首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Field experiments were conducted in steel bins containing 13,600 kg of hard red winter wheat, Triiticum aestivum L. One bin was treated with ozone and the second bin served as a control. Stored grain insects were placed in bins for 1-, 2-, 3-, and 4-d exposure periods in sampling tubes to test ozone concentrations of 0, 25, 50, and 70 parts per million by volume (ppmv). Ozone treatments on eggs and larvae of Plodia interpunctella (Hübner) were not effective, but pupae were more susceptible. Sitophilus oryzae (L.) adults were the most susceptible species with 100% mortality reached after 2 d in all ozone treatments. However, some progeny were produced at all concentrations and exposure periods. Tribolium castaneum (Herbst) adults had 100% mortality only after 4 d at 50 or 70 ppmv. No T. castaneum progeny were produced after 2-4 d at 70 ppmv. For Rhyzopertha dominica (F.), Cryptolestes ferrugineus (Stephens), and Oryzaephilus surinamensis (L.), 100% mortality was never achieved and progeny were produced at all ozone concentrations. Laboratory experiments, testing the effectiveness of ozone in controlling psocids, were conducted in two polyvinyl chloride cylinders each containing 55 kg of hard red winter wheat. Ozone treatment at a concentration of 70 ppmv was highly effective against adult female Liposcelis bostrychophila Badonnel and Liposcelis paeta Pearman after only 1 d of exposure. However, it was not effective against eggs of both species at all exposure periods. Ozonation has potential for the control of some stored grain insect pests on wheat.  相似文献   

2.
Effectiveness of spinosad against seven major stored-grain insects on corn   总被引:1,自引:0,他引:1  
In January 2005, the United States Environmental Protection Agency registered spinosad as a stored grain protectant. No referenced data on the efficacy of spinosad on corn in suppressing major stored-grain insects have been published. In this paper, we evaluated the efficacy of spinosad against seven major stored-grain insects on shelled corn in the laboratory. Insect species tested were the red flour beetle, Tribolium castaneum (Jacquelin duVal); rusty grain beetle, Cryptolestesferrugineus (Stephens); lesser grain borer, Rhyzopertha dominica (F.); sawtoothed grain beetle, Oryzaephilus surinamensis (L.); rice weevil, Sitophilus oryzae (L.); maize weevil, Sitophilus zeamais (Motschulsky); and Indian meal moth, Plodia interpunctella (Htibner). Corn kernels were treated with spinosad at 0, 0. 1, 0.5, 1, and 2 active ingredient (a.i.) mg/kg for controlling the seven species. Beetle adults or P. interpunctella eggs were introduced into each container holding 100 g of untreated or insecticide-treated corn. The seven insect species survived well on the control treatment, produced 28 to 336 progeny, and caused significant kernel damage after 49 days. On spinosad-treated corn, adult mortality of C. ferrugineus, R. dominica, 0. surinamensis, S. oryzae, and S. zeamais was 〉 98% at 1 and 2 mg/kg after 12 days. Spinosad at≥ 0.5 mg/kg completely suppressed egg-to-larval survival after 21 days and egg-to-adult emergence of P. interpunctella after 49 days, whereas 16% T. castaneum adults survived at 1 mg/kg after 12 days. Spinosad at 1 or 2 mg/kg provided complete or near complete suppression of progeny production and kernel damage of all species after 49 days. Our results indicate that spinosad at the current labeled rate of 1 mg/kg is effective against the seven stored-grain insect pests on corn.  相似文献   

3.
Psocids (Psocoptera: Liposcelididae: Liposcelis spp.) are major pests of stored grain and commonly occur on a wide range of stored products. Increasingly, the genus of Liposcelis has gained recognition of their importance due to their feeding on stored grains, contaminating food, and agricultural commodities as well as transmitting harmful microorganisms, including fungi and bacteria. Psocids have close morphological similarities and often commix occur at the same ecosystems. Therefore, a first step necessary to further implement population studies is the accurate identification of species, based on molecular methods. In this study, we determined nucleotide sequences of the nuclear rDNA internal transcribed spacer (ITS)1-5.8S-ITS2 region in 100 individuals of six Liposcelis species (including Liposcelis bostrychophila Badonnel, Liposcelis entomophila (Enderlein), Liposcelis decolor (Pearman), Liposcelis tricolor Badonnel, Liposcelis paeta Pearman, and Liposcelis yunnaniensis Li & Li) from 16 locations of China. We evaluated the suitability of this marker for phylogenetic inference study in the Liposcelis species. We also developed a molecular identification method for six Liposcelis species based on ITS2 sequence. Results demonstrate that ITS1-5.8S-ITS2 sequences are a useful tool for the population genetic study and phylogeny estimation of Liposcelis species. The results of this study indicate that the ITS2 sequences can be a reliable tool for species discrimination of the six species of psocids tested here. In addition, the multiplex method described proved reliable when tested across different geographical populations.  相似文献   

