首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were conducted on agar media to characterize the factors for the optimization of sporulation of Alternaria alternata f. sp. sphenocleae , a fungal pathogen being evaluated as a biological control agent for Sphenoclea zeylanica (gooseweed). A. alternata f. sp. sphenocleae conidiation was affected by nutrition, temperature, light conditions, and moisture. On all agar media tested, except for half-strength potato dextrose agar (½ PDA) and V-8 juice agar (VJA), exposure to different light conditions did not have any significant effect on conidia production. However, when comparing ½ PDA and VJA, sporulation under constant near-ultraviolet (NUV) light at 28 o C increased markedly on VJA, but decreased substantially on ½ PDA. This trend, however, was opposite under dark conditions since ½ PDA produced the greatest number of conidia whereas a 75% reduction in conidia production occurred on VJA in the dark. On all the standard agar media evaluated, the most virulent conidia were obtained on ½ PDA at 28 o C under constant NUV incubated for 4 weeks. Sporulation of A. alternata f. sp. sphenocleae using the sporulation medium (S-medium) technique was rapid. Conidia were produced within 24 h and continuous sporulation was still observed until 120 h. The best primary agar media for conidia production were PDA, ½ PDA and VJA, while water agar was the poorest. Conidia production was optimized with the addition of 20 g l -1 of calcium carbonate (CaCO 3 ) and the addition of 2 ml of sterile distilled water on the medium. The most virulent conidia were produced when the primary agar was ½ PDA, the CaCO 3 concentration was 20 g l -1 , and the cultures were incubated at 18 o C in the dark. Conidiophore induction occurred on nutrient rich media and was stimulated by NUV, while formation of conidia proceeded in darkness after nutrients were depleted under warm dry or cool moist conditions. Culture media, growth conditions, and CaCO 3 affected the inoculum potential of A. alternata f. sp. sphenocleae conidia.  相似文献   

2.
Esteya vermicola, an endoparasitic fungus of Bursaphelenchus xylophilus, the pinewood nematode (PWN), exhibits great potential as a biological control agent against this nematode. E. vermicola produces blastospores in liquid media and aerial conidia on solid media. The agent was mass-produced using two kinds of culture media: S (50 % wheat bran and 50 % pine wood powder), L (0.5 g wheat bran and 0.5 g pinewood powder in 200 ml of potato dextrose broth), and two controls: SC (potato dextrose agar), LC (potato dextrose broth). Yields, multiple stress tolerance, storage life, new generation conidial number, and PWN mortality rates of the spores were measured in each of these four media and compared. The spore yields, new generation conidial number, and nematode mortality rates of blastospores were higher than those of conidia. Nevertheless, the conidia had a higher germination rate than the blastospores during the storage process and multiple stress treatments. Considering the number of spores surviving from the process of the storage and multiple stress treatments per unit of mass media, the blastospores from L survived most. Comprehensive analysis indicates that the L culture medium is the most optimal medium for mass production relatively.  相似文献   

3.
A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71- 0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of 30 degrees C. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.  相似文献   

4.
On agar media the maximum conidia production of Exserohilum monoceras occurred on V-8 juice agar (VA) or centrifuged V-8 juice agar, whereas the optimal radial mycelial growth occurred on Czapek-Dox agar. The optimal temperatures for radial mycelial growth and conidia production were 28 and 27°C respectively. Light prohibited E. monoceras conidia production. The best sporulation occurred under continuous dark conditions. Echinochloa leaf decoction significantly increased conidia production on potato dextrose agar (PDA) and VA, and significantly increased germ tube length on PDA, lima bean agar and VA, but did not affect conidia germination. No conidia were produced in liquid media. Of 22 agricultural-based products evaluated as solid substrates, the most abundant sporulation (1.8 × 106 conidia g-1 of dry weight) occurred on corn leaves. The conidia production of E. monoceras on corn leaves was affected by incubation period, moisture content and substrate quantity. There were no differences in germination rate, germ tube length and virulence of conidia produced on agar media or corn leaves.  相似文献   

