首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ligation of the CD3 receptor induces multiple signal transduction events that modify the activation state of the T cell. We have compared two lines that express biologically active CD3 receptors but differ in their biochemical activation pathways during ligation of this receptor. Jurkat cells respond to anti-CD3 with Ca2+ mobilization, PKC activation, induction of protein tyrosine phosphorylation, and activation of newly characterized lymphoid microtubule associated protein-2 kinase (MAP-2K). MAP-2K itself is a 43-kDa phosphoprotein that requires tyrosine phosphorylation for activation. Although ligation of the CD3 receptor in HPB-ALL could stimulate tyrosine phosphorylation of a 59- kDa substrate, there was no associated induction of [Ca2+]i flux, PKC, or MAP-2K activation. A specific PKC agonist, PMA, which bypasses the CD3 receptor, could, however, activate MAP-2K in HPB-ALL cells. This implies that defective stimulation of PKC by the CD3 receptor is responsible for its failure to activate MAP-2K in HPB-ALL. The defect in PKC activation is likely distal to the CD3 receptor as A1F14- failed to activate MAP-2K in HPB-ALL but was effective in Jurkat cells. The stimulatory effect of PMA on MAP-2K activity in HPB-ALL was accompanied by tyrosine phosphorylation of this kinase which implies that PKC may, in some way, regulate tyrosine phosphorylation of MAP-2K. A candidate for this role is pp56lck which underwent posttranslational modification (seen as mobility change on SDS-PAGE) during anti-CD3 and PMA stimulation in Jurkat or PMA treatment in HPB-ALL. There was, in fact, exact coincidence between induction of PKC activity, posttranslational modification of lck and tyrosine phosphorylation/activation of MAP-2K. Lck kinase activity in an immune complex kinase assay was unchanged during PMA treatment. An alternative explanation is that modification of lck may alter its substrate profile. We therefore looked at the previously documented ability of PKC to dissociate lck from the CD4 receptor and found that PMA could reduce the stoichiometry of the lck interaction with CD4 in HPB-ALL and to a lesser extent in Jurkat cells. These results imply the existence of a kinase cascade that is initiated by PKC and, in the course of which, lck and MAP-2K may interact.  相似文献   

2.
The CD4R has been shown to exert variable effects on T cell activation responses. Depending on the manner of ligation, the CD4R has been demonstrated to have positive as well as negative effects on the generation of [Ca2+]i flux by the CD3R. Coaggregation of CD3 with CD4 enhanced Ca2+ flux while their independent ligation and aggregation diminished this response. To further elucidate these paradoxical CD4 effects, we studied induction of a microtubule-associated protein 2 kinase (MAP-2K) activity during ligation of the CD3R. Lymphoid MAP-2K activation by CD3 is an evanescent event that is dependent on phosphorylation of 43-kDa MAP-2K via a pathway that involves protein kinase C. Coaggregation of CD4 and CD3 with cross-linking antibodies and avidin enhanced the CD3-mediated MAP-2K response almost twofold. In contrast, independent ligation and cross-linking of CD4 reduced the CD3-induced MAP-2K response by approximately 50%. An important requirement for this inhibitory effect was that CD4 be ligated before stimulation with anti-CD3. The negative effect of anti-CD4 mAb was specific as other mAb failed to simulate this event. The PMA-induced MAP-2K response was not inhibited by anti-CD4. Intact 32P-labeled Jurkat and normal human T cells demonstrated the appearance of a single 43-kDa tyrosine phosphoprotein during stimulation with PMA and anti-CD3. When these crude cellular extracts were extensively fractionated across DEAE- and hydrophobic columns, MAP-2K was resolved into two peaks of activity, each containing a single tyrosine phosphoprotein around 43 kDa. In addition to tyrosine-specific labeling, mitogenic stimulation of normal human T cells also induced threonine-specific labeling of MAP-2K. These results imply that activation of lymphoid MAP-2K is a dual process requiring at least two independent kinases for optimal activity. Inasmuch as CD3 activates protein kinase C and CD4 is associated with a tyrosine kinase, pp56lck, we suggest that their coaggregation may create the conditions whereby MAP-2K may be activated by dual phosphorylation. Independent aggregation of these receptors may lead to physical separation and breakdown of this interactive mechanism.  相似文献   

