated, the phosphatase activity was markedly increased in control cells. Thus, NADK and NADPase play a pivotal role in controlling the cross talk between metabolic networks that produce NADH and NADPH and are integral components of the mechanism involved in fending off oxidative stress.  相似文献   

6.
Inactive NADP-malate dehydrogenase (disulfide form) from chloroplasts of Zea mays is activated by reduced thioredoxin while the active enzyme (dithiol form) is inactivated by incubation with oxidized thioredoxin. This reductive activation of NADP-malate dehydrogenase is inhibited by over 95% in the presence of NADP and the Kd for this interaction of NADP with the inactive enzyme is about 3 microM. Other substrates of the enzyme (malate, oxaloacetate, or NADPH) do not effect the rate of enzyme activation but NADPH can reverse the inhibitory effect of NADP. It appears that NADPH (Kd = 250 microM) and NADP (Kd = 3 microM) compete for the same site, presumably the coenzyme-binding site at the active centre. Apparently the enzyme . NADP binary complex cannot be reduced by thioredoxin whereas the enzyme . NADPH complex is reduced at the same rate as is the free enzyme. Similarly the oxidative inactivation of reduced NADP-malate dehydrogenase is inhibited by up to 85% by NADP and NADPH completely reverses this inhibition. The Kd values of the active-reduced enzyme for NADP and NADPH were both estimated to be 30 microM. From these data a model was constructed which predicts how changing NADPH/NADP levels in the chloroplast might change the steady-state level of NADP-malate dehydrogenase activity. The model indicates that at any fixed ratio of reduced to oxidized thioredoxin high proportions of active NADP-malate dehydrogenase and, hence, high rates of oxaloacetate reduction, can only occur with very high NADPH/NADP ratios.  相似文献   

7.
Corynebacterium glutamicum is an important organism for the industrial production of amino acids such as lysine. In the present study time-dependent changes in the oxidative pentose phosphate pathway activity, an important site of NADPH regeneration in C. glutamicum, are investigated, whereby intracellular metabolite concentrations and specific enzyme activities in two isogenic leucine auxotrophic strains differing only in the regulation of their aspartate kinases were compared. After leucine limitation only the strain with a feedback-resistant aspartate kinase began to excrete lysine into the culture medium. Concomitantly, the intracellular NADPH to NADP concentration ratio increased from 2 to 4 in the non-producing strain, whereas it remained constant at about 1.2 in the lysine-producing strain. From these data the in'vivo flux through the pentose phosphate pathway was calculated. These results were used to approximate the total NADPH regeneration by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase, which agreed fairly well with the calculated demands for biomass formation and lysine biosynthesis. The analysis allowed to conclude that NADPH regeneration in the pentose phosphate pathway is essential for lysine biosynthesis in C. glutamicum.  相似文献   

8.
NADP+, NADPH and glucose 6-phosphate dehydrogenase were determined in the cerebral cortex of mice exposed to high O2 pressure for 0, 8 and 16 min. These time intervals corresponded to 0, 50 and 100% of the CT50 (the time taken for 50% of the mice to convulse). Cerebral NADP+, NADPH and glucose 6-phosphate dehydrogenase also were determined in O2-exposed mice exhibiting hyperactivity, convulsions, and in mice killed 10s after convulsions. Similar increases in cortical NADP+ and decreases in NADPH were found in mice exposed to 610kPa (6 atm.) of 100% O2 for 0, 50 and 100% of the CT50, during hyperactivity, onset of seizure and 10s after convulsions. The NADP+/NADPH ratio increased approx. 25% at 0% of the CT50, and remained at this increased value at all O2-exposure periods including the hyperactive state, onset of seizure and 10s after convulsions. Identical changes in cerebral NADP+ , NADPH and the NADP+/NADPH ratio were found in mice exposed for 16min to 100% O2 at 100, 350 or 610kPa. No change in cerebral glucose 6-phosphate dehydrogenase was found in mice exposed to 610kPa of 100% O2 during the various stages of O2 toxicity. Only in the 10s post-convulsive group was a statistically significant decrease in glucose 6-phosphate dehydrogenase observed. Disulfiram [bis(diethylthiocarbamoyl) disulphide], an effective O2-protective agent, did not prevent the O2-induced increase in cerebral NADP+ and the NADP+/NADPH ratio, or decrease in NADPH.  相似文献   

