首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Theriogenology》2008,69(9):1228-1239
Understanding normal folliculogenesis in guinea pigs is fundamental as a first step towards the development of a guinea pig follicle culture system. The aims of this study were (1) to characterise morphological changes during follicular development in vivo and (2) to describe the growth pattern of follicles. Cycling guinea pigs were infused with 5-bromo-2′-deoxyuridine for 1 or 2 weeks and sacrificed at time points ranging from 0 to 37 days after the infusion. The granulosa cell number in the largest cross-sections increased from 25.0 ± 6.1 (mean ± S.D.) in primary (type 2) to 192.0 ± 65.9 in preantral (type 5) and 256.3 ± 96.9 in antral (type 6) follicles. The oocyte diameter increased from 44.8 ± 6.2 μm (type 2) to 72.8 ± 9.1 μm (type 5) and 78.9 ± 9.3 μm (type 6) and the follicle diameter from 67.9 ± 10.1 μm (type 2) to 188.9 ± 29.7 μm (type 5) and 231.0 ± 56.1 μm (type 6). After a 1-week labelling period, about 71% of type 2 follicles had at least one labelled granulosa cell, as did 95% of type 3–4, and 100% of type 5 and 6. About 1 week was needed to achieve 95% mitotic activity in granulosa cells (GC) of type 5 and 6 follicles, while about 2 weeks was required to achieve 100% mitotic activity in GC of type 3–4 and more than 2 weeks for GC of type 2 follicles. These data provide some baselines for the examination of a guinea pig follicle culture system.  相似文献   

2.
Achieving full in vitro growth of oocytes of both domestic animals and humans remains a major challenge. The objective of this study was to examine the in vitro development of primary follicles isolated enzymatically from cryopreserved sheep ovarian tissue. In Experiment 1, isolated primary follicles (mean diameter 60.1+/-0.78microm) were cultured in serum-free medium on fibronectin-coated wells for 42 days. Initially follicular structure was lost as granulosa cells plated down, but by Day 7 two distinct morphologies began to emerge. Nineteen out of 36 oocytes were gradually re-surrounded by granulosa cells, forming follicle-like units (reorganized follicles), and the remaining 17 were not (non-reorganized follicles). On Day 2, there was no difference in diameter of oocytes between reorganized and non-reorganized follicles. The diameter (mean+/-S.E.M.) of oocytes of reorganized follicles increased (P<0.05) from 47.1+/-2.2microm to 65.3+/-2.6microm between Day 2 and Day 42, respectively, but that of oocytes of non-reorganized follicles showed no change. In Experiment 2, oocyte growth and granulosa cell differentiation during long-term culture of primary follicles (>42 days) were examined. Oocytes of reorganized follicles reached a maximum diameter of 75.4+/-2.0microm, a size equivalent to that of oocytes of ovine secondary follicles. Using RT-PCR, mRNA for follicle stimulating hormone receptor was detected in granulosa cells of freshly isolated secondary follicles and of long-term cultured reorganized follicles, but not of non-reorganized follicles. In Experiment 3, we tested if the culture conditions could support further oocyte growth in secondary follicles. The oocytes from enzymatically isolated secondary follicles increased in diameter from 77.7+/-1.6microm to 98.8+/-2.1microm (P<0.05) during 28 days in culture. The changes in oocyte size and in gene expression by granulosa cells support the conclusion that isolated ovine primary follicles developed in vitro to reach the secondary follicle stage.  相似文献   

