首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High evaporative demand and periodic drought characterize the growing season in midwestern grasslands relative to deciduous forests of the eastern US, and predicted climatic changes suggest that these climatic extremes may be exacerbated. Despite this less than optimal environment for tree seedling establishment, deciduous trees have expanded into adjacent tallgrass prairie within the last century leading to a dramatic land cover change. In order to determine the role of light and temperature on seedling establishment, we assessed carbon and water relations and aboveground growth of first‐year Quercus macrocarpa seedlings exposed to one of three conditions: (1) intact tallgrass prairie communities (control), (2) aboveground herbaceous biomass removed (grass removal), and (3) shade plus biomass removal to reduce light (PFD) to levels typical of the grassland‐forest ecotone (shade). In the 2000 growing season, precipitation was 35% below the long‐term average, which had a significant negative effect on oak seedling carbon gain at midseason (photosynthesis declined to 10% of maximum rates). However, net photosynthesis and stomatal conductance in the shade treatment was ca. 2.5 and 1.5 times greater, respectively, than in control treatment seedlings during this drought. During this period, leaf and air temperatures in control seedlings were similar whereas leaf temperatures in the shade treatment remained below air temperature. A late‐season recovery period, coincident with decreased air temperatures, resulted in increased net photosynthesis for all seedlings. Increased photosynthetic rates and water relations in shaded seedlings compared to seedlings in full sun suggest that, at least in dry years, high light and temperature may negatively impact oak seedling performance. However, high survival rates for all seedlings indicate that Q. macrocarpa seedlings are capable of tolerating both present‐day and future climatic extremes. Unless historic fire regimes are restored, forest expansion and land cover change are likely to continue.  相似文献   

2.
Canebrakes are dense stands of Arundinaria gigantea (Walt.) Muhl. that covered large areas of the southeastern North America. With agricultural development, canebrakes were quickly converted to crop and pastureland and now occur only in small, isolated patches. There is growing interest in the use of A. gigantea and other temperate bamboo species in riparian and floodplain revegetation in North America, but lack of detailed information on propagation and management of woody perennial grasses hinders reestablishment activities. Our study assesses the influence of nutrient and woodchip mulch amendments on survival and growth of A. gigantea transplanted as part of a riparian restoration project in central Kentucky. After two growing seasons, culm number (aboveground stems) increased 4‐fold and extent of transplanted clumps expanded 26‐fold. The survival rate of transplanted cane clumps was 98%. Hardwood chip mulch significantly increased the emergence of new culms, culm height growth, and clump area. Composted manure, applied at a rate that contributed a similar mass of organic matter as the hardwood mulch, also significantly increased new culm number and clump area. Our findings demonstrate that addition of manure or hardwood mulch can significantly enhance aboveground production of A. gigantea transplants. However, survival and initial growth of untreated clumps were also adequate in this study. It appears that careful site selection, transplantation, and site maintenance may be sufficient to ensure A. gigantea establishment on many sites. Practitioners should assess soil drainage, water stress, and fertility along with herbaceous competition and incidence of overbank flooding before determining the necessity of organic amendments to supplement establishment of A. gigantea or other woody grasses for riparian restoration.  相似文献   

3.
Grasses and forbs compete heavily with young tree seedlings for available resources, greatly reducing tree seedling establishment success. Soil nutrient enrichment associated with agricultural intensification can increase the growth of both herbaceous and woody lifeforms growing in isolation, but may change the balance of competitive advantage when growing together. The effects of nitrogen and phosphorus enrichment on pasture biomass and competition with two Australian grassy woodland trees (Eucalyptus albens and Eucalyptus microcarpa) was investigated in a field plot trial. Soil nutrients increased pasture biomass, but had no measurable effect on tree growth in our experiment. Competition from pasture species, even at low levels, led to high tree seedling mortality and greatly reduced tree seedling growth compared with pasture-free plots. However, when pasture-free plots were excluded from the analysis, tree seedling leaf area was not strongly correlated with herbaceous biomass. Tree seedling establishment was severely restricted even at the lowest levels of pasture biomass. We conclude that increased soil fertility resulted in a competitive advantage to the pasture, and does not improve tree seedling establishment when grown either with or without exotic herbaceous pasture (grassy understorey) species.  相似文献   

