首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the role of central cholinergic mechanisms in hypertension, we have determined muscarinic receptors using [3H](-)quinuclidinyl benzilate (QNB) and choline acetyltransferase (ChAT) activity in the brain regions of spontaneously hypertensive rats (SHR), stroke-prone SHR (SHRSP) and renal hypertensive rats. The number of muscarinic receptors was significantly (33–38%) elevated in the hypothalamus of SHR and SHRSP at the ages of 16 and 24 weeks compared to that of Wistar-Kyoto rats (WKY). An increased density of muscarinic receptors was consistently observed in the prehypertensive (5 weeks) and developmental (10 weeks) stages of hypertension. In contrast, in the hypothalamus of rats with renal hypertension there was no muscarinic receptor alteration. The receptor alteration in the SHRSP hypothalamus was not abolished by a chronic hypotensive treatment which prevented the development of hypertension, suggesting that an enhancement of the muscarinic receptors in spontaneous hypertension does not occur secondarily to the elevation of blood pressure. The hypothalamus of SHR and SHRSP at the ages of 5 and 24 weeks showed significantly less activity of ChAT. These data demonstrate that there is a specific increase in muscarinic receptors and a decrease in cholinergic activity in the hypothalamus of SHR and SHRSP. Thus, the present study suggests an important role for hypothalamic cholinergic receptors in the pathogenesis of spontaneous hypertension.  相似文献   

2.
3.
J B Cheng  R G Townley 《Life sciences》1982,30(24):2079-2086
This study was undertaken to compare the activity of muscarinic and beta adrenergic receptors in bovine peripheral lung to the corresponding receptor activity in tracheal smooth muscle. We used [3H] quinuclidinyl benzilate (QNB) and [3H]dihydroalprenolol (DHA) to measure muscarinic and beta receptor activity, respectively. Binding to QNB and DHA at 25 degrees C was rapid, reversible, saturable and of high affinity. The order of potency for cholinergic and adrenergic agents competing for binding was compatible with muscarinic and beta 2 adrenergic potencies. We found that the concentration of muscarinic receptor binding sites was 37-fold greater in the tracheal muscle preparation (2805 +/- 309 fmol/mg protein) than in the peripheral lung preparation (76 +/- 28 fmol/mg protein). Unlike muscarinic receptors, the lung contained 8-fold higher concentration of the beta adrenergic receptors than did the tracheal muscle (1588 +/- 417 vs. 199 +/- 42 fmol/mg protein). The dissociation constant or the agonist's inhibitory constant (Ki) for either receptor binding site, however, was not significantly different between the two tissues. Furthermore, in vitro contraction studies showed that the response of tracheal muscle strips to methacholine was markedly greater than the response of peripheral lung strips, a finding consistent with the QNB binding result. The muscle but not the peripheral lung strip exhibited a relaxing response to epinephrine. Our data indicate a striking quantitative difference in muscarinic and beta adrenergic receptors between lung tissue and tracheal muscle, and that each receptor in the lung is qualitatively similar to the corresponding receptor in the muscle.  相似文献   

4.
Sex differences were investigated in cholinergic neurons of the septal-diagonal band region of adult rats subjected to neonatal treatment with 3,3',5-triiodo-L-thyronine (T3). Neonatal hyperthyroidism resulted in a 44% increase in specific activity of choline acetyltransferase (ChAT; EC 2.3.1.6) in adult male rat septal-diagonal band region, whereas no change in ChAT activity could be detected in either dorsal or ventral hippocampus. An increase in muscarinic cholinergic receptors, as measured by [3H]quinuclidinyl benzilate [( 3H]QNB) binding, was discovered in both septum-diagonal band and dorsal hippocampus of the T3-treated male rats. Immunohistochemistry in the septal-diagonal band region indicated a more intense staining in the neonatally T3-treated adult male rats than in controls, with larger and more abundant ChAT-positive and nerve growth factor receptor (NGF-R)-positive varicosities. ChAT immunocytochemistry showed a substantial decrease in cell body area in the medial septum and in the vertical limb of the diagonal band of T3-treated male rats, while cell density increased twofold. Female littermates subjected to the same treatment showed no changes in any of the biochemical or immunohistochemical cholinergic markers. Only in the medial septum was morphology significantly altered in the female T3-treated rats in that ChAT-positive cell body area increased. These results indicate a marked sexual variation in the septal-diagonal band region with respect to the sensitivity of postnatally developing cholinergic neurons to the actions of excess thyroid hormone.  相似文献   

