首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to get an insight into the cellular mechanisms for the integration of the effects of gravity, we investigated the gravitactic behaviour in Paramecium. There are two main categories for the model of the mechanism of gravitaxis; one is derived on the basis of the mechanistic properties of the cell (physical model) and the other of the physiological properties including cellular gravireception (physiological model). In this review article, we criticized the physical models and introduced a new physiological model. Physical models postulated so far can be divided into two; one explaining the negative gravitactic orientation of the cell in terms of the static torque generated by the structural properties of the cell (gravity-buoyancy model by Verworn, 1889 and drag-gravity model by Roberts, 1970), and the other explaining it in terms of the dynamic torque generated by the helical swimming of the cell (propulsion-gravity model by Winet and Jahn, 1974 and lifting-force model by Nowakowska and Grebecki, 1977). Among those we excluded the possibility of dynamic-torque models because of their incorrect theoretical assumptions. According to the passive orientation of Ni(2+)-immobilized cells, the physical effect of the static torque should be inevitable for the gravitactic orientation. Downward orientation of the immobilized cells in the course of floating up in the hyper-density medium demonstrated the gravitactic orientation is not resulted by the nonuniform distribution of cellular mass (gravity-buoyancy model) but by the fore-aft asymmetry of the cell (drag-gravity model). A new model explaining the gravitactic behaviour is derived on the basis of the cellular gravity sensation through mechanoreceptor channels of the cell membrane. Paramecium is known to have depolarizing receptor channels in the anterior and hyperpolarizing receptors in the posterior of the cell. The uneven distribution of the receptor may lead to the bidirectional changes of the membrane potential by the selective deformation of the anterior and posterior cell membrane responding to the orientation of the cell in the gravity field; i.e. negative- and positive-going shift of the potential due to the upward and downward orientation, respectively. The orientation dependent changes in membrane potential with respect to gravity, in combination with the close coupling of the membrane potential and the ciliary locomotor activity, may allow the changes in swimming direction along with those in the helical nature of the swimming path; upward shift of axis of helix by decreasing the pitch angle due to hyperpolarization in the upward-orienting cell, and also the upward shift by increasing the pitch angle due to depolarization in the downward-orienting cell. Computer simulation of the model demonstrated that the cell can swim upward along the "super-helical" trajectory consisting of a small helix winding helically an axis parallel to the gravity vector, after which the model was named as "Super-helix model". Three-dimensional recording of the trajectories of the swimming cells demonstrated that about a quarter of the cell population drew super-helical trajectory under the unbounded, thermal convection-free conditions. In addition, quantitative analysis of the orientation rate of the swimming cell indicated that gravity-dependent orientation of the swimming trajectory could not be explained solely by the physical static torque but complementarily by the physiological mechanism as proposed in the super-helix model.  相似文献   

2.
《Zoology (Jena, Germany)》2014,117(4):269-281
Studies of center of mass (COM) motion are fundamental to understanding the dynamics of animal movement, and have been carried out extensively for terrestrial and aerial locomotion. But despite a large amount of literature describing different body movement patterns in fishes, analyses of how the center of mass moves during undulatory propulsion are not available. These data would be valuable for understanding the dynamics of different body movement patterns and the effect of differing body shapes on locomotor force production. In the present study, we analyzed the magnitude and frequency components of COM motion in three dimensions (x: surge, y: sway, z: heave) in three fish species (eel, bluegill sunfish, and clown knifefish) swimming with four locomotor modes at three speeds using high-speed video, and used an image cross-correlation technique to estimate COM motion, thus enabling untethered and unrestrained locomotion. Anguilliform swimming by eels shows reduced COM surge oscillation magnitude relative to carangiform swimming, but not compared to knifefish using a gymnotiform locomotor style. Labriform swimming (bluegill at 0.5 body lengths/s) displays reduced COM sway oscillation relative to swimming in a carangiform style at higher speeds. Oscillation frequency of the COM in the surge direction occurs at twice the tail beat frequency for carangiform and anguilliform swimming, but at the same frequency as the tail beat for gymnotiform locomotion in clown knifefish. Scaling analysis of COM heave oscillation for terrestrial locomotion suggests that COM heave motion scales with positive allometry, and that fish have relatively low COM oscillations for their body size.  相似文献   