4.
Initiating Autogenic Restoration on Shallow Semiarid Sites   总被引:1,自引:0,他引:1  
Our objectives were to evaluate the use of microcatchments in the establishment of Leucaena retusa (little-leaf leadtree) and Atriplex canescens (four-wing saltbush) and their role in the initiation of autogenic landscape restoration processes on a shallow semiarid site. Three six-month-old seedlings of either Leucaena retusa or Atriplex canescens were planted in 1.5-m2 microcatchments. An equal number of seedlings was planted in control plots (unmodified soil surface). The water collection effects on shrub survival, standing biomass, and the natural immigration of herbaceous vegetation were determined over 42 months. Planting in microcatchment basins doubled Leucaena seedling survival and resulted in a five-fold increase in standing biomass, compared to the control, during the first growing season. There was a significant increase in soil organic matter in the microcatchment basins within 32 months. At the same time, microcatchments planted with Atriplex canescens seedlings had a ten-fold increase in seedling standing biomass compared to the control. Forty-two months after transplanting, the herbaceous standing crop was significantly greater near Atriplex canescens or in microcatchment basins than in plots with unmodified surface soil. Basins containing Atriplex produced significantly more herbaceous vegetation than basins containing Leucaena, and empty basins produced the least herbaceous vegetation of three basin treatments. These data suggest that landscape-scale procedures that concentrate scarce resources (water, organic matter, nutrients, and propagules), establish keystone species, and ameliorate microenvironmental conditions can initiate autogenic restoration of degraded semiarid ecosystems.  相似文献   

5.
Phalaris arundinacea L. is an aggressive species that can dominate wetlands by producing monotypic stands that suppress native vegetation. In this study invasion windows were created for native species in monotypic stands of P. arundinacea with either fire or herbicide. Three native species groups, herbaceous plants, herbaceous seeds, and woody shrubs, were planted into plots burned or treated with herbicide in the early spring. Fire did not create an effective invasion window for native species; there was no difference in P. arundinacea root and shoot biomass or cover between burned and control plots (p≥ 0.998). Herbicide treatment created an invasion window for native species by reducing P. arundinacea root and shoot biomass for two growing seasons, but that invasion window was fast closing by the end of the second growing season because P. arundinacea shoot biomass had nearly reached the shoot biomass levels in the control plots (p= 0.053). Transplant mortality, frost, and animal herbivory prevented the herbaceous species and woody seedlings from becoming fully established in the plots treated with herbicide during the first year of the experiment. Transplanted monocots had a greater survival than dicots. By the second growing season the herbaceous group had the greatest mean areal cover (5%), compared to the woody seedlings (3%) and seed group (0%). Long‐term monitoring of the plots will determine whether the herbaceous transplants will compete effectively with P. arundinacea and whether the woody species will survive, shade the P. arundinacea, and accelerate forest succession.  相似文献   

6.
Myricaria laxiflora, an endangered shrub species distributed along the banks of the Yangtze River in the Three Gorges area, is completely submerged from June to October every year. It is generally assumed that summer flooding has a strong impact on the survival and growth of seedlings. We designed an outdoor randomized block experiment on the responses of seedling survival and growth to different flooding depth and flooding duration treatments during the flood season in the Three Gorges area. Seedling survival rate, aboveground biomass, belowground biomass, total biomass, root depth, length of primary branch and the number of primary and secondary branches were examined.M. laxiflora was found to acclimate to summer flooding by becoming dormant and losing biomass. Seedlings of M. laxiflora ceased growing during the summer flooding season, regardless of the flooding depth and flooding duration they were subjected to. The number of primary and secondary branches, aboveground biomass and total biomass of seedlings was reduced with prolonged flooding. The length of primary branches and aboveground biomass were more sensitive to flooding than other measured parameters and differed significantly between the onset and the end of flooding.In each flooding treatment most seedlings of M. laxiflora survived a flooding period of 2 months and recovered rapidly after the flooding was terminated in September. After 3 months of recovery, aboveground biomass, total biomass and the number of the primary branches increased significantly. Furthermore, seedling survival and growth in the flooding treatments were not significantly different from the controls both during the summer flooding stage and in the recovery stage. All of these results suggest that summer flooding does not affect seedling survival and growth in this species. On the contrary, flooding released seedlings from the stress of drought during summer and facilitated seedling establishment. M. laxiflora appears to cope adaptively with the flooding cycle by going into a state of dormancy during the flood season.  相似文献   

