首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A genetic system is described which allows the isolation and propagation of adenovirus mutants containing lesions in early region 2A (E2A), the gene encoding the multifunctional adenovirus DNA-binding protein (DBP). A cloned E2A gene was first mutagenized in vitro and then was introduced into the viral genome by in vivo recombination. The E2A mutants were propagated by growth in human cell lines which express an integrated copy of the DBP gene under the control of a dexamethasone-inducible promoter (D. F. Klessig, D. E. Brough, and V. Cleghon, Mol. Cell. Biol. 4:1354-1362, 1984). The protocol was used to construct five adenovirus mutants, Ad5d1801 through Ad5d1805, which contained deletions in E2A. One of the mutants, Ad5d1802, made no detectable DBP and thus represents the first DBP-negative adenovirus mutant, while the four other mutants made truncated DBP-related polypeptides. All five mutants were completely defective for growth and plaque formation on HeLa cell monolayers. Furthermore, the two mutants which were tested, Ad5d1801 and Ad5d1802, did not replicate their DNA in HeLa cells. The mutant Ad5d1804 encoded a truncated DBP-related protein which contained an entire amino-terminal domain derived from the host range mutant Ad5hr404, a variant of Ad5 which multiplies efficiently in monkey cells. While results of a previous study suggest that the amino-terminal domain of DBP could act independently of the carboxyl-terminal domain to enhance late gene expression in monkey cells, the Ad5d1804 polypeptide failed to relieve the block to late viral protein synthesis in monkey cells. The mutant Ad5d1802 was used to study the role of DBP in the regulation of early adenovirus gene expression in infected HeLa cells. These experiments show that E2A mRNA levels are consistently reduced approximately fivefold in Ad5d1802-infected cells, suggesting either a role for DBP in the expression of its own gene or a cis-acting defect caused by the E2A deletion. DBP does not appear to play a significant role in the regulation of adenovirus early regions 1A, 1B, 3, or 4 mRNA levels in infected HeLa cell monolayers since wild-type Ad5- and Ad5d1802-infected cells showed very little difference in the patterns of expression of these genes.  相似文献   

3.
Northern (RNA) blot analysis has been used to show that synthesis of early mRNA species is similar in monkey cells productively or abortively infected with human adenovirus. mRNA species from all five major early regions (1A, 1B, 2, 3, 4) are identical in size and comparable in abundance whether isolated from monkey cells infected with adenovirus type 2 or with the host range mutant Ad2hr400 or coinfected with adenovirus type 2 plus simian virus 40. The mRNA species isolated from monkey cells are identical in size to those isolated from human cells. Production of virus-associated RNA is also identical in productive and abortive infections of monkey cells. Synthesis of virus-associated RNA is, however, significantly greater in HeLa cells than in CV1 cells at late times after infection regardless of which virus is used in the infection.  相似文献   

4.
G Winberg  T Shenk 《The EMBO journal》1984,3(8):1907-1912
  相似文献   

5.
6.
7.
Simian virus 40 (SV40) recombinants carrying the adenovirus type 12 E1A gene were constructed. The SV40 expression vector was constructed by removing most of the VP1 gene and an internal part of the intervening sequence for late 16S RNA and by joining the 5' and 3' splice sites into a small segment. The adenovirus type 12 E1A gene with or without its own promoter was inserted downstream from the SV40 late promoter and the splicing junctions. The recombinant DNA was propagated and packaged in monkey cells by cotransfection with an early temperature-sensitive mutant (tsA58) DNA as helper. Immunofluorescent staining of the monkey cells infected with the resulting virus stocks showed that up to 20% of the cells overproduced the E1A gene products in the nuclei. Two-dimensional gel electrophoresis of the products indicated that the products were very similar or identical to the authentic polypeptides synthesized in adenovirus type 12-infected human embryo kidney cells. The E1A mRNA was initiated at the SV40 late promoter irrespective of the presence of the E1A promoter and terminated at either the E1A or the SV40 polyadenylation signal. These hybrid mRNAs were correctly spliced in the E1A coding region.  相似文献   