9.
6-Phosphogluconate dehydrogenase from human erythrocytes was purified by an improved procedure. Binding studies showed that the dimeric enzyme binds 2 mol of NADP+/mol but only 1 mol of NADPH/mol, and that the bindings of oxidized and reduced coenzyme are mutually exclusive. From initial-rate kinetics and inhibition studies, a sequential random-order mechanism is proposed. Double-reciprocal plots with NADP+ as varied substrate show a downward curvature, indicating a negative co-operativity. We suggest that the negative co-operativity observed kinetically is a result of the half-site reactivity for the NADPH. The different binding stoichiometries for NADP+ and NADPH generate a non-linear relationship between the apparent dissociation constant for the NADPH and the concentrations of the NADP+, resulting in a regulatory mechanism highly sensitive to the changes in the NADP+/NADPH ratio.  相似文献   

10.
NADP is a key electron carrier for a broad spectrum of redox reactions, including photosynthesis. Hence, chloroplastic NADP status, as represented by redox status (ratio of NADPH to NADP+) and pool size (sum of NADPH and NADP+), is critical for homeostasis in photosynthetic cells. However, the mechanisms and molecules that regulate NADP status in chloroplasts remain largely unknown. We have now characterized an Arabidopsis mutant with imbalanced NADP status (inap1), which exhibits a high NADPH/NADP+ ratio and large NADP pool size. inap1 is a point mutation in At2g04700, which encodes the catalytic subunit of ferredoxin/thioredoxin reductase. Upon illumination, inap1 demonstrated earlier increases in NADP pool size than the wild type did. The mutated enzyme was also found in vitro to inefficiently reduce m‐type thioredoxin, which activates Calvin cycle enzymes, and NADP‐dependent malate dehydrogenase to export reducing power to the cytosol. Accordingly, Calvin cycle metabolites and amino acids diminished in inap1 plants. In addition, inap1 plants barely activate NADP‐malate dehydrogenase, and have an altered redox balance between the chloroplast and cytosol, resulting in inefficient nitrate reduction. Finally, mutants deficient in m‐type thioredoxin exhibited similar light‐dependent NADP dynamics as inap1. Collectively, the data suggest that defects in ferredoxin/thioredoxin reductase and m‐type thioredoxin decrease the consumption of NADPH, leading to a high NADPH/NADP+ ratio and large NADP pool size. The data also suggest that the fate of NADPH is an important influence on NADP pool size.  相似文献   

11.
Glucose-6-phosphate dehydrogenase (G6PD) is involved in the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and the maintenance of cellular redox balance. We previously showed that G6PD-deficient fibroblasts undergo growth retardation and premature cellular senescence. In the present study, we demonstrate abatement of both the intracellular G6PD activity and the ratio NADPH/NADP(+) during the serial passage of G6PD-deficient cells. This was accompanied by a significant increase in the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). This suggests that the lowered resistance to oxidative stress and accumulative oxidative damage may account for the premature senescence of these cells. Consistent with this, the G6PD-deficient cells had an increased propensity for hydrogen peroxide (H(2)O(2))-induced senescence; these cells exhibited such senescent phenotypes as large, flattened morphology and increased senescence-associated beta-galactosidase (SA-beta-Gal) staining. Decreases in both the intracellular G6PD activity and the NADPH/NADP(+) ratio were concomitant with an increase in 8-OHdG level in H(2)O(2)-induced senescent cells. Exogenous expression of G6PD protected the deficient cells from stress-induced senescence. No significant telomere shortening occurred upon repetitive treatment with H(2)O(2). Simultaneous induction of p16(INK4a) and p53 was detected in G6PD-deficient but not in normal fibroblasts during H(2)O(2)-induced senescence. Our findings support the notion that G6PD status, and thus proper redox balance, is a determinant of cellular senescence.  相似文献   