3.
Leptospira are spirochete bacteria distinguished by a short-pitch coiled body and intracellular flagella. Leptospira cells swim in liquid with an asymmetric morphology of the cell body; the anterior end has a long-pitch spiral shape (S-end) and the posterior end is hook-shaped (H-end). Although the S-end and the coiled cell body called the protoplasmic cylinder are thought to be responsible for propulsion together, most observations on the motion mechanism have remained qualitative. In this study, we analyzed the swimming speed and rotation rate of the S-end, protoplasmic cylinder, and H-end of individual Leptospira cells by one-sided dark-field microscopy. At various viscosities of media containing different concentrations of Ficoll, the rotation rate of the S-end and protoplasmic cylinder showed a clear correlation with the swimming speed, suggesting that these two helical parts play a central role in the motion of Leptospira. In contrast, the H-end rotation rate was unstable and showed much less correlation with the swimming speed. Forces produced by the rotation of the S-end and protoplasmic cylinder showed that these two helical parts contribute to propulsion at nearly equal magnitude. Torque generated by each part, also obtained from experimental motion parameters, indicated that the flagellar motor can generate torque >4000 pN nm, twice as large as that of Escherichia coli. Furthermore, the S-end torque was found to show a markedly larger fluctuation than the protoplasmic cylinder torque, suggesting that the unstable H-end rotation might be mechanically related to changes in the S-end rotation rate for torque balance of the entire cell. Variations in torque at the anterior and posterior ends of the Leptospira cell body could be transmitted from one end to the other through the cell body to coordinate the morphological transformations of the two ends for a rapid change in the swimming direction.  相似文献   

4.
Leptospira are spirochete bacteria distinguished by a short-pitch coiled body and intracellular flagella. Leptospira cells swim in liquid with an asymmetric morphology of the cell body; the anterior end has a long-pitch spiral shape (S-end) and the posterior end is hook-shaped (H-end). Although the S-end and the coiled cell body called the protoplasmic cylinder are thought to be responsible for propulsion together, most observations on the motion mechanism have remained qualitative. In this study, we analyzed the swimming speed and rotation rate of the S-end, protoplasmic cylinder, and H-end of individual Leptospira cells by one-sided dark-field microscopy. At various viscosities of media containing different concentrations of Ficoll, the rotation rate of the S-end and protoplasmic cylinder showed a clear correlation with the swimming speed, suggesting that these two helical parts play a central role in the motion of Leptospira. In contrast, the H-end rotation rate was unstable and showed much less correlation with the swimming speed. Forces produced by the rotation of the S-end and protoplasmic cylinder showed that these two helical parts contribute to propulsion at nearly equal magnitude. Torque generated by each part, also obtained from experimental motion parameters, indicated that the flagellar motor can generate torque >4000 pN nm, twice as large as that of Escherichia coli. Furthermore, the S-end torque was found to show a markedly larger fluctuation than the protoplasmic cylinder torque, suggesting that the unstable H-end rotation might be mechanically related to changes in the S-end rotation rate for torque balance of the entire cell. Variations in torque at the anterior and posterior ends of the Leptospira cell body could be transmitted from one end to the other through the cell body to coordinate the morphological transformations of the two ends for a rapid change in the swimming direction.  相似文献   