5.
Hypoglycemic brain injury is a common and serious complication of insulin therapy associated with diabetes. This study evaluated the effect of insulin-induced hypoglycemia and STZ-induced diabetes on striatal cholinergic receptors and enzyme expression and on motor function. Cholinergic enzymes: AChE and ChAT gene expression, radioreceptor binding assay and immunohistochemistry of muscarinic M1, M3 receptors and α7nAChR were carried out. Motor performance on grid walk test was analysed. AChE and ChAT expression significantly downregulated in hypoglycemic and diabetic rats. Total muscarinic and Muscarinic M3 receptor binding decreased in hypoglycemic rats compared to diabetic rats whereas muscarinic M1 receptor binding increased in hypoglycemic rats compared to diabetic rats. Real-time PCR analysis and confocal imaging of muscarinic M1, M3 receptors confirmed the changes in muscarinic receptor binding in hypoglycemic and diabetic rats. In hypoglycemic rats, α7nAChR expression significantly up regulated compared to diabetic rats. Grid walk test demonstrated the impairment in motor function and coordination in hypoglycemic and hyperglycemic rats. Neurochemical changes along with the behavioral data implicate a role for impaired striatal cholinergic receptor function inducing motor function deficit induced by hypo and hyperglycemia. Hypoglycemia exacerbated the neurobehavioral deficit in diabetes which has clinical significance in the treatment of diabetes.  相似文献   

6.
Administration of methylazoxymethanol (MAM; 25 mg/kg) to pregnant rats at gestational day 15 (GD 15) induces a marked reduction of telencephalic areas of the offspring brain. Previous neurochemical studies demonstrated a marked cholinergic hyperinnervation in the cerebral cortex of microencephalic rats. In this study we have evaluated whether this cholinergic hyperinnervation could result in altered functionality of muscarinic receptors. Acetylcholinesterase activity (AChE) was increased by 69% in the cerebral cortex of MAM treated rats confirming a relative hyperinnervation, whereas in the hippocampus and striatum no significant changes were observed. Despite the marked hyperinnervation, in the cerebral cortex of microencephalic rats neither muscarinic receptor-stimulated phosphoinositide metabolism nor muscarinic, receptor density were altered. No differences in receptor density were also observed in the hippocampus and striatum. Chronic diisopropylfluorophosphate (DFP) administration induced a marked decrease of AChE activity and down-regulation of muscarinic receptors whereas atropine administration resulted in receptor up-regulation in cerebral cortex, striatum and hippocampus of both control and MAM rats. The results confirm a relative cholinergic hyperinnervation in the cerebral cortex of microencephalic rats and demonstrate that the regulation of muscarinic receptor-stimulated phosphoinositide metabolism and muscarinic receptor plasticity is not modified in a condition of increased cholinergic presynaptic terminals.  相似文献   

7.
In the human fetus, obtained postmortem at estimated gestational ages of 8-22 weeks, biochemical activities of cortical choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) were comparable to those of adult brain tissue. In contrast cholinergic receptor binding, including muscarinic M1 and M2 subtypes (measured by displacement of [3H]N-methylscopolamine with, respectively, pirenzepine and carbachol) and [3H]nicotine (putative nicotinic) binding were undetectable before 13-14 weeks and even at 22 weeks were substantially (three- to fourfold) below the respective adult values. Cortical ChAT activity decreased significantly with gestational age whereas binding to the three receptors, including the proportion M1/M2, increased significantly. AChE was present at all ages investigated as the two molecular monomeric (G1) and tetrameric (G4) forms. The proportion of G4, which was much more soluble in fetal compared with adult cortex, increased approximately threefold. Histochemically AChE, although intense in the nucleus of Meynert, was generally confined to subcortical white matter at early fetal developmental periods, appearing later in the cortex localized to nerve fibres and occasional cell bodies. These observations suggest that during the second trimester of human fetal development, cortical cholinergic function may be preceded by relatively high ChAT activity and paralleled not only by increasing receptor binding but also by a proportional increase in the tetrameric form and histochemical reactivity of AChE.  相似文献   