7.
This work examined the effects of elevated CO2 and temperature and water regimes, alone and in interaction, on the leaf characteristics [leaf area (LA), specific leaf weight (SLW), leaf nitrogen content (NL) based on LA], photosynthesis (light‐saturated net carbon fixation rate, Psat) and carbon storage in aboveground biomass of leaves (Cl) and stem (Cs) for a perennial reed canary grass (Phalaris arundinacea L., Finnish local cultivar). For this purpose, plants were grown under different water regimes (ranging from high to low soil moisture) in climate‐controlled growth chambers under the elevated CO2 and/or temperature (following a factorial design) over a whole growing season (May–September in 2009). The results showed that the elevated temperature increased the leaf growth, photosynthesis and carbon storage of aboveground biomass the most in the early growing periods, compared with ambient temperature. However, the plant growth declined rapidly thereafter with a lower carbon storage at the end of growing season. This was related to the accelerated phenology regulation and consequent earlier growth senescence. Consequently, the elevation of CO2 increased the Psat, LA and SLW during the growing season, with a significant concurrent increase in the carbon storage in aboveground biomass. Low soil moisture decreased the Psat, leaf stomatal conductance, LA and carbon storage in above ground biomass compared with high and normal soil moisture. This water stress effect was the largest under the elevated temperature. The elevated CO2 partially mitigated the adverse effects of high temperature and low soil moisture. However, the combination of elevated temperature and CO2 did not significantly increase the carbon storage in aboveground biomass of the plants.  相似文献   

8.
This 2-year field study examined stomatal conductance, photosynthesis, and biomass allocation of Liquidambar styraciflua saplings in response to below- and aboveground competition with the vines Lonicera japonica and Parthenocissus quinquefolia. Vine competition did not affect stomatal conductance of the host trees. The leaf photosynthetic capacity and photosynthetic nitrogen-use efficiency were significantly reduced by root competition with vines, either singly or in combination with aboveground competition, early in the second growing season. However, such differences disappeared by the end of the second growing season. Trees competing below ground with vines also had lower allocation to leaves compared with steins. Aboveground competition with vines resulted in reduced photosynthetic capacity per unit leaf area, but not per unit leaf weight, in trees. No correlation was found between single leaf photosynthetic capacity and tree growth. In contrast, a high positive correlation existed between allocation to leaves and diameter growth. Results from this study suggest that allocation patterns are more affected than leaf photosynthesis in trees competing with vines.  相似文献   

9.
Plantations are frequently established on abandoned pasture lands to speed forest recovery. This strategy requires matching a tree species mix with the prevailing microenvironmental conditions. In four degraded pastures of the Mexican Lacandon rainforest, we planted 2,400 trees of 6 species (Guazuma ulmifolia, Inga vera, Ochroma pyramidale, Trichospermum mexicanum, Bursera simaruba, and Spondias mombin) to (1) test survival, initial growth, and establishment costs; (2) evaluate whether vegetative cuttings outperform direct seeding or transplants of nursery‐raised seedlings; (3) determine tree response to herbaceous dominance and soil compaction; and (4) scrutinize the results' consistency across sites and sampling scales of tree–microenvironment interactions (individual tree vs. averaged plot responses). After 2 years, overall survival and growth rates were high for 2 of 3 nursery‐raised species. Contrary to expectations, all seedlings outperformed the cuttings while direct seeding resulted in a cost‐effective option of intermediate efficacy. The impact of soil resistance to root penetration on tree biomass accumulation was species dependent while bulk density was not relevant. Soil‐covering, herbaceous vegetation accelerated growth in 3 of 4 tested species during the dry season. At this initial stage of forest restoration in abandoned pastures, Guazuma and Trichospermum were the most restoration‐effective species. Costs can be reduced by using direct‐seeding Inga and avoiding weeding during the dry season. Finally, our results demonstrate how species selection trials can be misleading due to site variations in tree response and to sampling scales that fail to account for small‐scale environmental heterogeneity. We recommend ways to improve the design of restoration trials.  相似文献   