5.
We recorded large data sets of swimming trajectories of the soil bacterium Pseudomonas putida. Like other prokaryotic swimmers, P. putida exhibits a motion pattern dominated by persistent runs that are interrupted by turning events. An in-depth analysis of their swimming trajectories revealed that the majority of the turning events is characterized by an angle of ?1 = 180° (reversals). To a lesser extent, turning angles of ?2 = 0° are also found. Remarkably, we observed that, upon a reversal, the swimming speed changes by a factor of two on average—a prominent feature of the motion pattern that, to our knowledge, has not been reported before. A theoretical model, based on the experimental values for the average run time and the rotational diffusion, recovers the mean-square displacement of P. putida if the two distinct swimming speeds are taken into account. Compared to a swimmer that moves with a constant intermediate speed, the mean-square displacement is strongly enhanced. We furthermore observed a negative dip in the directional autocorrelation at intermediate times, a feature that is only recovered in an extended model, where the nonexponential shape of the run-time distribution is taken into account.  相似文献   

6.
The hydrodynamics and energetics of helical swimming by the bacterium Spirillum sp. is analysed using observations from medium speed cine photomicrography and theory. The photographic records show that the swimming organism's flagellar bundles beat in a helical fashion just as other bacterial flagella do. The data are analysed according to the rotational resistive theory of Chwang & Wu (1971) in a simple-to-use parametric form with the viscous coefficients Cs and Cn calculated according to the method of Lighthill (1975). Results of the analysis show that Spirillum dissipated biochemical energy in performing work against fluid resistance to motion at an average rate of about 6 X 10(-8) dyne cm s-1 with some 62-72% of the power dissipation due to the non-contractile body. These relationships yield a relatively low hydromechanical efficiency which is reflected in swimming speeds much smaller than a representative eukaryote. In addition the Cn/Cs ratio for the body is shown to lie in the range 0-86-1-51 and that for the flagellar bundle in the range 1-46-1-63. The implications of the power calculations for the Berg & Anderson (1973) rotating shaft model are discussed and it is shown that a rotational resistive theory analysis predicts a 5-cross bridge M ring for each flagellum of Spirillum.  相似文献   

7.
We recorded large data sets of swimming trajectories of the soil bacterium Pseudomonas putida. Like other prokaryotic swimmers, P. putida exhibits a motion pattern dominated by persistent runs that are interrupted by turning events. An in-depth analysis of their swimming trajectories revealed that the majority of the turning events is characterized by an angle of ϕ1 = 180° (reversals). To a lesser extent, turning angles of ϕ2 = 0° are also found. Remarkably, we observed that, upon a reversal, the swimming speed changes by a factor of two on average—a prominent feature of the motion pattern that, to our knowledge, has not been reported before. A theoretical model, based on the experimental values for the average run time and the rotational diffusion, recovers the mean-square displacement of P. putida if the two distinct swimming speeds are taken into account. Compared to a swimmer that moves with a constant intermediate speed, the mean-square displacement is strongly enhanced. We furthermore observed a negative dip in the directional autocorrelation at intermediate times, a feature that is only recovered in an extended model, where the nonexponential shape of the run-time distribution is taken into account.  相似文献   

8.
A propulsion-based model for negative geotaxis of ciliated protozoa is presented which views geotaxic reorientation as the unbalancing of gyrational torque by a sedimentation torque. The balanced gyrational torque results from the location of the propulsive center of effort forward of the body center of mass. When gravity is ignored, the propulsive forces generating the gyrational moments may be confined to an envelope surrounding the cell. The effect of gravity is to induce sedimentation of the body-plus-envelope system. Viscous resistance to this sedimentation at the envelope “surface” is transmitted to the beating cilia whose net constant energy output must now deal with a new source of dissipation (not “present” when gravity was ignored) which is maximal in the downswing portion of the gyration cycle. In such a manner sedimentation resistance acts as a counter torque to the downswing gyrational moment of force and an enhancing torque to the upswing moment thereby generating a net upward reorientation of the gyrational axis. Upon addition of the translational component of propulsion, the negative geotaxis behavior pattern is completed. The forward location of the center of effort which provides the basic validity indicator for the model is verified by observations from the ciliate Tetrahymena.  相似文献   