3.
4.
Ligation of the TCR on Jurkat T lymphoblastoid cells causes an 1,4,5-inositol trisphosphate-dependent rise in intracellular cytoplasmic calcium that is inhibited by PMA, a potent activator of protein kinase C. Consequently, protein kinase C is widely believed to mediate feedback inhibition of TCR-activated phospholipase C. We have now extended these studies to normal unblasted human CD4+ T lymphocytes, examining the PMA sensitivity of both the TCR complex-mediated release of total inositol-phosphates and the resynthesis of the parent phosphoinositides. In contrast to Jurkat, in which PMA inhibited release of 1,4,5-inositol trisphosphate by 60% and total inositolphosphates by 40% (50% inhibitory concentration, 5.6 nM), normal cells displayed a marked increase in anti-CD3-induced phosphatidylinositol (PI) cycling in the presence of PMA. Both total inositolphosphate release and PI resynthesis were maximally elevated (88% and 342%, respectively) by a PMA concentration that also optimally supported a subsequent proliferative response; the ED50 was at least 11.7-fold lower than that for the inhibitory effect of PMA on breakdown of total Jurkat PI. A PKC nonactivating phorbol ester had no effect. If anti-CD3 was replaced by the mitogenic lectin PHA, PI resynthesis was similarly up-regulated by PMA in these highly purified cells. The PMA up-regulatory phenomenon was not a simple consequence of cell blastogenesis, inasmuch as there was no early effect on the non-signaling-associated phosphatidylethanolamine compartment after CD3 stimulation. Thus, PKC activation appears to accelerate TCR-linked PI metabolism in normal Th cells, in contrast to the feedback inhibitor paradigm observed in Jurkat and other tumor cell systems.  相似文献   

5.
6.
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.  相似文献   

7.
TGF-beta modulates immune responses by regulating T cell function. The Smad family of proteins has been recently shown to transduce signals for the TGF-beta superfamily and Smad2 mediates TGF-beta signaling. Here, we showed that TGF-beta phosphorylated Smad2 and induced interaction between Smad2 and Smad4 in primary T cells and the Jurkat T cell line. Interestingly, ligation of the T cell receptor (TCR)/CD3 complex with anti-CD3 mAb also phosphorylated Smad2, but failed to induce interaction between Smad2 and Smad4 in the Jurkat T cell line. Phosphorylation of Smad2 via the TCR/CD3 complex was not abrogated by treatment with neutralizing antibody against TGF-beta. Furthermore, PD98059, a MEK inhibitor, suppressed Smad2 phosphorylation by stimulation with anti-CD3 mAb in Jurkat T cell line. These findings indicated that not only TGF-beta but also stimulation via the TCR/CD3 complex phosphorylated Smad2 through mitogen-activated protein (MAP) kinase cascades, suggesting that Smad2 may function in both TGF-beta- and TCR/CD3 complex-mediated signaling pathways in T cells.  相似文献   