4.
The insect growth regulator pyriproxyfen was evaluated as a surface treatment for control of three stored-product psocid pests Liposcelis bostrychophila Badonnel, Liposcelis decolor (Pearman), and Liposcelis paeta Pearman (Psocoptera: Liposcelididae). Nymphs were exposed for 35 d on a concrete surface treated with 2.3 mg of active ingredient/m2 pyriproxyfen. Exposure to pyriproxyfen significantly reduced the numbers of both adults and nymphs in comparison with untreated controls. In adults, the greatest reduction (> 90%) was for L. decolor and L. bostrychophila, whereas for L. paeta it was 49%. Few adults of any species were found in the pyriproxyfen treatments. The greatest numbers of nymphs were recorded for L. bostrychophila for both pyriproxyfen treatments and controls. Few adults of any species were found in the pyriproxyfen treatments. The results indicate that pyriproxyfen is effective for control of L. bostrychophila, L. decolor, and L. paeta on concrete, and although complete control was not achieved, the results warrant further long-term study to determine whether pyriproxyfen can completely eliminate psocid populations over time.  相似文献   

5.
Spinosad is a commercial reduced-risk pesticide that is naturally derived. Spinosad's performance was evaluated on four classes of wheat (hard red winter, hard red spring, soft red winter, and durum wheats) against adults of the lesser grain borer, Rhyzopertha dominica (F.); rice weevil, Sitophilus oryzae (L.); sawtoothed grain beetle, Oryzaephilus surinamensis (L.); red flour beetle, Tribolium castaneum (Herbst); and larvae of the Indianmeal moth, Plodia interpunctella (Hübner). Beetle adults (25) or P. interpunctella eggs (50) were exposed to untreated wheat and wheat treated with spinosad at 0.1 and 1 mg (AI)/kg of grain. On all untreated wheat classes, adult beetle mortality ranged from 0 to 6%, and P. interpunctella larval mortality ranged from 10 to 19%. The effects of spinosad on R. dominica and P. interpunctella were consistent across all wheat classes. Spinosad killed all exposed R. dominica adults and significantly suppressed progeny production (84-100%) and kernel damage (66-100%) at both rates compared with untreated wheat. Spinosad was extremely effective against P. interpunctella on all wheat classes at 1 mg/kg, based on larval mortality (97.6-99.6%), suppression of egg-to-adult emergence (93-100%), and kernel damage (95-100%), relative to similar effects on untreated wheats. The effects of spinosad on S. oryzae varied among wheat classes and between spinosad rates. Spinosad was effective against S. oryzae, O. surinamensis and T. castaneun only on durum wheat at 1 mg/kg. Our results suggest spinosad to be a potential grain protectant for R. dominica and P. interpunctella management in stored wheat.  相似文献   

6.
Four organophosphate insecticides, azamethiphos, fenitrothion, chlorpyrifos-methyl, and pirimiphos-methyl, were tested as surface treatments on concrete (porous surface) and galvanized steel (nonporous surface) panels (0.3 by 0.3 m) against adults of three Liposcelid psocid spp.--Liposcelis bostrychophila Badonnel, Liposcelis entomophila (Enderlein), and Liposcelis paeta Pearman. Residual efficacy of these chemicals was assessed at 30 +/- 1 degrees C, 70 +/- 2% RH, and a photoperiod of 12:12 (L:D) h from 1 d after treatment (0 wk) and thereafter at weeks 1, 2, 4, 6, and 8, and then every 4 wk up to week 40. Mortality was recorded at exposure periods of 6 h and then every 24 h until end-point was achieved. L. bostrychophila was the most susceptible species to the organophosphates tested, followed by L. paeta and L. entomophila. We conclude that for long-term protection, azamethiphos is the preferred organophosphate against L. bostrychophila (up to 36 wk on steel and 24 wk on concrete storage surfaces) and L. paeta infestations only on steel surface (up to 28 wk). None of the four organophosphates tested, however, would provide long-term protection against L. paeta on concrete surface and against L. entomophila infestations on either concrete or steel storage surfaces.  相似文献   