8.
Antennal sensory neurons of Manduca sexta emerge from epidermal cells that also give rise to sheath cells surrounding the peripheral parts of the neurons and to glial cells that enwrap the sensory axons in the antennal nerve. Reciprocal interactions between sensory neurons and glial cells are believed to aid in axon growth and guidance, but the exact nature of these interactions is not known. We investigated the possibility of cholinergic interactions in this process by locating muscarinic acetylcholine receptors (mAChRs) and choline acetyltransferase (ChAT) enzyme in cultured antennal sensory neurons and non‐neural cells. ChAT and mAChRs were present in the sensory neurons from the first day in culture. Therefore, the sensory neurons are probably cholinergic, as previously suggested, but they may also be controlled by ACh. In 7‐day‐old cultures a subgroup of small non‐neural cells with processes expressed ChAT activity, and in 14‐day‐old cultures non‐neural cells that formed lamellipodia and scaffoldlike structures on the culture substrate were labeled with ChAT antibody. mAChR activity was detected in similar non‐neural cells but only in areas surrounding the nuclei. In addition, mAChRs were found in flat lamellipodia and filopodia forming cells that were present in 1‐day‐old cultures and grew in size during the 2 week investigation period. These findings suggest muscarinic cholinergic interactions between the neural and non‐neural cells during the development of Manduca antenna. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

9.
The distribution of muscarinic cholinergic receptors, choline acetyl-transferase and acetylcholinesterase activities were measured in subcellular fractions of the rat striatum on the 5th and 15th days postnatally and in adulthood. The receptor density in the striatum of 5 and 15-day-old rats was 15%, respectively, of the adult value. Similar increases of the receptors could be detected in the synaptosomal and microsomal fractions in the postnatal life of rat. The activity of choline acetyltransferase on the same days was 15% and 28%. In the subcellular fractions, the enzyme activity was the highest in the microsomal fraction on both the 5th and 15th days postnatally. The activity of acetylcholinesterase in the homogenate was 6% of the adult value in the 5-day-old rat striatum, while in the synaptosomal fraction it was 11% and 47% of the adult value on the 5th and 15th days, respectively. Our results show that the development of the muscarinic cholinergic receptors precedes that of the two cholinergic enzymes in both 5 and 15-day-old rat striatum. This may suggest an early perikaryonal synthesis and the fast translocation of receptors to the axon terminals during ontogenetic development.  相似文献   

10.
Myslivecek J  Trojan S 《Life sciences》2003,73(25):3289-3296
Our previous work indicated that hyperstimulation of muscarinic receptors brought about profound changes not only in the density of the muscarinic receptors, but also of the beta-adrenoceptors both in vivo and in vitro. Now we try to identify the changes in receptor densities when the neuronal input from the autonomic nerves is disrupted, i.e. when neonatal rats were injected with 6-hydroxydopamine (6-OHDA; able to destroy sympathetic nerves). Although the interruption of neuronal input was successful as indicated by norepinephrine uptake, there was no change in receptor densities in the rat heart atria when 6-OHDA was applied in the first postnatal week only. When we repeated the 6-OHDA treatment consequently (on 14th, 21st and 28th postnatal day) there were clear increases of both receptor types (muscarinic receptors rise to 139% of control, beta-adrenoceptors to 134% of control). The atrial muscarinic receptor number was increased (to 146% of control) also when we combined the first week 6-OHDA application with another factor (when the pups abide with mother till the 56th day). The simple non-weaning of animals has no effect on the receptor densities. We can therefore conclude that the first week application of 6-OHDA was insufficient in changing the receptor number and that only repeated 6-OHDA administration was able to change them. Similarly, combination with other factor: non-weaning led to the muscarinic receptors increase. Our results can indicate the importance of the prolonged postnatal period for the heart muscarinic and beta-adrenergic receptor number determination.  相似文献   