9.
The flagellate Trypanosoma brucei, which causes the sleeping sickness when infecting a mammalian host, goes through an intricate life cycle. It has a rather complex propulsion mechanism and swims in diverse microenvironments. These continuously exert selective pressure, to which the trypanosome adjusts with its architecture and behavior. As a result, the trypanosome assumes a diversity of complex morphotypes during its life cycle. However, although cell biology has detailed form and function of most of them, experimental data on the dynamic behavior and development of most morphotypes is lacking. Here we show that simulation science can predict intermediate cell designs by conducting specific and controlled modifications of an accurate, nature-inspired cell model, which we developed using information from live cell analyses. The cell models account for several important characteristics of the real trypanosomal morphotypes, such as the geometry and elastic properties of the cell body, and their swimming mechanism using an eukaryotic flagellum. We introduce an elastic network model for the cell body, including bending rigidity and simulate swimming in a fluid environment, using the mesoscale simulation technique called multi-particle collision dynamics. The in silico trypanosome of the bloodstream form displays the characteristic in vivo rotational and translational motility pattern that is crucial for survival and virulence in the vertebrate host. Moreover, our model accurately simulates the trypanosome''s tumbling and backward motion. We show that the distinctive course of the attached flagellum around the cell body is one important aspect to produce the observed swimming behavior in a viscous fluid, and also required to reach the maximal swimming velocity. Changing details of the flagellar attachment generates less efficient swimmers. We also simulate different morphotypes that occur during the parasite''s development in the tsetse fly, and predict a flagellar course we have not been able to measure in experiments so far.  相似文献   

10.
Laboratory studies of the behavior of first stage zoea larvae of the sand crab Emerita analoga Stimpson have shown that while newly-hatched larvae are strongly photopositive, this response lasts only about four hours, as the larvae rapidly become photonegative. After becoming photonegative, a large proportion of the larvae remain so throughout the first four days of life if they are fed Artemia nauplii; if starved, the larvae become significantly more photopositive than when fed. Both the photopositive response of newly-hatched larvae and the reversal to photopositive behavior in response to starvation are only apparent under horizontal test conditions. Increases in hydrostatic pressure stimulate swimming activity among the larvae; responsiveness to pressure being greatest at hatching and decreasing thereafter. The pressure response is strongly oriented to light; pressure-stimulated larvae will swim towards a light source regardless of whether this involves upward, downward, or horizontal motion. Experiments suggest that the pressure response provides the primary mechanism for depth regulation among young larvae; gravity and light may augment the pressure ‘sense’ by serving as primary orientational cues. The nutritional status of an individual larva may alter its depth-regulatory capabilities, but this effect is not yet clear.  相似文献   

11.
The different steps of the gravity signal-transduction chain on the cellular level are not identified. In our experiments performed up to now we mainly stressed our attention on the last step, the response of the cells. Swimming behavior is a suitable indicator for the physiological status of a Paramecium cell. Depending on membrane potential and/or concentrations of Ca++, cGMP and cAMP the beating direction and the beating velocity of the cilia are influenced in a characteristical way leading to a changed swimming activity of the cell. The behavior of Paramecium is influenced by various stimuli from their environment. Previous studies have demonstrated that under controlled conditions Paramecium shows a clear gravity-dependent behavior resulting in negative gravitaxis and gravikinesis (speed regulation in dependence of gravity). By changing the orienting stimulus (gravity) we expected changes of the swimming behavior. Additional experiments were performed using pawn mutant d4-500r. Due to defective Ca(2+)-channels the membrane of this mutant cannot depolarize. As a consequence d4-500r cannot perform phobic responses and swim backwards. Comparative experiments are also performed with the ciliate Loxodes striatus. In contrast to Paramecium this ciliate possesses statocyst-like organelles--the Müller Organelles.  相似文献   