3.
We have investigated the possible role of theca and granulosa cell interaction in the control of the hormone-producing activity and growth of granulosa and theca cells during bovine ovarian follicular development, using a coculture system in which granulosa and theca cells were grown on opposite sides of a collagen membrane. When follicular cells were isolated from small follicles (3-5 mm), theca cells reduced estradiol, progesterone, and inhibin production by granulosa cells to 14 +/- 5%, 64 +/- 6%, and 27 +/- 4%, respectively, of the production by granulosa cells cultured alone. On the other hand, when the cells were isolated from large follicles (15-18 mm), theca cells increased these levels to 253 +/- 34%, 156 +/- 24%, and 287 +/- 45%, respectively. Theca cells did not affect the growth of granulosa cells. Androstenedione production by theca cells was augmented by granulosa cells to 861 +/- 190% (in small follicles) and 1298 +/- 414% (in large follicles), respectively. The growth of theca cells was also augmented by granulosa cells (small follicle, 210 +/- 43%, and large follicle, 194 +/- 24%, respectively). These results indicate that theca cells secrete factor(s) inhibiting the differentiation of immature while promoting that of matured granulosa cells; they also suggest that granulosa cells secrete factor(s) promoting both the differentiation and growth of theca cells throughout the follicular maturation process.  相似文献   

4.
Experiments were conducted to elucidate the mechanisms of active immunization against inhibin on ovarian follicular development and selection in guinea pigs. Estrous cycle was synchronized in experimental guinea pigs by implanting progesterone containing tubes. Antibodies that bound 125I-labeled bovine inhibin were produced by all guinea pigs receiving the inhibin vaccine (recombinant ovine alpha-subunit in oil emulsion) without any effects on duration of the estrous cycle. Active immunization against inhibin increased the plasma concentrations of progesterone during the luteal phase and the plasma concentrations of estradiol but failed to increase the plasma concentration of follicle-stimulating hormone (FSH) during preovulatory period. The treatment also increased the number of corpora lutea (from 1.3+/-0.3 to 7.0+/-1.6 per each ovary), and preovulatory sized follicles (from 1.8+/-0.6 to 7.0+/-1.6 per each ovary), and follicles stained positively for inhibin alpha-subunit (from 2.3+/-0.5 to 6.3+/-1.3 per each ovary) significantly. The results indicate that active immunization against inhibin enhances ovulation rate by affecting the follicle selection and only dominant follicle can be stained for inhibin alpha-subunit in guinea pigs. This study is firstly to provide direct evidence that inhibins play important role in follicle selections in guinea pigs.  相似文献   

5.
This study was conducted to determine whether ovarian morphology and developmental competence of in vitro-matured (IVM) oocytes is immediately affected by the onset of puberty in the pig. Ovaries of peri-pubertal pigs were sorted into two groups according to the presence or absence of corpora lutea presence (CL and NCL, respectively. Ovary dimensions, follicle diameter and number, and oocyte diameter (with and without zona pellucidae) were determined. The developmental competence of in vitro-matured oocytes from these two groups was evaluated following parthenogenetic activation and culture in vitro. CL ovaries were significantly (P<0.01) larger than NCL ovaries (width: 22.3+/-0.9 mm versus 15.9+/-0.4 mm, length: 33.2+/-1 mm versus 24.1+/-0.4 mm). Although CL ovaries had fewer antral follicles in total compared with NCL ovaries (21.1+/-1.8 mm versus 46.8+/-2.2 mm), they had a similar number of follicles 3-8mm in diameter. The mean diameter of follicles that were aspirated was greater for CL ovaries than for NCL ovaries (4.5+/-0.1 mm versus 3.3+/-0.02 mm). Oocytes from CL ovaries were greater in diameter compared with those from NCL ovaries (zona retained: 159+/-1.3 microm versus 146.1+/-1.5 microm, zona free: 124.7+/-1.8 microm versus 113.1+/-1.6 microm). No differences were found between oocytes from CL and NCL ovaries for rates of meiotic maturation (91.6+/-3.2% versus 92.4+/-3.2%), cleavage (88.4+/-11% versus 90.7+/-2.6%) and blastocyst formation (21.0+/-3.7% versus 23.7+/-5.7%). Therefore, the onset of puberty coincides with immediate changes in ovarian morphology, increased ovary size, follicle and oocyte diameter, but not with improved oocyte developmental competence. This suggests that the higher developmental competence usually observed in adult oocytes is acquired gradually and requires exposure to multiple estrus cycles.  相似文献   