10.
In the Midwestern US, perennial rhizomatous grasses (PRGs) are considered one of the most promising vegetation types to be used as a cellulosic feedstock for renewable energy production. The potential widespread use of biomass crops for renewable energy production has sparked numerous environmental concerns, including the impacts of land‐use change on the hydrologic cycle. We predicted that total seasonal evapotranspiration (ET) would be higher for PRGs relative to maize resulting from higher leaf area and a prolonged growing season. We further predicted that, compared with maize, higher aboveground biomass associated with PRGs would offset the higher ET and increase water‐use efficiency (WUE) in the context of biomass harvests for liquid biofuel production. To test these predictions, ET was estimated during the 2007 growing season for replicated plots of Miscanthus×giganteus (miscanthus), Panicum virgatum (switchgrass), and Zea mays (maize) using a residual energy balance approach. The combination of a 25% higher mean latent heat flux (λET) and a longer growing season resulted in miscanthus having ca. 55% higher cumulative ET over the growing season compared with maize. Cumulative ET for switchgrass was also higher than maize despite similar seasonal‐mean λET. Based on total harvested aboveground biomass, WUE was ca. 50% higher for maize relative to miscanthus; however, when WUE calculated from only maize grain biomass was compared with WUE calculated from miscanthus harvested aboveground biomass, this difference disappeared. Although WUE between maize and miscanthus differed postsenescence, there were no differences in incremental WUE throughout the growing season. Despite initial predictions, aboveground biomass for switchgrass was less than maize; thus WUE was substantially lower for switchgrass than for either maize scenario. These results indicate that changes in ET due to large‐scale implementation of PRGs in the Midwestern US would likely influence local and regional hydrologic cycles differently than traditional row crops.  相似文献   

11.
Abstract Exotic grasses are becoming increasingly abundant in Neotropical savannas, with Melinis minutiflora Beauv. being particularly invasive. To better understand the consequences for the native flora, we performed a field study to test the effect of this species on the establishment, survival and growth of seedlings of seven tree species native to the savannas and forests of the Cerrado region of Brazil. Seeds of the tree species were sown in 40 study plots, of which 20 were sites dominated by M. minutiflora, and 20 were dominated by native grasses. The exotic grass had no discernable effect on initial seedling emergence, as defined by the number of seedlings present at the end of the first growing season. Subsequent seedling survival in plots dominated by M. minutiflora was less than half that of plots dominated by native species. Consequently, at the end of the third growing season, invaded plots had only 44% as many seedlings as plots with native grasses. Above‐ground grass biomass of invaded plots was more than twice that of uninvaded plots, while seedling survival was negatively correlated with grass biomass, suggesting that competition for light may explain the low seedling survival where M. minutiflora is dominant. Soils of invaded plots had higher mean Ca, Mg and Zn, but these variables did not account for the higher grass biomass or the lower seedling survival in invaded plots. The results indicate that this exotic grass is having substantial effects on the dynamics of the tree community, with likely consequences for ecosystem structure and function.  相似文献   

12.
Net primary production (NPP) is an important function of plant communities which has not often been examined seasonally in a forested ecosystem. The major objective of the study was to measure above-ground NPP seasonally and relate it to phenological activity on a hardwood forest watershed at Coweeta Hydrologic Laboratory, North Carolina. NPP was estimated as the increase in biomass, estimated from regression equations on diameter. Diameter increases were measured by vernier tree bands. Phenological observations were made on bud break, leaf emergence, flowering, mature fruit, leaf senescence, and leaf fall. The species studied intensively were Acer rubrum, Quercus prinus, Carya glabra, Cornus florida, and Liriodendron tulipifera. Liriodendron was found to be the most productive species per individual, but Quercus prinus was the most productive per unit ground area. The total watershed estimate of aboveground NPP was 8,754 kg ha-1 yr-1 and included 47.9% leaves, 33.2% wood, 7.8% bark, 4.8% reproductive tissues, 4.2% loss to consumers, and 2.1% twigs. Increases in leaf biomass were most rapid in the spring, but woody tissue production peaked in June and continued through August. Since leaf production peaked in the spring, the plants' photosynthetic machinery was activated early in the growing season to support woody tissue production, which followed the period of rapid leaf growth, and reproductive activity. Flowering occurred during the leaf expansion period except for Acer rubrum, which flowered before leaf emergence. Fruit maturation occurred during late summer to early fall, when there were no additional biomass increases. Acer rubrum was an exception as its fruit matured during the period of leaf expansion.  相似文献   

13.
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the importance of species composition, species richness, the type of different growth forms, and plant biomass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, herbaceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a decrease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of belowground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K. pygnaeca and K. humilis meadow communities, aboveground biomass was positively correlated to soil organic matter and soil total nitrogen (P<0.05). This suggests that the distribution of biomass coincided with soil moisture and edaphic gradient in alpine meadows.  相似文献   