12.
A cell culture of Paramecium with a precise negative gravitaxis was exposed to 4 x l0(-6) g during a parabolic flight of a sounding rocket for 6 min. Computer image analysis revealed that without gravity stimulus the individual swimming paths remained straight. In addition, three reactions could be distinguished. For about 30 s, paramecia maintained the swimming direction they had before onset of low gravity. During the next 20 s, an approximate reversal of the swimming direction occurred. This period was followed by the expected random swimming pattern. Similar behavior was observed under the condition of simulated weightlessness on a fast-rotating clinostat. Control experiments on the ground under hyper-gravity on a low-speed centrifuge microscope and on a vibration test facility proved that the observed effects were caused exclusively by the reduction of gravity.  相似文献   

13.
We analyse the helical motion of organisms, concentrating on the means by which organisms change the direction in space of the axis of the helical trajectory, which is the net direction of motion. We demonstrate that the direction of the axis is determined largely by the direction of the organism's rotational velocity. Changes in direction of the rotational velocity, with respect to the organism's body, change the direction in space of the axis of the helical trajectory. Conversely, changes in direction of the translational velocity, with respect to the body of the organism, have little effect on the direction in space of the axis of the trajectory. Because the axis of helical motion is the net direction of motion, it is likely that organisms that move in helices change direction by pointing their rotational velocity, not their translational velocity, in a new direction.  相似文献   

14.
Paramecium tetraurelia is a ciliated protist that alters its swimming behavior in response to various stimuli. Like the sensory responses of many organisms, these responses in Paramecium show adaptation to continued stimulation. For quantitative studies of the initial response to stimulation, and of the time course of adaptation, we have developed a computerized motion analysis assay that can detect deviations from the normal swimming pattern in a population of cells. The motion of an average of ten cells was quantified during periods ranging from 15 to 60 seconds, with a time resolution of 1/15 seconds. During normal forward swimming, the maximum deviation from a straight-line path was less than 17 degrees. Path deviations above this threshold value were defined as changes in swimming direction. The percentage of total path time that cells spent deviating from forward swimming was defined as percent directional changes (PDC). This parameter was used to construct dose-response curves for the behavioral effects of various externally added cations known to induce behavioral changes and also to show the time course of adaptation to a depolarizing K+ stimulus. This assay is a valuable tool for studies of chemoeffectors or mutations that alter the swimming behavior of Paramecium and may also be applicable to other motile organisms.  相似文献   

15.
Bursaria truncatella is a giant ciliate. Its volume of 3×107 μm3 and a sedimentation rate of 923 μm s?1 would induce the cell to rapidly sink to the bottom of a pond unless compensating mechanisms exist. The upward swimming behaviour of a cell population (negative gravitaxis) may be either a result of reorientations of the cells (graviorientation) and/or direction-dependent changes in propulsion rate (gravikinesis). The special statocyst hypothesis assumes a stimulation of mechanosensitive ion channels by forces of the cytoplasmic mass acting on the lower membrane. Here, we present basic electrophysiological data on B. truncatella. Investigation of the mechanosensitivity reveals a polar distribution of depolarising and hyperpolarising mechanosensitive channels at least on the dorsal membrane of the cell. Analysis of swimming behaviour demonstrates that Bursaria orients against the gravity vector (rOc=0.34) and performs a negative gravikinesis (?633 μm s?1) compensating the sedimentation rate by 70%. Under hypergravity conditions gravitaxis in Bursaria is enhanced. Microgravity experiments indicate an incomplete relaxation of graviresponses during 4 s of weightlessness. Experimental data are in accordance with the special statocyst hypothesis of graviperception, as was demonstrated in other ciliates.  相似文献   

16.
Peritrichous bacteria exploit bundles of helical flagella for propulsion and chemotaxis. Here, changes in the swimming direction (tumbling) are induced by a change of the rotational frequency of some flagella. Employing coarse-grained modeling and simulations, we investigate the dynamical properties of helical flagella bundles driven by mismatched motor torques. Over a broad range of distances between the flagella anchors and applied torque differences, we find a stable bundled state, which is important for a robust directional motion of a bacterium. With increasing torque difference, a phase lag in the flagellar rotations develops, followed by slippage and ultimately unbundling, which sensitively depends on the anchoring distance of neighboring flagella. In the slippage and drift states, the different rotation frequencies of the flagella generate a tilting torque on the bacterial body, which implies a change of the swimming direction as observed experimentally.  相似文献   