6.
Several lines of evidence suggest that follicular granulosa cells give rise to the large luteal cells of the corpus luteum in the sheep. To further investigate this suggestion, numbers of granulosa cells in preovulatory follicles were estimated by morphometric methods for comparison with a previous estimate of numbers of large luteal cells (9.6 +/- 0.9 x 10(6)). Preovulatory follicles from five Corriedale ewes were obtained after synchronization of the oestrous cycle with the prostaglandin analogue cloprostenol. Morphometry was undertaken using light microscopy of plastic-embedded tissue sectioned at 1 micron. Mitotic index in the membrana granulosa was 0.05 +/- s.e.m. 0.05%. Mean follicular diameter was 6.25 +/- 0.25 mm and there were 7.68 +/- 0.53 x 10(6) granulosa cells per follicle. These results demonstrate a similarity between the number of granulosa cells per follicle and the number of large luteal cells per corpus luteum and thus support the hypothesis that large luteal cells are derived from granulosa cells.  相似文献   

7.
Changes in plasminogen activator (PA) and PA inhibitor (PAI) activities were measured during follicular development in granulosa cells (GC) and theca tissue (TT) isolated from the six largest yolk-filled preovulatory follicles (F1, F2, F3, F4, F5, F6) and large white follicles (LWF) of the domestic hen. PA activity increased and PAI activity decreased during follicular development, with the peak PA value and minimum activity for PAI observed in the largest preovulatory follicle (F1) 12-14 h before expected time of ovulation. The PA activity in GC and TT appears to be principally of the tissue (t)-PA type judging from its substrate specificity and biochemical characteristics. The enzyme cleaved the chromogenic substrate specific for t-PA (Spectrozyme TM t-PA; CH3SO2-D-CHT-Gly-Arg-p-nitroanilide) more efficiently (4-6 x) than that for u-PA (Spectrozyme TM UK; Cbo-L-Glu-(alpha-t-BuO)-Gly-Arg-p-nitroanilide), suggesting that t-PA may be the predominant PA in the chicken preovulatory follicle. Determination of PA activity following sodium dodecyl sulphate-polyacrylamide gel electrophoresis and isoelectric focussing suggested the presence of two forms of the enzyme in GC and TT. The predominant form of PA had a molecular weight of 75,000 and an isoelectric point (pI) of 7.7, characteristics similar to those reported for t-PA in humans, pigs, and rodents. The other form of PA had a molecular weight of 35,000 and pI of 8.4. PAI present in GC and TT had a molecular weight of 50,000 and pI of 4.7. In GC, an acid-labile PAI was detected with biochemical characteristics similar to those of the protease, nexin I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Growth rates of follicles in the ovary of the cow   总被引:4,自引:0,他引:4  
Follicular growth rates were studied in 5 Hereford-Holstein cross heifers on Day 14 of the oestrous cycle. The granulosa cell mitotic index (MI) was measured in non-atretic antral follicles of various diameters (0.13-8.57 mm) from Bouin-fixed ovaries collected before (199, control) and 2 h after colchicine treatment (189, treated). In control ovaries, follicles of 0.68-1.52 mm had a higher MI than those of other size classes (P less than 0.05). In colchicine-treated ovaries, the MI of follicles ranging from 0.68 to 8.57 mm increased more than that of other sized follicles, so that the mitotic time was shorter (0.78 h vs 1.32 h) in medium and large sized follicles (0.68-8.57 mm) than in smaller follicles (0.13-0.67 mm). Calculations based on the number of granulosa cells in follicles of various classes and from the time required to double the number of cells within a follicle indicate that a follicle takes 27 days to grow from 0.13 to 0.67 mm, 6.8 days from 0.68 to 3.67 mm and 7.8 days from 3.68 to 8.56 mm, indicating that growth rates varied with the size of the follicle. A period equivalent to 2 oestrous cycles would therefore be required for a follicle to grow through the antral phase, i.e. from 0.13 mm to preovulatory size. Increased MI, decreased mitotic time and increased atresia found in follicles larger than 0.68 mm could indicate a change in the follicular metabolism during its maturation.  相似文献   