8.
The rearrangement of TCR genes during thymic ontogeny creates a repertoire of T cell specificities that is refined to ensure the deletion of autoreactive clones and the MHC restriction of T cell responses. Signals delivered via the accessory molecules CD2, CD4, and CD8 have a crucial role in this phase of T cell differentiation. Recently, CD28 has been identified as a signal transducing molecule on the surface of most mature T cells. Perturbation of the CD28 molecule stimulates a novel pathway of T cell activation regulating the production of a variety of lymphokines including IL-2. We have studied the expression and function of CD28 during thymic ontogeny, and in resting and activated PBL. A variable percentage of resting thymocytes were CD28+ (3 to 25%, n = 8), but it was found in high density only on mature CD3+(bright) CD4/CD8 cells. Both unseparated thymocytes and isolated CD3-CD28-/dull cells proliferated when stimulated with PMA plus IL-2 or PMA plus ionomycin. PMA treatment also rapidly up-regulated CD28 expression in the CD3- subset as these cells became CD3-CD28+(bright). Despite the ability of PMA to induce high density CD28 expression in CD3- cells, CD3- thymocytes did not proliferate in response to PMA plus anti-CD28 mAb, in contrast to unseparated cells. CD3+ thymocytes stimulated with immobilized anti-CD3 mAb also failed to proliferate in culture. However, the addition of either IL-2 or anti-CD28 mAb supported proliferation, suggesting that only CD3+ cells could respond to CD28 signaling. The comitogenic effect of anti-CD3 and anti-CD28 mAb was IL-2 dependent as it was abrogated by an anti-IL-2R mAb. Interestingly, the expression of CD28 on the cell surface of CD3+ cells was also inducible, as flow cytometric analysis demonstrated a 10-fold increase in cell surface CD28 by 24 to 48 h after anti-CD3 stimulation of both CD3+ thymocytes and peripheral blood T cells. This increase was accounted for by a commensurate increase in CD28 mRNA levels. Together, these results suggest that CD28 is an inducible T cell antigen in both CD3- and CD3+ cells. In addition, stimulation of the CD28 pathway can provide a second signal to support the growth of CD3+ thymocytes stimulated through the TCR/CD3 complex, and may therefore represent a mechanism for positive selection during thymic ontogeny.  相似文献   

9.
Cross-linking class I MHC molecules on human T cell clones by reacting them with various mAb directed at either monomorphic or polymorphic determinants on class I MHC molecules followed by cross-linking with GaMIg stimulated a rise in intracellular free calcium concentration ([Ca2+]i), and induced proliferation and IL-2 production. T cell clones varied in the mean density of class I MHC molecules and the capacity to respond to mAb to class I MHC molecules. However, the functional responses of the clones did not correlate with class I MHC density or the CD4/CD8 phenotype. mAb to polymorphic class I MHC determinants were less able to induce an increase in [Ca2+]i and a functional response in the T cell clones. Additive stimulatory effects were noted when mAb against both HLA-A and HLA-B determinants were employed. Cross-linking class I MHC molecules on Jurkat cells induced a rise by [Ca2+]i and induced IL-2 production upon co-stimulation with PMA. Cross-linking class I MHC molecules on mutant Jurkat cells that expressed diminished levels of CD3 and were unable to produce IL-2 in response to anti-CD3 stimulation triggered both a rise in [Ca2+]i and IL-2 production with PMA co-stimulation. In contrast, cross-linking class I MHC molecules on mutant Jurkat cells that were CD3- stimulated neither a rise in [Ca2+]i nor IL-2 production. The combination of mAb to CD28 or ionomycin and PMA, however, was able to induce IL-2 production by CD3- Jurkat cells. The data demonstrate that cross-linking class I MHC molecules delivers a functionally important signal to T cell clones and Jurkat cells and indicate that class I MHC molecules may function to transduce activation signals to T cells. In addition, the data demonstrate that transmission of an activation signal via class I MHC molecules requires CD3 expression. The data, therefore, support a central role for CD3 in the transduction of activation signals to T cells via class I MHC molecules.  相似文献   