17.
Behavioral responses to gravity and hydrostatic pressure have been investigated in two species of xanthid crabs Leptodius floridanus (Gibbes) and Panopeus herbstii Milne-Edwards to determine whether such responses provide a mechanism for depth regulation in the absence of light.In laboratory experiments, the four zoea stages and one megalopa stage of each species assume a differential vertical distribution in darkness, with succeeding stages showing a deeper overall distribution. Passive sinking rates increase in succeeding zoea stages and drop to an intermediate level after the molt to the megalopa stage. All zoea stages exhibit a negative geotaxis in the absence of light; the megalopa shows a positive geotaxis. The first zoea stage of Leptodius floridanus responds to an increase in hydrostatic pressure (up to 1 atmos above ambient) with an increase in swimming rate. This pressure response is shown to be reversible and not subject to short-term acclimation. The swimming rate of the last zoea stage does not increase in response to an increase in pressure.It is concluded that the responses of these larvae to gravity and hydrostatic pressure together with their characteristic passive sinking rates provide a mechanism for depth regulation in the absence of light that varies during ontogeny.  相似文献   

18.
To study the swimming of a peritrichous bacterium such as Escherichia coli, which is able to change its swimming direction actively, we simulate the “run-and-tumble” motion by using a bead-spring model to account for: 1), the hydrodynamic and the mechanical interactions among the cell body and multiple flagella; 2), the reversal of the rotation of a flagellum in a tumble; and 3), the associated polymorphic transformations of the flagellum. Because a flexible hook connects the cell body and each flagellum, the flagella can take independent orientations with respect to the cell body. This simulation reproduces the experimentally observed behaviors of E. coli, namely, a three-dimensional random-walk trajectory in run-and-tumble motion and steady clockwise swimming near a wall. We show that the polymorphic transformation of a flagellum in a tumble facilitates the reorientation of the cell, and that the time-averaged flow-field near a cell in a run has double-layered helical streamlines, with a time-dependent flow magnitude large enough to affect the transport of surrounding chemoattractants.  相似文献   

19.
Coordinated swimming movements in Yungia are not dependent upon the presence of the brain. The neuromuscular mechanism necessary for spontaneous movement and swimming is complete in the body of the animal apart from the brain. Normally this mechanism is set in motion by sensory stimulation arriving by way of the brain. The latter is a region of low threshold and acts as an amplifier by sending the impulses into a great number of channels. When the head is cut off these connections with the sensorium are broken, consequently peripheral stimulation does not have its usual effect. If, however, the motor nerves are stimulated directly as by mechanical stimulation of the median anterior region, then swimming movements result. Also if the threshold of the entire nervous mechanism is lowered by phenol or by an increase in the ion ratios See PDF for Equation and See PDF for Equation then again peripheral stimulation throws the neuromuscular mechanism into activity and swimming movements result.  相似文献   

20.
When vegetative bacteria that can swim are grown in a rich medium on an agar surface, they become multinucleate, elongate, synthesize large numbers of flagella, produce wetting agents, and move across the surface in coordinated packs: they swarm. We examined the motion of swarming Escherichia coli, comparing the motion of individual cells to their motion during swimming. Swarming cells' speeds are comparable to bulk swimming speeds, but very broadly distributed. Their speeds and orientations are correlated over a short distance (several cell lengths), but this correlation is not isotropic. We observe the swirling that is conspicuous in many swarming systems, probably due to increasingly long-lived correlations among cells that associate into groups. The normal run-tumble behavior seen in swimming chemotaxis is largely suppressed, instead, cells are continually reoriented by random jostling by their neighbors, randomizing their directions in a few tenths of a second. At the edge of the swarm, cells often pause, then swim back toward the center of the swarm or along its edge. Local alignment among cells, a necessary condition of many flocking theories, is accomplished by cell body collisions and/or short-range hydrodynamic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号