10.
Developmental competence of oocytes is compromised if they originate from atretic follicles. Apoptosis is the underlying process of atresia. Apoptotic changes in follicular cells are thought to influence the outcome of IVF. The aim of this study was to investigate apoptosis in different compartments of single bovine follicles (follicular wall, granulosa and cumulus cells (CC)) in relation to COC morphology, and to determine whether the addition, in vitro, of exogenous follicular cells from atretic follicles to maturing cumulus oocyte complexes (COCs) influenced the development of oocytes.Antral follicles were dissected from bovine ovaries and opened to obtain COCs and free floating granulosa cells (GC). The COCs were classified according to morphology. Apoptosis was determined in cumulus and granulosa cells and in homogenates of the remaining follicular wall.For every morphological class of COCs, a large variability of apoptotic expression was found in all follicle compartments. Follicular wall apoptosis was not correlated to COC morphology or to the percentage of apoptotic granulosa or cumulus cells. In grade 1 (best morphology) COCs, the degree of apoptosis in granulosa cells was comparable to cumulus cell apoptosis (P<0.01). The overall expression of apoptosis in granulosa cells of follicles containing grade 3 COCs (median+/-median absolute deviation: 37.8+/-13.8%) was significantly higher (P<0.05) than in follicles with grade 1 (22.7+/-10.4%) or grade 2 COCs (20.0+/-17.0%). About 48.3% of grade 3 COCs possessed strongly apoptotic cumulus cells compared to 27.8 and 28.2% of grade 1 or grade 2 COCs, respectively. Nonapoptotic cumulus complexes were observed in grades 1 and 2 COCs only.Adding exogenous follicular cells from atretic follicles to bovine COCs (grades 1 and 2) during in vitro maturation (IVM) had no impact on fertilization, blastocyst formation or hatching after IVF. This is of particular practical relevance to embryo production after ovum pick up (OPU), as during this process, good quality COCs are cultured together with simultaneously collected slightly atretic COCs.  相似文献   

11.
Meiotic competence of in vitro grown goat oocytes   总被引:1,自引:0,他引:1  
The objective of the present study was to grow meiotically incompetent goat oocytes from early antral follicles in vitro and to render them competent to undergo germinal vesicle breakdown. Cumulus-oocyte complexes with pieces of parietal granulosa cells were isolated from follicles 0.35-0.45 mm in diameter using both mechanical and enzymatic methods. The cumulus-oocyte complexes were divided into two groups according to oocyte diameter (group A: < 95 microm; group B: > 95 microm) and cultured for 8 or 9 days on granulosa cell monolayers. Within 8 days of culture, the mean oocyte diameter increased from 86 +/- 0.4 microm to 95 +/- 0.7 microm in group Aand from 106 +/- 0.2 microm to 109 +/- 0.5 microm in group B. After 9 days of culture, the mean diameter of oocytes from groups A and B were 99 +/- 0.5 microm and 112 +/- 0.4 microm, respectively. The meiotic competence of oocytes grown in vitro was evaluated by in vitro maturation. Within 8 days of culture, only 3% of oocytes from group A and 6% of oocytes from group B acquired the ability to undergo germinal vesicle breakdown. After 9 days of culture, 7% of group A oocytes and 42% of group B oocytes were competent to resume meiosis. The expression of p34(cdc2) in oocytes grown in vitro was analysed by the western blot technique. During 9 days of culture, p34(cdc2) accumulated in both groups of growing oocytes, but its concentration was lower than in fully grown oocytes used as controls. The results showed for the first time that goat oocytes from early antral follicles can grow, accumulate p34(cdc2) and acquire the ability to resume meiosis, when cultured for 9 days on granulosa cell monolayers.  相似文献   