10.
We used three anti-human anti-CD3 mAb each recognizing different surface CD3 epitopes to differentially perturb the CD3/TCR complex on the surface of Jurkat T cells. In the presence of phorbol ester, these anti-CD3 mAb triggered differential IL-2 production in Jurkat T cells, which could not be explained by differences in kinetics of IL-2 production, by differences in IL-2 adsorption caused by differential surface expression of p55 or p75 IL-2R, by effects on IL-2 secretion rather than actual synthesis, or by differential toxicities of the anti-CD3 mAb to Jurkat cells. In addition, this differential anti-CD3-induced IL-2 production could not be explained by differences in mAb isotype or in avidities of the anti-CD3 mAb for the Jurkat cells. Moreover, anti-CD3 mAb covalently immobilized onto beads also differentially induced IL-2 production in Jurkat cells, suggesting that the differential IL-2 response is not based on differential rates of anti-CD3-induced modulation of Jurkat cell surface CD3. Although differences among the anti-CD3 mAb in the initial rates of binding to Jurkat cell were observed, this was also believed unlikely to explain the differential IL-2 response. Regardless of the anti-CD3 mAb used, anti-CD3-induced total inositol phosphate (IP) production did not necessarily correlate with anti-CD3-induced IL-2 production. Nevertheless, despite the differences among the anti-CD3 mAb in inducing IL-2 production, the calcium responses were grossly similar. Taken together, these observations indicate that CD3/TCR-mediated IL-2 production in Jurkat cells can be dissociated from total IP generation, and the basis of differential CD3/TCR-mediated IL-2 production in these cells does not appear to be at the level of the initial activation-induced calcium response. These studies suggest that the nature of the CD3/TCR ligand (its physical form and/or the specific epitope it perturbs) can either directly influence intracellular events distal to the generation of IP and increase in intracellular free calcium leading to differential IL-2 production or can trigger IP-independent pathways that affect IL-2 production.  相似文献   

11.
Phorbol esters, such as phorbol myristate acetate (PMA), are known to be potent co-stimulants with calcium ionophores for activation of T lymphocytes. The most extensively studied intracellular effect of PMA is its ability to activate the cytoplasmic enzyme protein kinase C (pkC). Herein, we examined the role of pkC activation during T cell activation. During physiologic activation, this enzyme is activated by diacylglycerol which is generated through the hydrolysis of polyphosphoinositides. Therefore, we studied the activation of T lymphocytes induced by a synthetic diacylglycerol, dioctanoylglycerol. In contrast to PMA, this compound can be metabolized in T cells and presumably more closely mimics physiologic activation of pkC. Dioctanoylglycerol together with reagents that induce increases in intracellular free Ca2+ concentration, Ca2+ ionophores, or anti-cluster designation (CD)3 monoclonal antibodies (mAb) were able to induce interleukin 2 receptor expression and proliferation of T lymphocytes. Previous studies have demonstrated that the stimulation of T cells via the CD3/T cell antigen receptor complex by mAb against CD3 leads to an increase in cytoplasmic free Ca2+ and to an activation of pkC. Paradoxically, however, soluble CD3 antibodies do not cause proliferation of resting purified T cells. Inasmuch as immobilization of CD3 mAb has been shown to influence the agonist properties of such antibodies, we compared the ability of soluble and immobilized CD3 mAb to activate pkC. We demonstrated herein that soluble CD3 mAb cause only a very transient activation of pkC in the T cell leukemic line Jurkat. This pkC activation is markedly prolonged when Jurkat cells are stimulated with immobilized rather than soluble CD3 antibodies. These studies suggest that activation of pkC plays a major role in T cell activation and that the activation of pkC is influenced by the form in which CD3 mAb is presented to T cells.  相似文献   