8.
The adenovirus type 2 (Ad2) host range mutant Ad2hr400 grows efficiently in cultured monkey cells at 37 degrees C, but is cold sensitive for plaque formation and late gene expression at 32.5 degrees C. After nitrous acid mutagenesis of an Ad2hr400 stock, cold-resistant variants were selected in CV1 monkey cells at 32.5 degrees C. One such variant, Ad2ts400, was also temperature sensitive (ts) for growth in both CV1 and HeLa cells. Marker rescue analysis has been used to show that the two phenotypes, cold resistant and temperature sensitive, are due to two independent mutations, each of which resides in a different segment of the gene encoding the 72-kilodalton DNA binding protein (DBP). The cold-resistant mutation (map coordinates 63.6 to 66) is a host range alteration that enhances the ability of the virus to express late genes and grow productively in monkey cells at 32.5 degrees C. The temperature-sensitive mutation is in the same complementation group and maps to the same segment of the DBP gene (map coordinates 61.3 to 63.6) as the well-characterized DBP mutant Ad5ts125. Like Ad5ts125, Ad2ts400 is unable to replicate viral DNA or to properly shut off early mRNA expression at the nonpermissive temperature. Two sets of experiments with Ad2ts400 suggest that DBP contains separate functional domains. First, when CV1 cells are coinfected at the nonpermissive temperature with Ad2 plus Ad2ts400 (Ad2 allows DNA replication and entry into, but not completion of, the late phase of infection), normal late gene expression and productive growth occur. Second, temperature shift experiments show that, although DNA replication is severely restricted at the nonpermissive temperature in ts400-infected monkey cells, late gene expression occurs normally. These results indicate that the DBP activity required for normal late gene expression in monkey cells is functional even when the DBP's DNA replication activity is disrupted.  相似文献   

9.
The proteins that interact with cytoplasmic and nuclear polyadenylated RNA in adenovirus type 5 (Ad5) infection of HeLa cells were examined by UV-induced RNA-protein cross-linking in intact cells. The Ad5 100-kilodalton late nonvirion protein (100K protein) was cross-linked to both host and viral polyadenylated cytoplasmic RNA (mRNA). The cross-linking of the 100K protein to mRNA appears to correlate with productive infection, because the protein is not cross-linked to mRNA in abortive infection of wild-type Ad5 in monkey cells (CV-1) even though normal amounts of it are produced. However, when CV-1 cells are infected with Ad5 hr404, and Ad5 mutant which overcomes the host restriction to wild-type Ad5 infection in these cells, the 100K protein is cross-linked to mRNA. To identify and obtain antibodies to RNA-contacting proteins, a mouse was immunized with oligo(dT)-selected cross-linked RNA-protein complexes from Ad5-infected cells and the serum was used for immunoblotting experiments. It was found that in addition to the 100K protein, the Ad5 72K DNA-binding protein is also associated with RNA in the infected cells. The 72K DNA-binding protein is cross-linked to polyadenylated nuclear RNA sequences. These findings indicate that adenovirus proteins interact with RNAs in the infected cell and suggest possible mechanisms for the effects of the virus on mRNA metabolism.  相似文献   

10.
11.
12.
13.
Adenovirus 2-infected monkey cells fail to synthesize fiber, a 62,000 Mr virion polypeptide expressed at late times in productively infected cells. Yet these cells contain fiber mRNA that, after isolation, can be translated in vitro. The reason for the failure of monkey cells to translate fiber mRNA has been approached by microinjecting adenovirus mRNA into the cytoplasm of cultured monkey cells. Late adenovirus 2 mRNA, isolated from infected HeLa cells, was efficiently expressed when microinjected into the African green monkey kidney cell line CV-C. Expressed viral proteins identified by immunoprecipitation included the adenovirus fiber polypeptide. This result demonstrates that the monkey cell translational apparatus is capable of recognizing and expressing functional adenovirus fiber mRNA. Microinjection of late virus mRNA into cells previously infected with wild-type adenovirus 2 failed to increase significantly the yield of infectious virus.  相似文献   

14.
In the past, simian virus 40 (SV40) has been used as a cloning vehicle to clone foreign genes by substituting portions of the viral genome vital for viral replication. Propagation of these defective viruses required a helper virus and the recombinant viruses obtained could be grown only as a mixture. In this study, we describe a novel nondefective SV40 vector to clone small RNA polymerase III genes. Two small RNA polymerase III genes, an amber suppressor human serine tRNA gene and the adenovirus (Ad) VAI RNA gene, were cloned in the intron region of the large-T antigen gene of SV40 after deleting DNA sequences coding for the small-t polypeptide. The recombinant viruses grew to wild type levels and showed no growth defects. When CV-1p cells were infected with these viruses, the cloned RNA polymerase III genes were expressed at high levels at late times. Interestingly, large amounts VAI RNA in CV-1p cells infected with SV40-VA recombinant virus, did not enhance translation of viral mRNAs significantly but did lead to a 3 to 4 fold increase in the steady state levels of large-T mRNA suggesting a novel function for VAI RNA in SV40 infected monkey cells. Furthermore, VAI mutants which fail to function in Ad infected human cells also failed to enhance the levels of large-T mRNAs in monkey cells infected with SV40. The simple SV40 vector described here may be useful to study the structure and function of small RNA polymerase III genes in the context of a eucaryotic chromosome. In addition, the nondefective recombinant SV40 which expresses the suppressor tRNA gene at high levels may provide a useful helper system to propagate animal viruses with amber mutations in essential genes.  相似文献   