12.
Precisely which ovarian cells produce tissue inhibitors of metalloproteinases (TIMPs) is unclear. Although granulosa cells are reported to produce TIMPs, thecal TIMP production has not been investigated nor has the influence of TIMPs on theca cells. Furthermore, although periovulatory follicles have been examined, little is known about smaller ovarian follicles. Follicles >/= 2 mm in diameter were collected from Large White hybrid gilts on the day before predicted oestrus (n = 3) or after hCG treatment (n = 3) and divided into 1 mm size classes. Small (2 to < 5 mm) follicles were kept intact, whereas follicles >/= 5 mm were separated into follicular fluid, granulosa and theca cell compartments. After homogenization, TIMP-1, -2 and -3 were detected by reverse zymography. Theca cells (50 x 10(3) per well) were cultured with TIMP-1 (10, 100 or 200 ng ml(-1) with or without long-R3 insulin-like growth factor I (IGF-I)) in a serum-free system to investigate the effect on steroidogenesis and the number of cells. Both large and small pig follicles produced TIMPs and TIMP-1, -2 and -3 were detected in follicular fluid, granulosa and theca cell samples. There was a phase x tissue type interaction for the presence of both TIMP-1 and -2 (P < 0.03, P < 0.05, respectively), and TIMPs were detected in more granulosa and theca cell samples after hCG than during the follicular phase. The concentrations were influenced by the type of tissue (TIMP-1, P < 0.005; TIMP-2, P < 0.005, TIMP-3, P > 0.05), and the highest concentrations occurred in the theca tissue. There were tissue type x follicle size interactions for the presence of both TIMP-1 and -2 (P < 0.001). In vitro, TIMP-1 increased thecal steroidogenesis after 144 h (oestradiol, P < 0.05, progesterone, P < 0.001) but reduced the number of viable cells (P < 0.001). In conclusion, TIMP-1, -2 and -3 were present in large and small pig follicles and were produced by both granulosa and theca cells, although concentrations differed with the type of tissue. Production was regulated by factors including follicle size and phase of the oestrous cycle. In addition to controlling tissue remodelling, TIMP-1 may also regulate steroidogenesis.  相似文献   

13.
The objective of this study was to examine the effects of follicular cells on the in vitro development of porcine preantral follicles. In Experiment 1, one preantral follicle alone (Trt 1) was cocultured with a follicle of the same size with oocytes (Trt 2) or without oocytes (Trt 3). Preantral follicles cultured alone in vitro for 12 days had greater follicle diameters (1017 +/- 96 microm versus 706 +/- 69 or 793 +/- 72 microm, P < 0.05), growth rates (201 +/- 0.3 versus 103 +/- 0.2 or 128 +/- 0.2, P < 0.05) and oocyte survival rates (73% versus 48, or 25%, P < 0.05) than other groups. The inhibitory effects of follicle cells on the growth of preantral follicles and oocyte survival rates were not enhanced by the addition of oocytectomized preantral follicles (Experiment 2). Follicles were cocultured with different sources of follicular cells in other experiments. Coculture with cumulus cells enhanced oocyte survival compared to the control (without coculture) and mural follicular cell groups (Experiment 3). The growth and survival rates of oocytes collected from the group of follicles cocultured with cumulus cells from large antral follicles (>3 mm) were greater (P < 0.05) than those from small antral follicles (<3 mm), or than the control group (without cumulus cells, experiment 4). No significant differences in the follicular diameters (674 +/- 30 microm versus 638 +/- 33 and 655 +/- 28 microm) and growth rate (105% versus 94 and 105%) were observed among the preantral follicles of the different treatments (P > 0.05). Taken together, coculture with the cells from large antral follicles (>3 mm) exerted a significant positive effect on oocyte survival. The growth and oocyte survival of preantral follicle cocultured with the same size of follicles (with or without oocyte) were inhibited. Growth and survival rates of preantral follicles and oocytes are improved by coculturing them with the cumulus cells derived from larger antral follicles.  相似文献   