12.
Summary Previous studies examining regulation of synthesis of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase in rat liver have focussed on the induction of these enzymes by different diets and some hormones. However, the precise mechanism regulating increases in the activities of these enzymes is unknown and the factors involved remain unidentified. Considering that many of these metabolic conditions occur simultaneously with the increase of some NADPH consuming pathway, in particular fatty acid synthesis, we suggest that the activities of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase could be regulated through a mechanism involving changes in the NADPH requirement. Here, we have studied the effect of changes in the flux through different NADPH consuming pathways on the NADPH/NADP ratio and on Glucose-6-Phosphate and 6-Phosphogluconate levels. The results show that: i) an increase in consumption of NADPH, caused by activation of fatty acid synthesis or the detoxification system which consumes NADPH, is paralleled by an increase in levels of these enzymes; ii) when increase in consumption of NADPH is prevented, Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase levels do not change.Abbreviations G6PDH Glucose-6-Phosphate Dehydrogenase - 6PGDH 6-Phosphogluconate Dehydrogenase - ME Malic Enzyme - NF Nitrofurantoin - CumOOH Cumene Hydroperoxide - t-BHP t-Butyl hydroperoxide - BCNU 1,3,-Bis (2-chloroethyl)-1-nitrosourea - GR Glutathione Dehydrogenase - 2-ME 2-Mercaptoethanol - DTT Dithiothreitol - NADP B-Nicotinamide-Adenine Dinucleotide Phosphate - NADPH B-Nicotinamide-Adenine Dinucleotide Phosphate Reduced - EDTA Ethylenediaminetetraacetic Acid - GSH Glutathione Reduced Form - GSSG Glutathione Oxidized Form  相似文献   

13.
Regulation of the pentose phosphate cycle   总被引:25,自引:12,他引:13       下载免费PDF全文
1. A search was made for mechanisms which may exert a ;fine' control of the glucose 6-phosphate dehydrogenase reaction in rat liver, the rate-limiting step of the oxidative pentose phosphate cycle. 2. The glucose 6-phosphate dehydrogenase reaction is expected to go virtually to completion because the primary product (6-phosphogluconate lactone) is rapidly hydrolysed and the equilibrium of the joint dehydrogenase and lactonase reactions is in favour of virtually complete formation of phosphogluconate. However, the reaction does not go to completion, because glucose 6-phosphate dehydrogenase is inhibited by NADPH (Neglein & Haas, 1935). 3. Measurements of the inhibition (which is competitive with NADP(+)) show that at physiological concentrations of free NADP(+) and free NADPH the enzyme is almost completely inhibited. This indicates that the regulation of the enzyme activity is a matter of de-inhibition. 4. Among over 100 cell constituents tested only GSSG and AMP counteracted the inhibition by NADPH; only GSSG was highly effective at concentrations that may be taken to occur physiologically. 5. The effect of GSSG was not due to the GSSG reductase activity of liver extracts, because under the test conditions the activity of this enzyme was very weak, and complete inhibition of the reductase by Zn(2+) did not abolish the GSSG effect. 6. Preincubation of the enzyme preparation with GSSG in the presence of Mg(2+) and NADP(+) before the addition of glucose 6-phosphate and NADPH much increased the GSSG effect. 7. Dialysis of liver extracts and purification of glucose 6-phosphate dehydrogenase abolished the GSSG effect, indicating the participation of a cofactor in the action of GSSG. 8. The cofactor removed by dialysis or purification is very unstable. The cofactor could be separated from glucose 6-phosphate dehydrogenase by ultrafiltration of liver homogenates. Some properties of the cofactor are described. 9. The hypothesis that GSSG exerts a fine control of the pentose phosphate cycle by counteracting the NADPH inhibition of glucose 6-phosphate dehydrogenase is discussed.  相似文献   