11.
Prenatal exposure to nicotine has been shown to produce postnatal up-regulation of central nervous system nicotinic receptors and to alter subsequent differentiation of neural tissues. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants; the postnatal development of cholinergic receptor reactivity was examined through measurements of the ability of acute nicotine administration to stimulate midbrain + brainstem ornithine decarboxylase (ODC) activity, a key regulatory enzyme in neural cell differentiation and growth. In control rats, the ODC response to nicotine was absent at birth and developed during the second postnatal week in parallel with the known ontogenetic rise of nicotinic receptors. Offspring of the nicotine-infused dams exhibited hyper-reactivity of ODC to postnatal acute nicotine challenge: the response developed earlier than in controls and subsequently the magnitude of the effect was 2-3 times greater. Since the development of cholinergic transmission influences differentiation of target cells, alterations in cholinergic nicotinic receptor mediated responses likely explain the delayed appearance of abnormal cell differentiation associated with prenatal nicotine.  相似文献   

12.
In cultured rat striatal neurons exposed to 10 microM morphine or oxotremorine for 24 hours, we observed an increased (about 30%) dopamine D1 receptor-stimulated cyclic AMP production, whereas no desensitization of mu-opioid receptor or muscarinic cholinergic receptor was found. However, whereas upregulation of dopamine D1 receptor-stimulated adenylate cyclase activity upon 7 days morphine exposure was at least as pronounced as observed after 24 hours of exposure to the opioid, this adaptive phenomenon was virtually absent following one week of oxotremorine treatment. This reduced adenylate cyclase sensitization upon 7 days oxotremorine exposure appeared to coincide with desensitization of muscarinic cholinergic receptors. A possible role of the resistance of mu receptors to desensitization and the (resulting) upregulation of the neuronal adenylate cyclase system upon chronic receptor activation in the development of opiate tolerance and dependence is suggested.  相似文献   

13.
Postnatal changes in the resting heart rate and in its parasympathetic tonic inhibition have been measured in awake rats and compared with changes in the activity of choline acetyltransferase (ChAT) in the heart atria. The heart rate at rest increased from 372.min-1 on the 1st to 456 and 442.min-1 on the 15th and 24th day of life and then again decreased to 358 and 356.min-1 in 60-day-old and adult rats. Until the 15th day of postnatal life, the administration of atropine did not bring about an increase in the heart rate; the cardio-acceleratory effect of atropine (indicating the presence of tonic vagal inhibition of the heart) appeared only on the 18th day and increased steeply up to the 40th day of postnatal life. The activity of ChAT in the heart atria was measured as the difference between the synthesis of acetylcholine in atrial homogenates incubated in the absence and in the presence of bromoacetylcholine (BrACh), a specific inhibitor of ChAT; this procedure eliminated the contribution of carnitine acetyltransferase to the synthesis of acetylcholine. The activity of ChAT was found to increase steeply from the 1st to the 25th days of postnatal life; the steepest increase in the activity of the enzyme occurred between the 4th and the 15th days. Temporal correlation between the changes in the activity of ChAT, in the content of acetylcholine in the heart atria (Kuntscherová and Vlk 1979) and in the efficiency of transmural stimulation of sinoatrial region on the heart rate (Vlk 1979) indicate that the functional maturation of intracardiac cholinergic neurones, proceeding in rats during the first three weeks of their postnatal life, plays an important role in the onset and temporal development of the tonic parasympathetic inhibition of the heart rate.  相似文献   

14.
In the present study we have examined the developmental changes in the concentration of receptors for calcitriol in high-salt cytosol from the rat testis. Receptors for calcitriol were undetectable (less than 0.4 fmol/mg protein) until day 24, after which there was a rapid increase to reach adult levels (6-8 fmol/mg protein) between day 50-60. The lack of receptors in high-salt cytosol from the immature rat testis is not due to degrading enzymes, since cytosols prepared from the combination of equal volumes of testis homogenates from immature and adult rats had binding levels exactly half of that found in "adult controls". Furthermore, the increase in specific binding of [3H]calcitriol during development is due to an increase in the number of receptor sites, and is not due to a change in the apparent affinity of the receptors (Kd approximately equal to 1 X 10(-11) M at 0 degrees C). These results may explain why we previously were unable to demonstrate calcitriol receptors in cultured Sertoli cells and peritubular cells isolated from 19-day old rats. Furthermore, they indicate that calcitriol may be of minor importance for testicular function in the immature rat. The role of calcitriol in the pubertal and adult testis remains to be established.  相似文献   