14.
Cortical tissues containing only primordial and primary follicles, or secondary follicles 140-190 microm in diameter, were collected from bovine ovaries and xenografted under the kidney capsules of female severe combined immunodeficient (SCID) mice. Histological examination revealed that all grafts were well vascularised and contained surviving follicles at 4 or 6 weeks after grafting. Primordial and primary follicles survived but did not develop beyond the one-layer stage. Secondary follicles, on the other hand, had formed antra at 4 weeks after grafting. The mean diameter of secondary follicles, which was 165.2 +/- 17.0 microm (n = 42) before grafting, had developed to 442.9 +/- 77.9 microm (n = 37) and 592.9 +/- 116.0 microm (n = 45) in diameter at 4 and 6 weeks after grafting, respectively. The mean diameter of oocytes, which was 55.1 +/- 4.9 microm (n = 42) before grafting, also increased significantly (4 weeks: 105.6 +/- 6.3 microm; 6 weeks: 122.2 +/- 2.6 microm; p < 0.05). Oocytes were recovered from follicles that had developed to more than 400 microm in diameter after 6 weeks, and were subjected to subsequent mature culture. Of these oocytes, 34% (11/32) resumed meiosis and 6% (2/32) matured to the second metaphase. Follicular fluid in bovine antral follicles developed in SCID mice had the 69 kDa protein, which was detected by anti-mouse albumin antibody but not by anti-bovine albumin antibody in immunoblotting analysis. These results demonstrated that bovine secondary follicles develop to the antral stage in SCID mice, and that the oocytes in the follicles acquire the meiotic competence.  相似文献   

15.
The aim of this study in sheep ovaries was to determine the total number of granulosa cells in primordial follicles and at subsequent stages of growth to early antrum formation. The second aim was to examine the interrelationships among the total number of granulosa cells in the follicles, the number of granulosa cells in the section through the oocyte nucleolus, and the diameter of the oocyte. A third aim was to examine whether proliferating cell nuclear antigen labelling occurred in flattened granulosa cells in primordial follicles or was confined to follicles containing cuboidal granulosa cells. The follicles were classified using the section through the oocyte nucleolus by the configuration of granulosa cells around the oocyte as type 1 (primordial), type 1a (transitory), type 2 (primary), type 3 (small preantral), type 4 (large preantral), and type 5 (small antral). In type 1 follicles, the number of granulosa cells and oocyte diameter were highly variable in both fetal and adult ovaries. Each type of follicle was significantly different from the others (all P < 0.05) with respect to oocyte diameter, number of granulosa cells in the section through the oocyte nucleolus and total number of granulosa cells. Follicles classified as type 2, 3, 4 or 5 each corresponded to two doublings of the total granulosa cell population. The relationships between oocyte diameter and the number of granulosa cells (that is, in the section through the oocyte nucleous or total population per follicle) could all be described by the regression equation loge chi = a + b loge gamma with the correlation coefficients R always > 0.93. For each pair of variables the slopes (b) for each type of follicle were not different from the overall slope for all types of follicle pooled. Immunostaining for proliferating cell nuclear antigen was observed in granulosa cells in type 1 follicles, as well as in the other types of follicle. These findings indicate that 'flattened' granulosa cells in type 1 follicles express an essential nuclear protein involved in cell proliferation before assuming the cuboidal shape. Thus, when considering factors that regulate specific phases of early follicular growth, it is important to consider: (i) the follicle classification system used; (ii) the animal model studied; (iii) whether type 1 follicles are all quiescent; and (iv) the likelihood that each follicle type represents more than one doubling of the population of granulosa cells.  相似文献   