14.
Glucose-6-phosphate dehydrogenase catalyzes the initial and rate-limiting step of the pathway that is the principal source of NADPH in many cells. Earlier studies of cells from several species indicated that the intracellular enzyme is under severe and unexplained restraint or inhibition. Moreover, the intracellular enzyme of human erythrocytes exhibits sigmoid kinetics, whereas the purified enzyme exhibits only classical kinetics. We here report that most of the NADP in the human erythrocyte is bound by soluble proteins. In addition, the fraction of unbound NADP that is in the oxidized form, [NADP+]/[NADP], varies in a sigmoid manner relative to the fraction of bound NADP that is in the oxidized form. These features of intracellular binding of NADP: 1) account for the previously unexplained inhibition and sigmoid kinetics of glucose-6-phosphate dehydrogenase within human erythrocytes and 2) represent a system in which activity of a rate-limiting enzyme is largely determined by the binding and release of substrate and product by intracellular proteins other than the enzyme itself.  相似文献   

15.
Azotobacter beijerinckii possesses the enzymes of both the Entner-Doudoroff and the oxidative pentose phosphate cycle pathways of glucose catabolism and both pathways are subject to feedback inhibition by products of glucose oxidation. The allosteric glucose 6-phosphate dehydrogenase utilizes both NADP(+) and NAD(+) as electron acceptors and is inhibited by ATP, ADP, NADH and NADPH. 6-Phosphogluconate dehydrogenase (NADP-specific) is unaffected by adenosine nucleotides but is strongly inhibited by NADH and NADPH. The formation of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate by the action of the Entner-Doudoroff enzymes is inhibited by ATP, citrate, isocitrate and cis-aconitate. Glyceraldehyde 3-phosphate dehydrogenase is unaffected by adenosine and nicotinamide nucleotides but the enzyme is non-specific with respect to NADP and NAD. Citrate synthase is strongly inhibited by NADH and the inhibition is reversed by the addition of AMP. Isocitrate dehydrogenase, a highly active NADP-specific enzyme, is inhibited by NADPH, NADH, ATP and by high concentrations of NADP(+). These findings are discussed in relation to the massive synthesis of poly-beta-hydroxybutyrate that occurs under certain nutritional conditions. We propose that synthesis of this reserve material, to the extent of 70% of the dry weight of the organism, serves as an electron and carbon ;sink' when conditions prevail that would otherwise inhibit nitrogen fixation and growth.  相似文献   

16.
  • 1.1. The glyoxylic acid cycle pathway could be regulated through the modulation of the isocitrate dehydrogenase-NADP activity. This enzyme is inhibited by NADPH.
  • 2.2. The effect on the glyoxylate cycle flux of variations in the rate of the NADPH-consuming pathways has been studied.
  • 3.3. Increase in the rate of NADPH-consuming activity by addition of H2O2 produces inhibition of the glyoxylate cycle and decrease in the NADPH/NADP ratio.
  • 4.4. These results suggest that the glyoxylate flux in Tetrahymena could be modulated by regulation of NADP-dependent isocitrate dehydrogenase by the NADPH/NADP ratio.
  相似文献   

17.
Rat liver microsomal fraction generates 14CO2 from [1(-14)C]glucose 6-phosphate in the presence of NADP+ and a detergent. The activity is mediated through an enzyme system consisting of hexose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase inherent to the microsomes, with the latter enzyme reaction being a rate-determining step. Both enzymes of the system in microsomes are extremely resistant to trypsin digestion, thereby distinguishing them from the corresponding cytosol enzymes. A stoichiometric relationship was obtained between the generations of NADPH and 14CO2 (2: 1 on a molar basis), indicating that the observed generation of NADPH in microsomes could entirely be accounted for by the action of the enzyme system. A method was devised to measure NADP(H) inside or outside the microsomal vesicles, and it was found that a considerable amount of the cofactor was present within the vesicles. Subfractionation of various intracellular fractions on sucrose density gradients confirmed the close association of NADP(H) with liver microsomes. It is suggested that both enzymes of the system function to generate the reduced form of NADP+ in the luminal space of the endoplasmic reticulum, where NADP(H) and glucose 6-phosphate are available.  相似文献   

