首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two multi-dimensional heteronuclear NMR experiments are described for assigning the resonances in uniformly 15N- and 13C-labeled proteins. In one experiment (HCNH-TOCSY), the amide nitrogen and proton are correlated to the side-chain protons and carbons of the same and preceding residue. In a second triple resonance experiment (HC(CO)NH-TOCSY), the amide nitrogen and proton of one residue is correlated exclusively with the side-chain proton and carbon resonances of the preceding residue by transferring magnetization through the intervening carbonyl. The utility of these two experiments for making sequential resonance assignments in proteins is illustrated for [U-15N,13C]FKBP (107 residues) complexed to the immunosuppressant, ascomycin.  相似文献   

2.
Summary We have developed a useful strategy for identifying amino acid spin systems and side-chain carbon resonance assignments in small 15N-, 13C-enriched proteins. Multidimensional constant-time pulsed field gradient (PFG) HCC(CO)NH-TOCSY experiments provide side-chain resonance frequency information and establish connectivities between sequential amino acid spin systems. In PFG HCC(CO)NH-TOCSY experiments recorded with a properly tuned constant-time period for frequency labeling of aliphatic 13C resonances, phases of cross peaks provide information that is useful for identifying spin system types. When combined with 13C chemical shift information, these patterns allow identification of the following spin system types: Gly, Ala, Thr, Val, Leu, Ile, Lys, Arg, Pro, long-type (i.e., Gln, Glu and Met), Ser, and AMX-type (i.e., Asp, Asn, Cys, His, Phe, Trp and Tyr).  相似文献   

3.
In determining the structure of large proteins by NMR, it would be desirable to obtain complete backbone, side-chain, and NOE assignments efficiently, with a minimum number of experiments and samples. Although new strategies have made backbone assignment highly efficient, side-chain assignment has remained more difficult. Faced with the task of assigning side-chains in a protein with poor relaxation properties, the Tetrahymena histone acetyltransferase tGCN5, we have developed an assignment strategy that would provide complete side-chain assignments in cases where fast 13C transverse relaxation causes HCCH-TOCSY experiments to fail. Using the strategy presented here, the majority of aliphatic side-chain proton and carbon resonances can be efficiently obtained using optimized H(CC-CO)NH-TOCSY and (H)C(C-CO)NH-TOCSY experiments on a partially deuterated protein sample. Assignments can be completed readily using additional information from a 13 C-dispersed NOESY-HSQC spectrum. Combination of these experiments with H(CC)NH-TOCSY and (H)C(C)NH-TOCSY may provide complete backbone and side-chain assignments for large proteins using only one or two samples.  相似文献   

4.
Summary We have developed an automated approach for determining the sequential order of amino acid spin systems in small proteins. A key step in this procedure is the analysis of multidimensional HCC(CO)NH-TOCSY spectra that provide connections from the aliphatic resonances of residue i to the amide resonances of residue i+1. These data, combined with information about the amino acid spin systems, provide sufficient constraints to assign most proton and nitrogen resonances of small proteins. Constraint propagation methods progressively narrow the set of possible assignments of amino acid spin systems to sequence-specific positions in the process of NMR data analysis. The constraint satisfaction paradigm provides a framework in which the necessary constraint-based reasoning can be expressed, while an object-oriented representation structures and facilitates the extensive list processing and indexing involved in matching. A prototype expert system, AUTOASSIGN, provides correct and nearly complete resonance assignments with one real and 31 simulated 3D NMR data sets for a 72-amino acid domain, derived from the Protein A of Staphylococcus aureus, and with 31 simulated NMR data sets for the 50-amino acid human type- transforming growth factor.  相似文献   

5.
Nearly complete assignment of the aliphatic 1H and 13C resonances of the IIAglc domain of Bacillus subtilis has been achieved using a combination of double- and triple-resonance three-dimensional (3D) NMR experiments. A constant-time 3D triple-resonance HCA(CO)N experiment, which correlates the 1H alpha and 13C alpha chemical shifts of one residue with the amide 15N chemical shift of the following residue, was used to obtain sequence-specific assignments of the 13C alpha resonances. The 1H alpha and amide 15N chemical shifts had been sequentially assigned previously using principally 3D 1H-15N NOESY-HMQC and TOCSY-HMQC experiments [Fairbrother, W. J., Cavanagh, J., Dyson, H. J., Palmer, A. G., III, Sutrina, S. L., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1991) Biochemistry 30, 6896-6907]. The side-chain spin systems were identified using 3D HCCH-COSY and HCCH-TOCSY spectra and were assigned sequentially on the basis of their 1H alpha and 13C alpha chemical shifts. The 3D HCCH and HCA(CO)N experiments rely on large heteronuclear one-bond J couplings for coherence transfers and therefore offer a considerable advantage over conventional 1H-1H correlation experiments that rely on 1H-1H 3J couplings, which, for proteins the size of IIAglc (17.4 kDa), may be significantly smaller than the 1H line widths. The assignments reported herein are essential for the determination of the high-resolution solution structure of the IIAglc domain of B. subtilis using 3D and 4D heteronuclear edited NOESY experiments; these assignments have been used to analyze 3D 1H-15N NOESY-HMQC and 1H-13C NOESY-HSQC spectra and calculate a low-resolution structure [Fairbrother, W. J., Gippert, G. P., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1992) FEBS Lett. 296, 148-152].  相似文献   