15.
We have altered the specificity of U1 small nuclear RNA by replacing its 5' splice site recognition sequence (nucleotides 3 to 11) with sequences complementary to other regions of either the adenovirus E1A or the rabbit beta-globin mRNA precursor. We then used a HeLa cell transient expression assay to test whether such altered U1 small nuclear ribonucleoprotein particles (snRNPs) could interfere with splicing of the targeted mRNA precursors. The altered U1 snRNPs were able to cause novel splicing of the E1A mRNA precursor, minor changes in the ratio of E1A 12 to 13S mRNAs, and modest nuclear accumulation of beta-globin mRNA precursors with either one of the two introns removed. Most of the altered U1 snRNPs did not affect the level of mature cytoplasmic mRNA significantly, but in one case an altered U1 snRNP (alpha 1) whose intended target was located downstream from the adenovirus E1A 12S 5' splice site was able to reduce the level of cytoplasmic 12S mRNA by approximately 60% and that of 13S mRNA by 90%. This alpha 1 snRNP induced an additional E1A splice, resulting in the appearance of 10 and 11S E1A mRNAs normally found only late in adenovirus infection. Thus, a trans-acting factor can induce alternative splicing. Surprisingly, the effects of alpha 1 on E1A splicing were not abolished by deleting the intended target sequence on the mRNA precursor.  相似文献   

16.
17.
The human adenovirus type 5 (Ad5) E1B 55-kDa protein is required for selective nuclear export of viral late mRNAs from the nucleus and concomitant inhibition of export of cellular mRNAs in HeLa cells and some other human cell lines, but its contributions(s) to replication in normal human cells is not well understood. We have therefore examined the phenotypes exhibited by viruses carrying mutations in the E1B 55-kDa protein coding sequence in normal human fibroblast (HFFs). Ad5 replicated significantly more slowly in HFFs than it does in tumor cells, a difference that is the result of delayed entry into the late phase of infection. The A143 mutation, which specifically impaired export of viral late mRNAs from the nucleus in infected HeLa cells (R. A. Gonzalez and S. J. Flint, J. Virol. 76:4507-4519, 2002), induced a more severe defect in viral mRNA export in HFFs. This observation indicates that the E1B 55-kDa protein regulates mRNA export during the late phase of infection of normal human cells. Other mutants exhibited phenotypes not observed in HeLa cells. In HFFs infected by the null mutant Hr6, synthesis of viral late mRNAs and proteins was severely impaired. Such defects in late gene expression were the result of inefficient progression into the late phase of infection, for viral DNA synthesis was 10-fold less efficient in Hr6-infected HFFs than in cells infected by Ad5. Similar, but less severe, defects in viral DNA synthesis were induced by the insertion mutation H224, which has been reported to inhibit binding of the E1B 55-kDa protein to p53 (C. C. Kao, P. R. Yew, and A. J. Berk, Virology 179:806-814, 1990).  相似文献   

18.
One important function of the human adenovirus E1B 55-kDa protein is induction of selective nuclear export of viral late mRNAs. This protein interacts with the viral E4 Orf6 and four cellular proteins to form an infected-cell-specific E3 ubiquitin ligase. The assembly of this enzyme is required for efficient viral late mRNA export, but neither the relevant substrates nor the cellular pathway that exports viral late mRNAs has been identified. We therefore examined the effects on viral late gene expression of inhibition of the synthesis or activity of the mRNA export receptor Nxf1, which was observed to colocalize with the E1B 55-kDa protein in infected cells. When production of Nxf1 was impaired by using RNA interference, the efficiency of viral late mRNA export was reduced to a corresponding degree. Furthermore, synthesis of a dominant-negative derivative of Nxf1 during the late phase of infection interfered with production of a late structural protein. These observations indicate that the Nxf1 pathway is responsible for export of viral late mRNAs. As the infected-cell-specific E3 ubiquitin ligase targets its known substrates for proteasomal degradation, we compared the concentrations of several components of this pathway (Nxf1, Thox1, and Thoc4) in infected cells that did or did not contain this enzyme. Although the concentration of a well-established substrate, Mre11, decreased significantly in cells infected by adenovirus type 5 (Ad5), but not in those infected by the E1B 55-kDa protein-null mutant Hr6, no E1B 55-kDa protein-dependent degradation of the Nxf1 pathway proteins was observed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号