12.
We have recently shown that engagement of the human monocytic Ag CD14 by murine mAb induces lymphocyte function-associated antigen-1/intercellular adhesion molecule-1-dependent homotypic adhesion. To determine whether CD14 plays a role in monocyte-T cell interactions, we tested the effect of anti-CD14 mAb on the proliferation of human T cells. Our results show that anti-CD14 mAb strongly inhibited T cell proliferation induced by Ag, anti-CD3 mAb, and mitogenic lectins. Inhibition by anti-CD14 mAb was epitope-dependent and required physical contact between monocytes and T cells. CD14 engagement did not affect IL-2R expression or IL-2 synthesis but induced a state of unresponsiveness that was not IL-2 specific; proliferation of anti-CD3-activated T cell blasts in response to both IL-2 and IL-4 was abrogated by addition of monocytes preincubated with anti-CD14 mAb. Inhibition of T cell proliferation after engagement of CD14 on monocytes was likely to result from delivery of a negative signal to T cells, rather than from disruption of a costimulatory monocyte-derived signal, because incubation of monocytes with anti-CD14 mAb also inhibited monocyte-independent T cell proliferation induced by PMA and ionophore. These results, together, point to a role of CD14 in the monocyte-dependent regulation of T cell proliferation.  相似文献   

13.
Engagement of the TCR initiates at least two transmembrane signaling pathways, the phosphatidylinositol pathway and a tyrosine kinase pathway. The T cell leukemic line Jurkat was used to study the relationship between the number of occupied TCR on the cell surface and the TCR-mediated activation of phosphatidylinositol-specific phospholipase C. We characterized a series of Ti beta-chain transfectants of the Jurkat mutant J.RT3-T3.5, in which surface expression of the TCR is limited by expression of the TCR beta-chain. Calibrated flow cytometry was used to determine the number of binding sites for anti-CD3 mAb on the surface of these cells, which was less than 1.2 x 10(3) to 1.2 x 10(4) sites/cell. In the presence of lithium chloride, the accumulation of inositol phosphates (InsP) in these cell lines in response to saturating concentrations of anti-CD3 mAb was proportional to the calculated surface TCR number. This result was consistent with dose-response studies using anti-CD3 mAb in Jurkat cells, in which ligand concentration, rather than number of binding sites, was limiting. Increase in intracellular free calcium concentration was a sensitive indicator of TCR engagement and correlated with the level of TCR expression, but less closely than did InsP levels. Induction of the early lymphocyte activation marker CD69 by anti-CD3 mAb also correlated with surface expression of TCR. In order to test whether limitation of this signaling pathway by TCR number may be relevant to signal transduction in the wild-type cell, we compared PLC activity in Jurkat cells during soluble anti-CD3 mAb-induced internalization of the TCR and also in response to immobilized mAb. The net accumulation of InsP per min decreased linearly with TCR number during the rapid phase of TCR internalization, confirming the limiting role of TCR number in this system. When internalization was prevented by immobilization of the stimulus, there was no decrease in the net accumulation of InsP per minute over time. In a Jurkat cell line transfected with the heterologous human muscarinic receptor, subtype 1, the InsP response to a muscarinic agonist was unaffected by TCR internalization, indicating that the distal phosphatidylinositol pathway was not affected by prolonged stimulation of the TCR. We conclude that transmembrane signaling through the TCR may be regulated by the number of surface TCR-ligand complexes. This observation has implications for transmembrane signaling in both mature T cells and thymocytes.  相似文献   

14.
CD43 is a constitutively phosphorylated 115-kDa sialoglycoprotein expressed on a variety of blood cells including lymphocytes and monocytes. L10, a mAb directed against CD43, triggers T cell activation and enhances hydrogen peroxide production in monocytes. Activation of mononuclear cells by L10 initiates phosphoinositides hydrolysis, C2+ mobilization, and protein kinase C (PKC) activation. In turn, activated PKC hyperphosphorylates CD43, suggesting a potential role for PKC in the regulation of signaling via CD43. To address this issue, we have analyzed the effect of PKC activation by the tumor promoter PMA on L10-triggered rise in intracellular free Ca2+ concentrations ([Ca2+]i). Treatment of mononuclear cells with PMA profoundly inhibited the increase in [Ca2+]i induced by L10. The inhibition of CD43-mediated signaling by PMA was due, in part, to uncoupling of CD43 from the signal-transducing G protein. This was evidenced by the comparatively modest inhibition by PMA of the increase in [Ca2+]i induced by the direct G protein activator AlF4-. PMA treatment did not affect the surface expression of CD43. However, it induced the hyperphosphorylation of CD43, the extent of which correlated with the inhibition of CD43-mediated increase in [Ca2+]i. Staurosporine, a potent inhibitor of PKC, abrogated the hyperphosphorylation of CD43 and normalized CD43-mediated signaling in PMA-treated cells. Significantly, in the absence of PMA, staurosporine enhanced the rise in [Ca2+]i triggered by L10, suggesting that engagement of CD43 by activating ligands results in feedback inhibition by PKC. It is concluded that activation of PKC inhibits signaling via CD43 by mechanisms involving phosphorylation and uncoupling of CD43 from the signal-transducing apparatus and by distal, post-receptor events.  相似文献   