16.
The granulosa cell produces a protein inhibitor of aromatase activity (follicle-regulatory protein: FRP), which recently was purified to homogeneity. To determine the possible involvement of FRP in follicular maturation, we examined the size distribution of follicles and their morphological patterns as well as serum steroid levels after the systemic administration of FRP and/or gonadotropin to guinea pigs, which have 5-6 days between luteolysis and ovulation in a 16-day cycle. FRP was partially purified from porcine follicular fluid by ammonium sulfate precipitation (0-35%), Dye Matrex Orange A Chromatography, dialysis, and lyophylization. To investigate the effect of pregnant mare's serum (PMS) during the periovulatory period in follicular development, adult guinea pigs underwent unilateral ovariectomy on Days 10, 12, and 14 of the estrous cycle (N = 6 each). Guinea pigs were injected twice daily with vehicle or PMS (5 IU) and 2 days thereafter the remaining ovaries were removed. Another group of guinea pigs received, in addition, intraperitoneal injections of FRP (1 mg) each morning from Day 8 of estrus until they were killed. The resected ovaries were fixed, embedded in paraffin, serially sectioned (7 micron), and stained with Azan for comparative study via light microscopy. All follicles greater than 400 micron were classified by size, and the atretic pattern was determined by mural granulosa cell pyknosis and antral sloughing. The distribution of follicular size was not affected by hemicastration at Day 10, although the percentage of total atretic follicles decreased. In the PMS-treated group, there was a significant decrease in the number of viable follicles (700-899 micron) after hemicastration. Also pronounced in follicles of this size was the lack of mid-atretic follicles. After injections of FRP for 3 or 5 days, the overall number of follicles was almost doubled as compared to the number found in the normal ovary. Additionally, there was a significant increase in the percentage of follicles that were recently atretic, although the total percentage of atretic follicles was unchanged. After hemicastration at Day 10 followed by FRP treatment for 2 days, the total percentage of atretic follicles in the remaining ovary decreased to 18% compared with 35% in the normal ovary, 46% in the hemicastrated plus PMS-treated group, and 38% in the hemicastrated and PMS- and FRP-treated group (all p less than 0.01). Treating the hemicastrated animal with PMS increased the percentage of atretic follicles in all groups.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Follicular fluid was collected from small (1-2 mm), medium (3-5 mm) and large (6-12 mm) follicles of pigs, treated with charcoal to remove steroids, and tested for effects on the induction of functional LH/hCG receptors in cultures of granulosa cells from small antral pig follicles. Granulosa cells were cultured for 2, 4 or 6 days in Medium 199 + 10% pig serum. Granulosa cells cultured in the presence of purified human FSH (0.1 microgram/ml, LER 8/117), insulin (1 mU/ml), cortisol (0.01 microgram/ml) and thyroxine (10(-7) M) accumulated a 4- to 8-fold increase in LH/hCG receptors compared to control cultures. The amounts of cyclic AMP and progesterone secreted after exposure to ovine LH (1 microgram/ml: NIH-S19) were also increased 2-3-fold and 80-100-fold, respectively. Exposure to FSH alone resulted in lower amounts of LH/hCG receptors with a concomitant decrease in optimum LH responses. Addition of 12.5-50% follicular fluid obtained from small (1-2 mm) follicles led to a dose-dependent inhibition of the FSH plus insulin, cortisol and thyroxine induction of LH/hCG receptors after 4 days of culture. Fluid from medium follicles showed reduced ability to inhibit LH/hCG receptor induction, and fluid from large follicles exerted only a slight inhibition or no inhibition of receptor induction. Fluid from medium-sized and large follicles exerted a progressive dose-dependent stimulation of progesterone secretion by the granulosa cell cultures. The inhibitory activity was precipitated primarily with 70% ethanol and to a lesser degree by 36 and 90% ethanol. These studies demonstrate that induction of functional LH/hCG receptors in cultures of pig granulosa cells from immature follicles is enhanced by including insulin, cortisol and thyroxine, in addition to FSH, in the culture medium, and that follicular fluid modulates both receptor induction and progesterone secretion as a function of follicular maturation.  相似文献   