6.
Summary Modern multidimensional double- and triple-resonance NMR methods have been applied to assign the backbone and side-chain 13C resonances for both equilibrium conformers of the paramagnetic form of rat liver microsomal cytochrome b 5. The assignment of backbone 13C resonances was used to confirm previous 1H and 15N resonance assignments [Guiles, R.D. et al. (1993) Biochemistry, 32, 8329–8340]. On the basis of short- and medium-range NOEs and backbone 13C chemical shifts, the solution secondary structure of rat cytochrome b 5 has been determined. The striking similarity of backbone 13C resonances for both equilibrium forms strongly suggests that the secondary structures of the two isomers are virtually identical. It has been found that the 13C chemical shifts of both backbone and side-chain atoms are relatively insensitive to paramagnetic effects. The reliability of such methods in anisotropic paramagnetic systems, where large pseudocontact shifts can be observed, is evaluated through calculations of the magnitude of such shifts.Abbreviations DANTE delays alternating with nutation for tailored excitation - DEAE diethylaminoethyl - DQF-COSY 2D double-quantum-filtered correlation spectroscopy - EDTA ethylenediaminetetraacetic acid - HCCH-TOCSY 3D proton-correlated carbon TOCSY experiment - HMQC 2D heteronuclear multiple-quantum correlation spectroscopy - HNCA 3D triple-resonance experiment correlating amide protons, amide nitrogens and alpha carbons - HNCO 3D triple-resonance experiment correlating amide protons, amide nitrogens and carbonyl carbons - HNCOCA 3D triple-resonance experiment correlating amide protons, amide nitrogens and alpha carbons via carbonyl carbons - HOHAHA 2D homonuclear Hartmann-Hahn spectroscopy - HOHAHA-HMQC 3D HOHAHA relayed HMQC - HSQC 2D heteronuclear single-quantum correlation spectroscopy - IPTG isopropyl thiogalactoside - NOESY 2D nuclear Overhauser enhancement spectroscopy - NOESY-HSQC 3D NOESY relayed HSQC - TOCSY 2D total correlation spectroscopy - TPPI time-proportional phase incrementation - TSP trimethyl silyl propionate  相似文献   

7.
The comprehensive structure determination of isotopically labeled proteins by solid-state NMR requires sequence-specific assignment of 13C and 15 N spectra. We describe several 2D and 3D MAS correlation techniques for resonance assignment and apply them, at 7.0 Tesla, to 13C and 15N labeled ubiquitin to examine the extent of resonance assignments in the solid state. Both interresidue and intraresidue assignments of the 13C and 15N resonances are addressed. The interresidue assignment was carried out by an N(CO)CA technique, which yields Ni-Ci–1 connectivities in protein backbones via two steps of dipolar-mediated coherence transfer. The intraresidue connectivities were obtained from a new 3D NCACB technique, which utilizes the well resolved C chemical shift to distinguish the different amino acids. Additional amino acid type assignment was provided by a 13C spin diffusion experiment, which exhibits 13C spin pairs as off-diagonal intensities in the 2D spectrum. To better resolve carbons with similar chemical shifts, we also performed a dipolar-mediated INADEQUATE experiment. By cross-referencing these spectra and exploiting the selective and extensive 13 C labeling approach, we assigned 25% of the amino acids in ubiquitin sequence-specifically and 47% of the residues to the amino acid types. The sensitivity and resolution of these experiments are evaluated, especially in the context of the selective and extensive 13C labeling approach.  相似文献   