15.
Protein kinase C (PKC) has been believed to play an important role in the differentiation/proliferation of various kinds of mammalian cells. To analyze its function in living animals, we have established a transgenic mouse line carrying rabbit protein kinase C alpha cDNA under the control of the regulatory element of human CD2. Thymocytes of these transgenic mice overexpressed PKC alpha. Interestingly, the increase of PKC alpha was detected mainly in membrane fractions of transgenic thymocytes. Although the transgenic thymocytes did not show any distinct proliferative features in vivo, they displayed a unique property to extensively proliferate and produce interleukin-2 (IL-2) in response to the stimulation by a soluble form of anti-CD3 monoclonal antibody (mAb), an incomplete agonist for proliferation of normal thymocytes. Furthermore, co-stimulation of the phorbol 12-myristate 13-acetate and anti-CD3 mAb intensely provoked the transgenic thymocytes to release IL-2. For the first time this result provided the direct evidence that PKC alpha translocated to the cell membrane of thymocytes works as an active second messenger of the T cell receptor-CD3 complex-delivered signal for proliferation and IL-2 production.  相似文献   

16.
17.
CD3 receptor modulation in Jurkat leukemic cell line   总被引:1,自引:0,他引:1  
CD3 antigen is a crucial molecule in T cell signal transduction. Although its expression on cell surface is constitutive, dynamic regulation of TCR-CD3 level is probably the most important mechanism allowing T cells to calibrate their response to different levels of stimuli. In our study we examined the role of two main T cell signal transduction pathways in controlling the surface level of CD3 antigen, one based on protein kinase C activity and the other dependent on calcineurin. As an experimental model we used three clones derived from Jurkat cell line, expressing different levels of CD3 antigen surface expression: CD3(low) (217.6), CD3+(217.9) or CD3(low) (217.7). The cells were stimulated with PMA or ionomycin, acting directly on PKC and calcineurin, respectively. Prior to the stimulation cells were incubated with PKC inhibitor--chelerythrine or calcineurin blocker--cyclosporine A. Changes in CD3 surface expression were measured by flow cytometry. Only PMA and chelerythrine were able to change CD3 expression suggesting important involvement of PKC in the regulation of its expression. To confirm these findings, PKC activity was estimated in Jurkat clones. Our data demonstrated that Jurkat clones with different CD3 expression showed also different PKC activities, so we conclude that PKC-dependent pathway is the main way of controlling CD3 level on Jurkat clones.  相似文献   

18.
Incubation of the human T cells, Jurkat, with two sets of activating anti-CD2 mAb (T11(2) + T11(3), D66 + T11(1)) induced delocalization of p56lck and CD2 receptors from the plasma membrane and increased the tyrosine kinase activity of p56lck. The anti-CD2 mAb combination (T11(2) + T11(3)) that produced the most rapid increase in p56lck kinase activity also induced the most rapid delocalization of the kinase. In stimulated cells, both p56lck and CD2 receptors are detected in cytoplasmic vesicles. The internalization of p56lck in endocytic vesicles was established by confocal microscopy. By double staining it was shown that only part of the p56lck colocalized with the internalized CD2 receptor suggesting distinct sorting processes. Internalization of p56lck appeared to be specific of CD2 stimulation as: 1) in Jurkat cells triggered with an anti-CD3 mAb, p56lck was not internalized whereas CD3 receptors were completely endocytosed; 2) when cells were stimulated via CD4, the kinase and CD4 receptors remained associated with the plasma membrane. In addition, internalization of p56lck upon stimulation of CD2 receptors was not modified in CD2+/CD3-Jurkat cells indicating that CD3 is not involved in this process. The identification of different subcellular localizations of p56lck in resting and stimulated T cells should represent an important step in the definition of its functional activity.  相似文献   