18.
Thiamine deficiency in rats induced by oxythiamine is accompanied by an increase in the free NADP+/NADPH ratio in liver tissue, which results in multifold stimulation of the metabolite flux in the oxidation branch of the pentose cycle. The increase in the intracellular concentrations of isocitrate and alpha-ketoglutarate with a simultaneous decrease of malate in the liver of vitamin-deficient rats points to the inhibition of alpha-ketoglutarate dehydrogenase responsible for the anomalous metabolism under conditions of thiamine deficiency. The decrease of the functional activity of the tricarboxylic acid cycle is concomitant with the activation of conversions in the oxidation branch of the pentose cycle, glucuronate and glycolytic pathways of carbohydrate metabolism, which is directed at eliminating the energy deficiency in rats with B1-hypovitaminosis.  相似文献   

19.
The glucose-6-phosphate (Glc6P) and 6-phosphogluconate (6PG) dehydrogenases of the amino-acid-producing bacterium Corynebacterium glutamicum were purified to homogeneity and kinetically characterized. The Glc6P dehydrogenase was a heteromultimeric complex, which consists of Zwf and OpcA subunits. The product inhibition pattern of the Glc6P dehydrogenase was consistent with an ordered bi-bi mechanism. The 6PG dehydrogenase was found to operate according to a Theorell-Chance ordered bi-ter mechanism. Both enzymes were inhibited by NADPH and the 6PG dehydrogenase additionally by ATP, fructose 1,6-bisphosphate (Fru1,6P2), D-glyceraldehyde 3-phosphate (Gra3P), erythrose 4-phosphate and ribulose 5-phosphate (Rib5P). The inhibition by NADPH was considered to be most important, with inhibition constants of around 25 microM for both enzymes. Intracellular metabolite concentrations were determined in two isogenic strains of C. glutamicum with plasmid-encoded NAD- and NADP-dependent glutamate dehydrogenases. NADP+ and NADPH levels were between 130 microM and 290 microM, which is very much higher than the respective Km and Ki values. The Glc6P concentration was around 500 microM in both strains. The in vivo fluxes through the oxidative part of the pentose phosphate pathway calculated on the basis of intracellular metabolite concentrations and the kinetic constants of the purified enzymes determined in vitro were in agreement with the same fluxes determined by NMR after 13C-labelling. From the derived kinetic model thus validated, it is concluded that the oxidative pentose phosphate pathway in C. glutamicum is mainly regulated by the ratio of NADPH and NADP+ concentrations and the specific enzyme activities of both dehydrogenases.  相似文献   

20.
Wright DP  Huppe HC  Turpin DH 《Plant physiology》1997,114(4):1413-1419
Pyridine nucleotide pools were measured in intact plastids from roots of barley (Hordeum vulgare L.) during the onset of NO2- assimilation and compared with the in vitro effect of the NADPH/NADP ratio on the activity of plastidic glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) from N-sufficient or N-starved roots. The NADPH/NADP ratio increased from 0.9 to 2.0 when 10 mM glucose-6-phosphate was supplied to intact plastids. The subsequent addition of 1 mM NaNO2 caused a rapid decline in this ratio to 1.5. In vitro, a ratio of 1.5 inactivated barley root plastid G6PDH by approximately 50%, suggesting that G6PDH could remain active during NO2- assimilation even at the high NADPH/NADP ratios that would favor a reduction of ferredoxin, the electron donor of NO2- reductase. Root plastid G6PDH was sensitive to reductive inhibition by dithiothreitol (DTT), but even at 50 mM DTT the enzyme remained more than 35% active. In root plastids from barley starved of N for 3 d, G6PDH had a substantially reduced specific activity, had a lower Km for NADP, and was less inhibited by DTT than the enzyme from N-sufficient root plastids, indicating that there was some effect of N starvation on the G6PDH activity in barley root plastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号