8.
Summary We recently proposed a novel four-dimensional (4D) NMR strategy for the assignment of backbone nuclei in spectra of 13C/15N-labelled proteins (Boucher et al. (1992) J. Am. Chem. Soc., 114, 2262–2264 and J. Biomol. NMR, 2, 631–637). In this paper we extend this approach with a new constant time 4D HCC(CO)NNH experiment that also correlates the chemical shifts of the aliphatic sidechain (1H and 13C) and backbone (1H, 13C and 15N) nuclei. It separates the sidechain resonances, which may heavily overlap in spectra of proteins with large numbers of similar residues, according to the backbone nitrogen and amide proton chemical shifts. When used in conjunction with a 4D HCANNH or HNCAHA experiment it allows, in principle, complete assignment of aliphatic sidechain and backbone resonances with just two 4D NMR experiments.  相似文献   

9.
A multiple-quantum 3D HCN-CCH-TOCSY experiment is presented for the assignment of RNA ribose resonances. The experiment makes use of the chemical shift dispersion of N1 of pyrimidine and N9 of purine to distinguish the ribose spin systems. It provides an alternative approach for the assignment of ribose resonances to the currently used COSY- and TOCSY-type experiments in which either 13C or 1H is utilized to distinguish the different spin systems. Compared to the single-quantum version, the sensitivity of the multiple-quantum HCN-CCH-TOCSY experiment is enhanced on average by a factor of 2 for a 23-mer RNA aptamer complexed with neomycin.  相似文献   

10.
Summary Two new 3D 1H-15N-13C triple-resonance experiments are presented which provide sequential cross peaks between the amide proton of one residue and the amide nitrogen of the preceding and succeeding residues or the amide proton of one residue and the amide proton of the preceding and succeeding residues, respectively. These experiments, which we term 3D-HN(CA)NNH and 3D-H(NCA)NNH, utilize an optimized magnetization transfer via the 2JNC coupling to establish the sequential assignment of backbone NH and 15N resonances. In contrast to NH-NH connectivities observable in homonuclear NOESY spectra, the assignments from the 3D-H(NCA)NNH experiment are conformation independent to a first-order approximation. Thus the assignments obtained from these experiments can be used as either confirmation of assignments obtained from a conventional homonuclear approach or as an initial step in the analysis of backbone resonances according to Ikura et al. (1990) [Biochemistry, 29, 4659–4667]. Both techniques were applied to uniformly 15N- and 13C-labelled ribonuclease T1.  相似文献   

11.
Experiments detecting low gyromagnetic nuclei have recently been proposed to utilize the relatively slow relaxation properties of these nuclei in comparison to 1H. Here we present a new type of 15N direct-detection experiment. Like the previously proposed CaN experiment (Takeuchi et al. in J Biomol NMR 47:271–282, 2010), the hCaN experiment described here sequentially connects amide 15N resonances, but utilizes the initial high polarization and the faster recovery of the 1H nucleus to shorten the recycling delay. This allows recording 2D 15N-detected NMR experiments on proteins within a few hours, while still obtaining superior resolution for 13C and 15N, establishing sequential assignments through prolines, and at conditions where amide protons exchange rapidly. The experiments are demonstrated on various biomolecules, including the small globular protein GB1, the 22 kDa HEAT2 domain of eIF4G, and an unstructured polypeptide fragment of NFAT1, which contains many SerPro sequence repeats.  相似文献   

12.
We report here the near complete assignments of native bovine PI3-SH3 domain, which has been a model system for protein folding, misfolding and amyloid fibril formation. The use of 13C-detected protonless NMR spectroscopy is instrumental in assigning the spin system of the proline residue at the C-terminus in addition to the missing resonances in proton-based NMR spectra due to rapid solvent exchange. It also helps assign the resonances of all three proline amine nitrogen nuclei, which are underrepresented in the database. Comparison of the backbone 13C resonances of PI3-SH3 in its native and amyloid fibril states shows that the aggregation of PI3-SH3 is accompanied by major conformational rearrangements.  相似文献   

13.
When used in concert, one-bond carbon-carbon correlations, one-bond and multiple-bond proton-carbon correlations, and multiple-bond proton-nitrogen correlations, derived from two-dimensional (2D) NMR spectra of isotopically enriched proteins, provide a reliable method of assigning proton, carbon, and nitrogen resonances. In contrast to procedures that simply extend proton assignments to carbon or nitrogen resonances, this technique assigns proton, carbon, and nitrogen resonances coordinately on the basis of their integrated coupling networks. Redundant spin coupling pathways provide ways of resolving overlaps frequently encountered in homonuclear 1H 2D NMR spectra and facilitate the elucidation of complex proton spin systems. Carbon-carbon and proton-carbon couplings can be used to bridge the aromatic and aliphatic parts of proton spin systems; this avoids possible ambiguities that may result from the use of nuclear Overhauser effects to assign aromatic amino acid signals. The technique is illustrated for Anabaena 7120 flavodoxin and cytochrome c-553, both uniformly enriched with carbon-13 (26%) or nitrogen-15 (98%).  相似文献   