15.
Twenty-two frontal cortices from normal human foetal brains of gestational ages ranging from 16 to 40 weeks and five postnatal brains ranging from 5 to 50 years were analysed for the ontogeny of muscarinic receptors using [3H]quinuclidinyl benzilate (QNB) as the ligand. QNB binding sites were shown to be stable up to 4 1/2 months of storage at -70 degrees C. QNB binding was characterized in frontal cortices of 28-week-old foetal brains as muscarinic receptors by the following criteria: (1) it was localised mainly in particulate fraction; (2) binding was saturable at a concentration of 1.5 nM; (3) the cholinergic antagonists atropine and scopolamine competed for the binding, with IC50 values of 1 and 0.8 nM, respectively. The agonists oxotremorine, carbachol, and pilocarpine gave IC50 values of 1, 15 and 18 microM, respectively. Nicotinic receptor ligands and noncholinergic drugs could not compete for the binding. Bimolecular association and dissociation rate constants for the reversible binding are 6.23 X 10(8) M-1 X min-1 and 2.0 X 10(-2) X min-1, respectively. The equilibrium dissociation constant is 33 pM. The KD obtained by saturation binding data is 103 pM. Ontogeny of muscarinic receptors showed three distinct phases: In phase I, they appear between 16 and 18 weeks [average concentration 109 fmol/mg protein of total particulate fraction (TPF)] and slowly increase up to 20 weeks (average concentration 147 fmol/mg protein TPF). Phase II is a lag period between 20 and 24 weeks at which time receptor concentration does not change perceptibly (average concentration (67 fmol/mg protein TPF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Abstract: It is well documented that nerve growth factor (NGF) plays an important role in maintaining functions of cholinergic basal forebrain neurons. In the present study, we tested the hypothesis that cholinergic activity controls NGF levels in cholinoceptive neurons of the cerebral cortex and hippocampus. To address that question, we used both cholinergic deafferentation of cerebral cortex and hippocampus by cholinergic immunolesion with 192IgG-saporin and chronic pharmacological treatment of sham-treated and immunolesioned rats with the cholinergic agonist pilocarpine and the cholinergic antagonist scopolamine. We observed an increase in NGF protein levels in the cortex and hippocampus after cholinergic immunolesions and also after muscarinic receptor blockade by chronic intracerebroventricular scopolamine infusion in sham-treated rats after 2 weeks. There was no further increase in the accumulation of NGF after scopolamine treatment of immunolesioned rats. Chronic infusion of pilocarpine had no effect on cortical and hippocampal NGF protein levels in sham-treated rats. In rats with cholinergic immunolesions, however, pilocarpine did prevent the lesion-induced accumulation of NGF. There was no effect of cholinergic lesion and drug treatment on cortical or hippocampal NGF mRNA levels, consistent with the importance of NGF retrograde transport as opposed to its de novo synthesis. This study provides strong evidence for the hypothesis that there is cholinergic control of cortical and hippocampal NGF protein but not mRNA levels in adult rats.  相似文献   