14.
Summary Emergence and survival of honey mesquite (Prosopis glandulosa var.glandulosa Torr.) seedlings was quantified on sites with contrasting grazing histories: long-term continuous grazing (LTG) and long-term protection (LTP) from grazing by cattle. On each site, different levels of heroaceous defoliation were imposed at monthly intervals (no defoliation=ND, moderate=MD and heavy=HD). The two weeks following seed dissemination appeared to be the most critical toProsopis establishment on LTP-ND plots. Openings in the herbaceous layer created by moderate defoliation of grasses on the LTP site increased germination and/or survival 7-to 8-fold during this period. However, increasing the degree of defoliation from moderate to heavy did not stimulate additional emergence on either the LTP or LTG site. Emergence from scarified seed placed in cattle dung (17 to 30%) was lower than that of bare seed placements in various microhabitats (43–60%). However, deposition of scarifiedProsopis seed in dung in conjunction with graminoid defoliation may be the most likely combination of events when livestock are present. Emergence from seeds transported into grasslands by other fauna likely would be low, unless seeds were deposited in areas where grasses had been defoliated.Prosopis survival was comparably high in dung and bare seed placements after one growing season. survival of seedlings present two weeks after seed dissemination ranged from 74 to 97% at the end of the second growing season. Seedling survival and shoot development (biomass, leaf area and height) were similar on LTP and LTG sites, regardless of the level of herbaceous defoliation or seed placement. In addition, the magnitude and patterns of net photosynthesis, stomatal conductance and xylem water potential were comparable among one-year-old seedtings on ND, MD and HD plots, even though differences in herbaceous species composition and above- and below-ground biomass between these treatments were substantial. Such data suggest competition for soil resources between grasses andProsopis may be minimal early in the life cycle ofProsopis. High rates ofProsopis emergence and establishment on LTP-MD plots are counter to the widespread assumption that long-term and/or heavy grazing is requisite forProsopis encroachment into grasslands. Results are discussed with regard to factors contributing to the recent, widespread invasion of this woody legume into grasslands of southwestern North America.Abbreviations LTG long-term grazed - LTP long-term protected from grazing - ND non-defoliated - MD moderate defoliation - HD heavy defoliation  相似文献   

15.
R. Aerts 《Oecologia》1989,78(1):115-120
Summary Leaf turnover and aboveground productivity in relation to nutrient availability were studied in the evergreen shrubs Erica tetralix and Calluna vulgaris. In monospecific stands of these species four levels of nutrient (NPK) availability were created during three growing seasons. Percentage survival and life expectancy of Erica leaves decreased with increasing nutrient availability. For Calluna there was no effect. Winter mortality of Erica leaves was smaller than growing season mortality. These was no difference for Calluna. The timing of leaf mortality of both species was not affected by nutrient treatment. At the end of the experimental period current year leaf biomass, total biomass and current year second year and third year biomass of both species showed a significant increase with increasing nutrient availability. The relative increase was greater for Calluna, except for second and third year biomass. Stem production and stem mortality of both species increased with increasing nutrient availability. The increased stem mortality resulted also for Calluna in an increased leaf turnover (per unit ground area) with increasing nutrient availability. Nutrient cycling in ecosystems dominated by these species will increase with increasing nutrient availability, because of increased leaf and stem turnover and productivity. This phenotypic effect is similar to the effect of the shift in dominance between different species which occurs along natural gradients of nutrient availability.  相似文献   

16.
In herbaceous dominated patches and ecosystems, tree establishment is influenced partly by the ability of woody seedlings to survive and grow in direct competition with herbaceous vegetation. We studied the importance of season long wet and dry spells on the competitive interactions between herbaceous vegetation and oak seedlings along a light and nitrogen gradient in an infertile secondary successional grassland in central North America. We conducted a field experiment in which seedlings of bur oak (Quercus macrocarpa) and northern pin oak (Q. ellipsoidalis) were exposed to two levels of light (full sun and 80% shade), three levels of nitrogen input (0, 5, 15 g m–1 yr–1), and three levels of water input (low, medium and high). In addition, seedlings were grown with and without the presence of surrounding herbaceous vegetation under both light and all three water levels. Seedling survival, growth, and rate of photosynthesis were significantly affected by competition with herbaceous vegetation and these effects varied along the multiple resource gradient. Overall, seedling survival of both species was significantly greater in wetter and shaded plots and when surrounding herbaceous vegetation was removed and was lower in nitrogen enriched plots. We found that soil water was significantly affected by varying inputs of water, light, and the presence or absence of herbaceous vegetation, and that seedling survival and rate of photosynthesis were highly correlated with available soil water. Our findings show that the impact of season long wet and dry spells on tree seedling success in grasslands can be affected by light and soil nitrogen availability.  相似文献   