14.
The introduction of deuterated and partially deuterated protein samples has greatly facilitated the 13C assignment of larger proteins. Here we present a new version of the HC(CO)NH-TOCSY experiment, the ed-H(CCO)NH-TOCSY experiment for partially deuterated samples, introducing a multi-quantum proton evolution period. This approach removes the main relaxation source (the dipolar coupling to the directly bound 13C spin) and leads to a significant reduction of the proton and carbon relaxation rates. Thus, the indirect proton dimension can be acquired with high resolution, combined with a phase labeling of the proton resonances according to the C-C spin system topology. This editing scheme, independent of the CHn multiplicity, allows to distinguish between proton side-chain positions occurring within a narrow chemical shift range. Therefore this new experiment facilitates the assignment of the proton chemical shifts of partially deuterated samples even of high molecular weights, as demonstrated on a 31 kDa protein.  相似文献   

15.
Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1H-15N dipolar couplings (DC) and 15N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles’ heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([1H,15N]-SE-PISEMA-PDSD). The incorporation of 2D 15N/15N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the 15N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers.  相似文献   

16.
Determination of the high resolution solution structure of a protein using nuclear magnetic resonance (NMR) spectroscopy requires that resonances observed in the NMR spectra be unequivocally assigned to individual nuclei of the protein. With the advent of modern, two-dimensional NMR techniques arose methodologies for assigning the1H resonances based on 2D, homonuclear1H NMR experiments. These include the sequential assignment strategy and the main chain directed strategy. These basic strategies have been extended to include newer 3D homonuclear experiments and 2D and 3D heteronuclear resolved and edited methods. Most recently a novel, conceptually new approach to the problem has been introduced that relies on heteronuclear, multidimensional so-called triple resonance experiments for both backbone and sidechain resonance assignments in proteins. This article reviews the evolution of strategies for the assignment of resonances of proteins.  相似文献   

17.
18.
We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.  相似文献   

19.
Summary Sequence-specific 1H, 13C and 15N resonance assignments have been established for rat intestinal fatty acid-binding protein complexed with palmitate (15.4 kDa) at pH 7.2 and 37°C. The resonance assignment strategy involved the concerted use of seven 3D triple-resonance expriments (CC-TOCSY, HCCH-TOCSY, HNCO, HNCA, 15N-TOCSY-HMQC, HCACO and HCA(CO)N). A central feature of this strategy was the concurrent assignment of both backbone and side-chain aliphatic atoms, which was critical for overcoming ambiguities in the assignment process. The CC-TOCSY experiment provided the unambiguous links between the side-chain spin systems observed in HCCH-TOCSY and the backbone correlations observed in the other experiments. Assignments were established for 124 of the 131 residues, although 6 of the 124 had missing amide 1H resonances, presumably due to rapid exchange with solvent under these experimental conditions. The assignment database was used to determine the solution secondary structure of the complex, based on chemical shift indices for the 1H, 13C, 13C and 13CO atoms. Overall, the secondary structure agreed well with that determined by X-ray crystallography [Sacchettini et al. (1989) J. Mol. Biol., 208, 327–339], although minor differences were observed at the edges of secondary structure elements.  相似文献   

20.
Summary The 1H, 13C and 15N NMR resonances of serine protease PB92 have been assigned using 3D tripleresonance NMR techniques. With a molecular weight of 27 kDa (269 residues) this protein is one of the largest monomeric proteins assigned so far. The side-chain assignments were based mainly on 3D H(C)CH and 3D (H)CCH COSY and TOCSY experiments. The set of assignments encompasses all backbone carbonyl and CHn carbons, all amide (NH and NH2) nitrogens and 99.2% of the amide and CHn protons. The secondary structure and general topology appear to be identical to those found in the crystal structure of serine protease PB92 [Van der Laan et al. (1992) Protein Eng., 5, 405–411], as judged by chemical shift deviations from random coil values, NH exchange data and analysis of NOEs between backbone NH groups.Abbreviations 2D/3D/4D two-/three-/four-dimensional - HSQC heteronuclear single-quantum coherence - HMQC heteronuclear multiple-quantum coherence - COSY correlation spectroscopy - TOCSY total correlation spectroscopy - NOE nuclear Overhauser enhancement (connectivity) - NOESY 2D NOE spectroscopy Experiment nomenclature (H(C)CH, etc.) follows the conventions used elsewhere [e.g. Ikura et al. (1990) Biochemistry, 29, 4659–4667].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号