18.
It was hypothesized that growth divergence of dominant and subordinate follicles during Wave 1 and growth termination of the dominant follicle would be associated with changes in the number of gonadotropin receptors on granulosa cells and estradiol in follicular fluid. To test this hypothesis, follicular development of 16 Holstein heifers was monitored by ultrasound, and follicles were collected on Days 2,4,6 and 10 (Day 0 = ovulation). Dominant follicles were compared across days, whereas dominant and largest subordinate follicles were compared on Days 2 and 4 only. The numbers of LH and FSH receptors on the granulosa cells of dominant follicles did not differ significantly over Days 2, 4, 6 and 10. In contrast, concentrations of estradiol in follicular fluid decreased (P < 0.05) from Days 2 to 10 (373 +/- 150 to 42 +/- 12 ng/ml) and concentrations of progesterone in follicular fluid increased (P < 0.05) from Days 2 to 10 (12.2 +/- 2.3 to 24.4 +/- 4.8 ng/ml). Correspondingly, the ratio of estradiol:progesterone in the dominant follicles decreased (P < 0.05) from Days 2 to 10. Comparisons between dominant and subordinate follicles indicated greater (P < 0.05) estradiol concentrations in the dominant follicle on Day 2, but the number of gonadotropin receptors was not different until Day 4. Thus, differences in concentrations of follicular fluid estradiol, but not numbers of granulosa cell gonadotropin receptors, were associated with the early growth divergence of dominant and subordinate follicles (Day 2) and the eventual growth termination of the dominant follicle (Day 10). Late divergence (Day 4) was associated with higher gonadotropin receptor numbers and follicular estradiol concentrations in the dominant than in the subordinate follicles. These results indicate that an increase in estradiol productivity of the selected dominant follicle occurred before an increase in the number of gonadotropin receptors.  相似文献   

19.
The hormonal and second messenger regulation of plasminogen activator (PA) activities in avian granulosa and theca cells has been documented. However, the physiological role(s) of PAs in the avian ovary remains poorly understood. The present studies were designed to evaluate PA activity in hen granulosa cells collected from the most mature (F1) preovulatory follicle at three discrete time points relative to a spontaneous ovulation and from follicles collected at various stages of follicular development. Levels of PA activity in the granulosa layer of the F1 follicle declined by greater than 90% as follicles were collected closer to their anticipated time of ovulation (e.g., from 17-16 h to 0.75-0.15 h; p less than 0.05). Timing of tissue collection was confirmed by evaluation of serum progesterone levels, which peaked as expected at the 6-5-h time point. During follicular development, PA activity was several times greater in rapidly growing follicles (6-12 mm, 1-3 wk prior to ovulation) than in slowly growing (1-5 mm) or preovulatory (F3 and F1) follicles (p less than 0.05). Granulosa cells of these rapidly growing follicles also incorporated significantly higher levels of 3H-thymidine than did granulosa cells of mature follicles (p less than 0.05), suggesting a higher level of DNA synthesis. Similarly, granulosa cells of the mitotically active germinal disc region of the F1 granulosa layer were found to possess at least 3-fold higher (p less than 0.05) levels of PA activity and a 2-fold greater level of 3H-thymidine incorporation than the more mature granulosa cells isolated from the remaining F1 granulosa layer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The aim of this study was to establish a basic manipulation protocol of preantral follicles for deriving developmentally competent oocytes. Primary, early and late secondary follicles retrieved from the ovaries of 14-day-old F1 (C57BL/6 x DBA2) female mice mechanically or enzymatically were cultured singly and in vitro growth of the follicles and maturation of intrafollicular oocytes were subsequently monitored. A mechanical method retrieved more (p < 0.0001) follicles (339 +/- 48 vs. 202 +/- 28) than an enzymatic method. However, the enzymatic method collected more singly isolated follicles that could be provided for subsequent culture (102 +/- 26 vs. 202 +/- 28). When an enzymatic method was employed, early and late secondary follicles required 9 and 6 days for reaching the maximal incidence of the pseudoantral stage. However, primary follicles were not possible to develop into the pseudoantral stage. The optimal duration of oocyte maturation from the onset of follicle culture was 7 days and 5-7 days for early and late secondary follicles, respectively. A general decrease in oocyte diameter (65.2-65.53 microm vs. 75 microm) and zona thickness (5.41-5.74 microm vs. 7.76 microm) was detected in in vitro-derived compared with in vivo-derived matured oocytes. Pronuclear formation was detected in 86-94% of mature oocytes after parthenogenetic activation and no significant difference was detected among groups. These results showed that preantral follicles retrieved by an enzymatic method underwent step-by-step growth in vitro, which could yield mature oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号