17.
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants <1-m tall) and shrub and tree layer (woody plants >1-m tall), in the Brazilian cerrado over a range of tree densities from open shrub savanna to closed woodland through the annual cycle. During the dry season, soil water potential was strongly and positively correlated with grass LAI, and less strongly with tree and shrub LAI. By the end of the dry season, LAI of grasses, groundlayer dicots and trees declined to 28, 60, and 68% of mean wet-season values, respectively. We compared the data to remotely sensed vegetation indices, finding that field measurements were more strongly correlated to the enhanced vegetation index (EVI, r 2=0.71) than to the normalized difference vegetation index (NDVI, r 2=0.49). Although the latter has been more widely used in quantifying leaf dynamics of tropical savannas, EVI appears better suited for this purpose. Our ground-based measurements demonstrate that groundlayer LAI declines with increasing tree density across sites, with savanna grasses being excluded at a tree LAI of approximately 3.3. LAI averaged 4.2 in nearby gallery (riparian) forest, so savanna grasses were absent, thereby greatly reducing fire risk and permitting survival of fire-sensitive forest tree species. Although edaphic conditions may partly explain the larger tree LAI of forests, relative to savanna, biological differences between savanna and forest tree species play an important role. Overall, forest tree species had 48% greater LAI than congeneric savanna trees under similar growing conditions. Savanna and forest species play distinct roles in the structure and dynamics of savanna–forest boundaries, contributing to the differences in fire regimes, microclimate, and nutrient cycling between savanna and forest ecosystems.  相似文献   

18.
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the im-portance of species composition, species richness, the type of different growth forms, and plant bio-mass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, her-baceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a de-crease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of below-ground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K. pygnaeca and K. humilis meadow communities, aboveground biomass was posi-tively correlated to soil organic matter and soil total nitrogen (P<0.05). This suggests that the distribu-tion of biomass coincided with soil moisture and edaphic gradient in alpine meadows.  相似文献   

19.
Global warming is expected to result in earlier emergence of tree seedlings that may experience higher damages and mortality due to late frost in spring. We monitored emergence, characteristics, and survival of seedlings across ten tree species in temperate mixed deciduous forests of Central Europe over one and a half year. We tested whether the timing of emergence represents a trade‐off for seedling survival between minimizing frost risk and maximizing the length of the growing period. Almost two‐thirds of the seedlings died during the first growing period. The timing of emergence was decisive for seedling survival. Although seedlings that emerged early faced a severe late frost event, they benefited from a longer growing period resulting in increased overall survival. Larger seedling height and higher number of leaves positively influenced survival. Seedlings growing on moss had higher survival compared to mineral soil, litter, or herbaceous vegetation. Synthesis. Our findings demonstrate the importance of emergence time for survival of tree seedlings, with early‐emerging seedlings more likely surviving the first growing period.  相似文献   

20.
S. Luke Flory  Keith Clay 《Oecologia》2010,164(4):1029-1038
Multiple factors can affect the process of forest succession including seed dispersal patterns, seedling survival, and environmental heterogeneity. A relatively understudied factor affecting the process of succession is invasions by non-native plants. Invasions can increase competition, alter abiotic conditions, and provide refuge for consumers. Functional traits of trees such as seed size and life history stage may mediate the effects of invasions on succession. We tested the effects of the forest invader Microstegium vimineum on planted and naturally regenerating trees in a multi-year field experiment. We established plots containing nine species of small- and large-seeded tree species planted as seeds or saplings, and experimentally added Microstegium to half of all plots. Over 3 years, Microstegium invasion had an overall negative effect on small-seeded species driven primarily by the effect on sweetgum, the most abundant small-seeded species, but did not affect large-seeded species such as hickory and oak species, which have more stored seed resources. Natural regeneration was over 400% greater in control than invaded plots for box elder, red maple, and spicebush, and box elder seedlings were 58% smaller in invaded plots. In contrast to the effects on tree seedlings, invasion did not affect tree sapling survival or growth. Microstegium may be directly reducing tree regeneration through competition. Invaded plots had greater overall herbaceous biomass in 2006 and 2008 and reduced light availability late in the growing season. Indirect effects may also be important. Invaded plots had 120% more thatch biomass, a physical barrier to seedling establishment, and significantly greater vole damage to tree saplings during 2006 and 2007. Our results show that two tree functional traits, seed size and life history stage, determined the effects of Microstegium on tree regeneration. Suppression of tree regeneration by Microstegium invasions may slow the rate of forest succession and alter tree species composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号