5.
The ability of Streptomyces sp. OXCI, S. rimosus NRRL B2659, S. rimosus NRRL B2234, S. alboflavus NRRL B1273 S. aureofaciens NRRL B2183 and S. vendagensis ATCC 25507 to produce tetracycline using some local agricultural wastes as solid state media, were assessed. The wastes employed include peanut (groundnut) shells, corncob, corn pomace and cassava peels. Bacillus subtilis ATCC 6633 was used to assay antimicrobial activity. All the strains produced tetracycline in a solid-state fermentation process containing peanut (groundnut) as the carbohydrate source. Streptomyces sp. OXC1 had the highest ability for tetracycline production with peanut shells as the substrate in solid fermentation (13.18 mg/g), followed by S. vendagensis ATCC 25507 (11.08 mg/g), S.rimosus NRRL B1679 (8.46 mg/g), S. alboflavus NRRL B1273 (7.59 mg/g), S. rimosus NRRL B2234 (6.37 mg/g), S. aureofaciens NRRL B2183 (4.27 mg/g). Peanut (groundnut) shells were the most effective substrate (4.36 mg/g) followed by corncob (2.64 mg/g), cassava peels (2.16 mg/g) and corn pomace (1.99 mg/g). The composition of the peanut (groundnut) shell medium optimal for tetracycline production were peanut shells 100 g, organic nitrogen (peanut meal) 10 g, (NH 4)2 SO4 1 g, KH2 PO 4 0.5 g, CaCO3 > 0.5 g, NaCl 0.5 g, MgSO4 · 7H2 O 0.5 g, soluble starch 10 g, peanut oil 0.25 ml with initial moisture content of 65–68%, and initial pH 5.3–6.3. Substrate (1 g dry weight) was inoculated with 1.0 × 10 8 conidia per ml and incubated at 28–31 °C for 5–7 days, producing 13.18 mg/g of total tetracycline. Tetracycline detection started on day 3 and attained its maximum level on day 5.  相似文献   

6.
During oxytetracycline production by Streptomyces rimosus TM-55 on sweet potato residue in a solid-state column reactor, the moisture content increased by between 2 and 5% (w/w) during incubation, from an initial content of 70 to 73%, and pH initially increased from 6.0 to 7.3, followed by a gradual decrease to 6.2. Appropriate aeration enhanced oxytetracycline production, while mixing only once daily decreased it. The temperatures in the centre and upper layers of each reactor were higher than elsewhere in static non-aerated cultures. The maximum CO2 concentration ranged from 2.9 to 3.2% (v/v) and the minimum O2 concentration was 11.0 to 17.2% (v/v) in static cultures. Under optimal conditions, each gram of dry substrate produced the equivalent potency of 12 mg oxytetracycline.The authors are with the Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan 10617, Republic of China  相似文献   

7.
Market crop wastes of banana (Musa acuminata) leaves and pseudo-stem sheaths, sweet potato (Ipomoea batatas) vines and Solanum aethiopicum (traditionally known as nakati) were collected from three major markets in Kampala (Uganda). The wastes were evaluated for chemical composition during the dry and wet seasons, rumen degradation using three cannulated indigenous mature ewes, and digestibility using 12 indigenous intact growing male goats, 4–6 months old and weighing 15.8 kg (S.D. 2.1). The goats in the digestibility study were kept in metabolism cages and fed the wastes as sole diets, either fresh or wilted.

Mean dry matter (DM) content was 97, 121, 197 and 216 g/kg for pseudo-stem sheaths, nakati, sweet potato vines and banana leaves, respectively. Crude protein (CP) was 34, 109, 112 and 114 g/kg DM for pseudo-stem sheaths, banana leaves, sweet potato vines and nakati, respectively. The chemical composition was similar among seasons and markets for the banana based wastes. However, for sweet potato vines and nakati, the wet season wastes had significantly higher CP and lower NDFom and ADFom. Chemical composition was different (P<0.05) among the markets for nakati. Effective degradability differed (P<0.05) between the wastes, averaging 0.43 (banana leaves), 0.47 (pseudo-stem sheaths) and 0.56 (nakati) to 0.69 g/g DM incubated (sweet potato vines). DM intake, N retention and digestibility were not significantly affected by wilting. Average DM intake was 176, 270 and 559 g/day; CP intake was 26, 30 and 63 g/day, while metabolizable energy (ME) intake was 1.3, 1.7 and 5.1 MJ/day for nakati, banana leaves and sweet potato vines, respectively. N retention (as a fraction of N intake) was −0.51 (banana leaves), 0.62 (nakati) and 0.39 (sweet potato vines). The organic matter (OM) and CP digestibilities of banana leaves were low, averaging 0.52 and 0.49, respectively. The high moisture content of nakati wastes resulted in low intake, whereas banana leaves had a low degradation rate and a low N retention. Market sweet potato vine wastes were sufficient to provide the CP and ME required by growing goats under tropical conditions.  相似文献   