17.
Abstract: The present study compares the effects of chronic administration of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) on various hippocampal cholinergic parameters in rats with partial unilateral fimbrial transections. Lesions resulted in marked reductions of several presynaptic cholinergic parameters: choline acetyltransferase (ChAT) activity (by 50%), [3H]-acetylcholine ([3H]ACh) synthesis (by 59%), basal and ve-ratridine (1 μM)-evoked [3H]ACh release (by 44 and 57%, respectively), and [3H]vesamicol binding site densities (by 35%). In addition, [3H]AF-DX 116/muscarinic M2 binding site densities were also modestly decreased (by 23%). In contrast, [3H]pirenzepine/muscarinic M1 and [3H]AF-DX 384/muscarinic M2/M4 binding site densities were not altered by the lesions, nor were they affected by any of the treatments. Intracerebroventricular administration of bFGF (10 ng, every other day, for 21 days) partially prevented the lesion-induced deficit in hippocampal ChAT activity, an effect that was not markedly different from that measured in the NGF-treated (1 μg intracerebroventricularly, every other day, for 21 days) rats. In rats treated with a combination of bFGF and NGF, ChAT activity was not different from that in rats treated with the individual factors alone. In contrast, the lesion-induced deficits in the other cholinergic parameters were not attenuated by bFGF treatment, although they were at least partially prevented by NGF administration. To determine whether higher concentrations of bFGF are necessary to affect cholinergic parameters other than hippocampal ChAT activity, rats were treated with 1 μg (every other day, 21 days) of the growth factor. In this group of rats, detrimental effects of bFGF, manifested by an increased death rate (46%), and marked reductions in body weight of the survivors, were observed. In addition, this concentration of bFGF appeared to exacerbate the lesion-induced reduction in [3H]ACh synthesis by hippocampal slices; [3H]ACh synthesis in lesioned hippocampi represented 36 and 52% of that in contralateral unlesioned hippocampi for the bFGF-treated and control groups, respectively. In conclusion, although bFGF administration attenuates the deficit in hippocampal ChAT activity induced by partial fimbrial transections, this does not appear to translate into enhanced functional capacity of the cholinergic terminals. This is clearly in contrast to NGF, which enhances not only hippocampal ChAT activity, but also other parameters indicative of increased function in the cholinergic terminals.  相似文献   

18.
Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, 3H-acetylcholine (ACh), as the ligand. Specific binding of 3H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (KD) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of 3H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC50 values of cholinergic drugs for 3H-ACh binding were as follows: atropine, 38.5 nM; ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC50 values of nicotinic cholinergic agents such as nicotine, cytisine and alpha-bungarotoxin exceeded 50 microM. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic receptors in these arteries.  相似文献   

19.
The role of nerve growth factor (NGF) and its receptor (NGFR) in the regulation of cholinergic activity has been studied during the aging process. NGFRs were quantified in cortical membranes using a radioactive binding assay. NGF levels and choline acetyltransferase (ChAT) activity were determined in cortex, hippocampus, neostriatum, and septum. These assays were performed in both adult (6-month-old) and aged (36-month-old) rats. High- and low-affinity 125I-NGF binding sites were present in cortex of adult and aged rats. Furthermore, we observed a decrease in number and affinity of both NGFRs in aged rats. ChAT activity in these rats was lower (approximately 30%) than in adult rats in all the brain regions examined. NGF levels were not modified in cortex and hippocampus and were decreased in neostriatum (55%) and septum (35%). In conclusion, our results suggest that, during the aging process, the cholinergic impairment is related to a decrease in NGF levels in neostriatum but not in cortex and hippocampus. The reduction in level of NGF protein in septum could be due to a decrease in number of high-affinity 125I-NGF binding sites.  相似文献   

20.
Dopamine or agonists with D1 receptor potency stimulated cyclic AMP (cAMP) accumulation in whole cell preparations of NS20Y neuroblastoma cells. The accumulation of cAMP after D1 stimulation was rapid and linear for 3 min. Both dopamine and the novel D1 receptor agonist dihydrexidine stimulated cAMP accumulation two- to three-fold over baseline. The pseudo-Km for dopamine was approximately 2 microM, whereas for dihydrexidine it was approximately 30 nM. The effects of both drugs were blocked by either the D1-selective antagonist SCH23390 (Ki, 0.3 nM) or the nonselective antagonist (+)-butaclamol (Ki, 5 nM). Both (-)-butaclamol and the D2-selective antagonist (-)-sulpiride were ineffective (Ki greater than 3 microM). Forskolin (10 microM), prostaglandin E1 (1 microM), and adenosine (10 microM) also stimulated cAMP accumulation, but none were antagonized by SCH23390 (1 microM). Finally, muscarinic receptor stimulation (100 microM carbachol) inhibited both D1- and forskolin-stimulated increases in cAMP accumulation by 80%. The present results indicate that NS20Y neuroblastoma cells have D1 receptors that are coupled to adenylate cyclase, and that these receptors have a pharmacological profile similar to that of the D1 receptor(s) found in rat striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号