19.
Proliferative T cell responses were elicited in a comitogenic assay when purified mAb against CD 18, CD11a, LFA-3, and CD7 were immobilized onto solid plastic surfaces together with submitogenic doses of mAb against the CD3 complex. The proliferative response was associated to the production of IL-2 and to the expression of IL-2R. We explored the possibility that a second signal provided by either PMA or a Ca2+ ionofore could replace the anti-CD3 mAb in the comitogenic assay. Interestingly, our data clearly indicate that PMA but not the ionofore was capable of mediating the co-mitogenic effect in conjunction with solid-bound mAb (CDw18, CD11a, LFA-3, and CD7). We also demonstrate that the mAb (anti-CD4 and anti-CD2) which have been previously described as co-mitogenic in combination with anti-CD3 are capable of eliciting this activating signal in the presence of PMA. These data indicate that mAb to certain cell surface differentiation Ag that in soluble form inhibit T cell function such as LFA-1, LFA-3, and CD2 can under appropriate conditions induce co-mitogenic signals on T cells. Our results support the hypothesis that several cell surface differentiation Ag may participate in conjunction with the T3-Ti complex in the transmembrane signal transduction leading to T cell activation.  相似文献   

20.
The effects of anti-CD3 mAb on MHC-unrestricted cytotoxic activity of NK depleted PHA-activated human T cells were examined. Anti-CD3 mAb had variable effects on killing of K562 or Daudi targets. Whereas lower concentrations of OKT3 often inhibited lysis of either target, higher concentrations (greater than 1 micrograms/ml) frequently increased K562 killing and always augmented Daudi lysis. However, lysis of the renal cell carcinoma, Cur, was consistently inhibited by OKT3 over a broad concentration range. Such variable effects were not related to differential regulation of heterogeneous subsets of effector cells, as similar patterns of OKT3-mediated modulation of tumor cell lysis by T cell clones was also observed. Another IgG2a anti-CD3 mAb, 64.1, and either F(ab')2 fragments of OKT3 or intact OKT3 in the presence of aggregated human Ig were found to inhibit lysis of Cur, K562, and Daudi targets consistently. Additional experiments were carried out to determine whether modulation of CD3 accounted for the inhibitory effects of the anti-CD3 mAb. PMA was noted to cause modulation of CD3 from the surface of PHA or alloantigen-activated T cells, and the combination of anti-CD3 and PMA caused even more marked modulation of CD3. Whereas preincubation with PMA and/or anti-CD3 decreased alloantigen-specific cytotoxic T cell function in relative proportion to the loss of CD3 expression, no consistent relationship between CD3 expression and the capacity of PHA-activated T cells to kill Cur targets was noted. PMA alone caused no consistent alteration of Cur lysis. Moreover, in the presence of PMA, anti-CD3 mAb caused no significant inhibitory effect on Cur lysis, in spite of increased modulation and in some cases virtual total loss of surface CD3 expression. These findings indicate that when FcR interactions are prevented, anti-CD3 mAb consistently inhibit MHC-unrestricted cytotoxicity by PHA-activated T cells. Despite this, the data support the conclusion that CD3/TCR complex interactions with target cells are not required for either target cell recognition or triggering of lysis by MHC-unrestricted cytotoxic T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号