8.
A strain Aureobasidium pullulans AP329, was used for the production of pullulan by employing hydrolysed sweet potato as cultivation media. Hydrolysis with α-amylase alone resulted in the lowest yields of pullulan. In contrast continuous hydrolysis with pullulanase and the β-amylase in sweet potato itself gave higher yields, but prolonged hydrolysis with amyloglucosidase decreased the yield. The maximum pullulan yield (29.43 g/l) was achieved at the dextrose equivalent value of 45 and pH of 5.5 for 96 h. As a substitute of sucrose, hydrolysed sweet potato was found to be hopeful and the yield of pullulan was higher than that of glucose and sucrose. The molecular weight of pullulan obtained from hydrolysed sweet potato media was much higher than that of sucrose and glucose media. Results of this work indicated that sweet potato was a promising substrate for the economical production of pullulan.  相似文献   

9.
Sweet potato residue, a starchy agricultural waste, was used as a substrate to produce microbial protein by Fusarium moniliforme and Saccharomyces cerevisiae in submerged fermentation. Acid- and gamma-irradiation-pretreated sweet potato residue enhanced the biomass yield and protein production when the residue was fermented with F. moniliforme and S. cerevisiae. A mixed culture of F. moniliforme and S. cerevisiae efficiently and rapidly utilized free sugars; the maximal biomass yield (13.96 g/l) and protein production (65.8%) were obtained after 3 days fermentation. Lower carbon utilization by the two microbial strains occurred in the waste-containing media as compared to control, increasing the economic value of the waste usage. Received 25 October 2001/ Accepted in revised form 22 June 2002  相似文献   

10.
Biocontrol of aflatoxin contamination using atoxigenic Aspergillus flavus to competitively exclude aflatoxin-producing strains has previously been reported, and is currently in the third year of commercial-scale tests (treating 50-200 ha per annum). Wheat seed colonized with atoxigenic A. flavus has been used in the commercial trials. Requirements for production of this colonized wheat seed are described and the spore yield of wheat is compared to other substrates. The study suggests that the most cost-effective inoculum production would require colonization of wheat (106 conidia kg -1 of wheat seed) at 25% (w/w) moisture for 18 h at 31 C. To prevent fungal growth and associated wheat aggregation in storage, seed had to be dried below 15% (w/w) moisture, although a moisture content of 35% (w/w) did not reduce viability in sealed containers stored at 18-25 C over an 8-month period. The dry biopesticide had multi-year stability without refrigeration and withstood temperatures of 70 C for 20 min. Sporulation of the product occurred within 3 days at 31 C and 100% relative humidity with yields averaging 4.9 X 109 conidia g -1 by day 7.  相似文献   

11.
Conidial production of Penicillium frequentans , a biocontrol agent of the fungal pathogen Monilinia laxa , was tested in liquid and solid-state fermentation. Conidial production of P. frequentans in solid-state fermentation was higher than in liquid-state fermentation. Solidstate fermentation was made in specially designed plastic bags (VALMIC &#174; ) containing peat:vermiculite (1:1 w/w). Addition of nutrients to the peat:vermiculite increased conidial production of P. frequentans , especially when lentil meal was added. The number of conidia obtained in this solid-state fermentation was maintained in the range of 10 8 -10 9 conidia g -1 from 5 to 120 days after inoculation. Germinability of these conidia was > 90% until 90 days of incubation and declined at 120 days. Optimal initial moisture content in the substrate was 30-40% (v/w). At lower moisture contents, significant reductions in conidial production and germinability were observed, particularly at 10% (v/w). Conidial production was similar when the substrate was inoculated with 10 5 , 10 6 or 10 7 conidia g -1 dry substrate. Fresh conidia produced by solid-state fermentation reduced the incidence of brown rot on plums by 75%.  相似文献   

12.
Jang HD  Yang SS 《Bioresource technology》2008,99(14):6181-6189
To investigate the potential production of polyunsaturated fatty acids (PUFAs), a solid-state column reactor of rice bran with Mortierella alpina was used. The optimal conditions for PUFAs production were rice bran supplementation with 3.75% (ww(-1)) nitrogen source at initial moisture content 57%, initial pH 6-7, aeration, and incubation at 20 degrees C for 5 days and then at 12 degrees C for 7 days. Each gram of substrate carbon yielded 127 mg of total PUFAs, 12 mg of eicosapentaenoic acid (EPA), 6 mg of arachidonic acid (AA), 5mg of alpha-linolenic acid (ALA), and 117 mg of linoleic acid (LA) after 12 days incubation. Aeration enhanced the productions of AA, EPA, and total PUFAs. Supplementation of the nitrogen source on the fourth day and then a shift to lower temperature on the fifth day increased EPA production.  相似文献   

13.
Sweet potato residue, a starchy agricultural waste, was used as a substrate to produce oxytetracycline byStreptomyces rimosus TM-55 in a solid-state fermentation. Oxytetracycline was detected on the third day, reached its maximum value on the sixth day and remained constant to the twentieth day. Optimal conditions for oxytetracycline production were an initial pH of 5.5 to 6.5, supplemented with 20% (w/v) defatted roasted peanut meal, as the sole nitrogen source, 1.0% (w/v) CaCO3 and 2.0% (w/v) MgSO4·7H2O, being incubated at 26 to 35°C for 6 to 7 days. Oxytetracycline reached 12.1 mg/g substrate.
Résumé On a utilisé des résidus de patates douces, on résidu agricole amylacé, comme substral pour la production d'oxytétracycline parStreptomyces rimosus TM-55 par fermentation en milieu solide. On a détecté foxytétracycline le 3ème jour. Celui-ci a arteint sa concentration maximum le 6ème jour et celle-ci est restée constante jusqu'au 20eme jour. Les conditions optimales pour la production d'oxytétracycline sont les staivanies: un pH initial compris entre 5.5 et 6.5, l'ajout de 20% (p/v) de farine d'arachide dégraissée, comme seule source d'azote, 1.0% (p/v) de CaCO3 et 2.0% (p/v) de MgSO4.7H2O, une température d'incubation de 26 à 35°C pendant 6 à 7 jours. On a aneint 12.1 mg d'oxytetracycline par g de substrat.
  相似文献   

14.
Conidia production of Beauveria sp. strain LAG by solid-state fermentation (SSF) using blends of agro-industrial residues (residual potatoes and sugar-cane bagasse) was optimized with respect to cultivation conditions and the composition of substrate mixture in Erlenmeyer flasks and column-type bioreactor. With a blend of 60 % residual potatoes and 40 % sugar-cane bagasse the optimum conditions achieved were: incubation temperature 26 degrees C, initial substrate pH 6, inoculum concentration 10(7) conidia per g substrate; optimal initial moisture of the substrate was 70 % for Erlenmeyer flasks, in column-type bioreactor (with forced aeration) the optimal initial moisture of the substrate was 65 % with airflow of 60 mL/min. The highest production (1.07 x 10(10) conidia per g dry substrate) was achieved after a 10-d fermentation. The conidia were used in laboratory assays against Thelosia camina and Hylesia sp., caterpillars that are serious pests of mate plants. The mortality of T. camina was >90 % 10 d after spraying caterpillars with 1 mL conidia suspension at a concentration 10(5)-10(8)/mL. For Hylesia sp., the mortality was 70 %, 7 d after immersion in the conidia suspension containing 108 conidia per mL. Therefore, the Beauveria sp. LAG can be considered to be an important biocontrol instrument in the prospect of the Integrated Pest Management for mate plants.  相似文献   

15.
A study was undertaken to evaluate optimum concentrations of chitin in sodium alginate pellet formulations to enhance conidia production. Chitin concentrations tested were 0, 0.5, 1, 2, 3 and 4% (w/v), with (2%, w/v) or without wheat bran. The different chitin-wheat bran pellet combinations were prepared with Beauveria bassiana isolate Qu-B306 at 108 conidia mL-1. After 21 days of incubation in a humid chamber at 28°C, conidia production was assessed. Improvements up to three times the initial conidia number were achieved using 2% chitin and 2% wheat bran. Higher levels of chitin decreased the number of conidia per pellet. For all chitin concentrations, conidia number increased with the addition of wheat bran (P≤0.05). Contamination by saprophytic fungi was reduced by the incorporation of chitin in the pellet formulation.  相似文献   

16.
Mo M  Xu C  Zhang K 《Mycopathologia》2005,159(3):381-387
The effects of carbon and nitrogen sources, carbon-to-nitrogen ratio (C:N) and initial pH value on the growth and sporulation of the nematophagous fungus Pochonia chlamydosporia in liquid culture were examined. Among the 21 carbon sources and 15 nitrogen compounds tested, the optimal carbon and nitrogen sources for mycelial growth were sweet potato and L-tyrosine, and for sporulation were sweet potato and casein peptone. A C:N ratio of 10:1 at pH 3.7 gave the maximum yield of conidia and a C:N ratio of 40:1 at pH 6.8 gave the maximum biomass. The initial pH value had a significant effect on mycelial growth and conidial production, with the optimal ranges being 3.5–4.5 for sporulation and 5–6 for growth. Maximum conidial production was obtained at an initial pH of 4.0 and the maximum biomass at pH 6.0. The results also showed that the final pH after 7 days cultivation was always higher than the initial value. The variability in growth and sporulation of seven strains of P. chlamydosporia in liquid culture was also compared and discussed.  相似文献   

17.
Major parameters affecting the production of chitinase by Beauveria felinaRD 101 under solid substrate fermentation conditions have been optimized. Wheat bran moistened with 100 MS-HCl medium adjusted to pH 5.0, inoculated with 1 × 1010 conidia g–1 initial dry bran and incubated at 28 °C for 6 days produced maximum chitinase activity of 6.34 U g–1 initial dry substrate.  相似文献   

18.
An improved method is described for the production of chitosan from mycelia of the fungus Gongronella butleri, grown by solid substrate fermentation on sweet potato. The chitosan was extracted subsequently by 11 M NaOH at 45 °C, and 0.35 M acetic acid at 95 °C. The resulting extract was clarified using a heat-stable, commercial -amylase. The yield (4–6 g/100 g mycelia) and relative number average molecular weight (44–54 kDa) of the chitosan increased with increasing duration of fungal growth up to the sixth day.  相似文献   

19.
Valdensinia heterodoxa (Sclerotiniacae) is a potential fungal bioherbicide for control of salal (Gaultheria shallon). The effect of culture media, substrates and relative humidity (RH) on growth, sporulation and conidial discharge of V. heterodoxa was determined for two isolates PFC2761 and PFC3027 in vitro. Culture media significantly affected the growth, sporulation, and conidial discharge of V. heterodoxa. Of eight agar media used, colony radial growth was optimal on salal oatmeal agar and salal potato dextrose agar for isolates PFC2761 and PFC3027, respectively; whereas sporulation was at an optimum on salal oatmeal agar for both isolates. Of the eight liquid media tested, mycelial production was highest on wheat bran–salal–potato dextrose broth. Growth on solid substrates greatly stimulated sporulation and conidial discharge of V. heterodoxa. Of the 12 solid substrates used, the greatest numbers of discharged conidia were observed from wheat bran and wheat bran–salal within 14 d of sporulation. Sporulation on solid substrates continued for 42 d. RH significantly affected the sporulation and conidial discharge for both isolates across all solid substrates tested. No conidia were produced or discharged below 93 % RH on wheat bran–salal and millet. With an increase of the RH from 93 to 97 %, sporulation and the number of discharged conidia increased significantly for both isolates on wheat bran–salal, but not on millet.  相似文献   

20.
Solid state fermentation was conducted for the production of L-glutaminase by Trichoderma koningii Oud.aggr. using different agro-industrial byproducts inlcuding wheat bran, groundnut residues, rice hulls, soya bean meal, corn steep, sesamum oil cake, cotton seed residues and lentil industrial residues as solid substrates. Wheat bran was the best substrate for induction of L-glutaminase (12.1 U/mg protein) by T. koningii. The maximum productivity (23.2 U/mg protein) and yield (45.0 U/gds) of L-glutaminase by T. koningii occurred using wheat bran of 70% initial moisture content, initial pH 7.0, supplemented with D-glucose (1.0%) and L-glutamine (2.0% w/v), inoculated with 3 ml of 6 day old fungal culture and incubated at 30°C for 7 days. After optimization, the productivity of L-glutaminase by the solid cultures of T. koningii was increased by 2.2 fold regarding to the submerged culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号