7.
With the phase-out and impending ban of methyl bromide, sulfuryl fluoride is among the most promising alternative fumigant insecticides for control of stored-product insect pests. It has been evaluated for control of several stored-product insect pests, but there are few data available on its efficacy for control of stored-product psocids (Psocoptera). We evaluated sulfuryl fluoride for control of different life stages of the psocids Liposcelis paeta Pearman, L. entomophila (Enderlein), L. bostrychophila Badonnel, L. decolor Pearman, and Lepinotus reticulatus Enderlein (Trogiidae) in 48-hr trials at 27.5 degrees C. Adults and nymphs were susceptible to sulfuryl fluoride. Complete (100%) adult and nymphal mortality was recorded at concentrations between 4 and 8 g/m3, except for L. decolor for which all adults were only killed at 24 g/m3. Eggs were tolerant to sulfuryl fluoride. Complete egg mortality was achieved at 24 and 72 g/m3 for L. reticulatus and L. decolor, respectively. Survival of L. paeta eggs was recorded even after exposure to 96 g/m3. Given that the highest United States label concentration for sulfuryl fluoride for a 48-h exposure interval is 31.25 g/m3, our study indicates that high doses and/or longer exposures are needed for complete mortality of eggs of L. decolor and L. paeta. Moreover, the present work suggests that there is considerable variation in efficacy of sulfuryl fluoride for control of different psocid species.  相似文献   

8.
Abstract  The potential of spinosad as a grain protectant for the lesser grain borer, Rhyzopertha dominica , was investigated in a silo-scale trial on wheat stored in Victoria, Australia. Rhyzopertha dominica is a serious pest of stored grain, and its resistance to protectants and the fumigant phosphine is becoming more common. This trial follows earlier laboratory research showing that spinosad may be a useful pest management option for this species. Wheat (300 t) from the 2005 harvest was treated with spinosad 0.96 mg/kg plus chlorpyrifos-methyl 10 mg/kg in March 2006, and samples were collected at intervals during 7.5 month storage to determine efficacy and residues in wheat and milling fractions. Chlorpyrifos-methyl is already registered in Australia for control of several other pest species, and its low potency against R. dominica was confirmed in laboratory-treated wheat. Grain moisture content was stable at about 10%, but grain temperature ranged from 29.3°C in March to 14.0°C in August. Bioassays of all treated wheat samples over 7.5 months resulted in 100% adult mortality after 2 weeks exposure and no live progeny were produced. In addition, no live grain insects were detected during outload sampling after a 9 month storage. Spinosad and chlorpyrifos-methyl residues tended to decline during storage, and residues were higher in the bran layer than in either wholemeal or white flour. This field trial confirmed that spinosad was effective as a grain protectant targeting R. dominica .  相似文献   

9.
1%蛇床子素粉剂对三种储粮害虫的防效   总被引:2,自引:0,他引:2  
研究1%蛇床子素粉剂在5种处理浓度下对3种储粮害虫谷蠹Rhizopertha dominica Fabricius、玉米象Sitophilus zeamai Motschulsky和赤拟谷盗Tribolium castaneum Herbst的防治效果。室内毒力测定结果表明,按有效成分0.5mg/kg(蛇床子素:粮食)浓度处理粮食,7d后,粮食中谷蠹、玉米象和赤拟谷盗的校正死亡率分别为97.78%、100%、86.70%,防治效果优于对照药剂防虫磷和谷虫净。将药剂处理4个月后的粮食进行接虫试验,15d后谷蠹和玉米象的防治效果仍可达100%,达到储粮害虫防治要求。  相似文献   

10.
两种书虱微卫星富集文库的构建及比较   总被引:1,自引:0,他引:1  
利用链霉亲和素与生物素之间的强亲和性原理,将链霉亲和素偶联的磁珠与微卫星探针(AC)12、(TC)12、(ATC)8、(ATG)8、(AAC)8、(ATAC)6及(GATA)6退火结合后,再亲和捕捉含接头和微卫星序列的单链书虱基因组DNA限制性酶切目的片段,经PCR扩增形成双链后进行克隆、建库。结果表明本研究成功构建了嗜卷书虱和嗜虫书虱共13个微卫星富集文库,包括6个嗜卷书虱文库,7个嗜虫书虱文库,其平均阳性克隆率为71.17%。经检测发现共得到两种书虱260个微卫星位点。这两种书虱微卫星富集文库的建立和高多态性微卫星位点的筛选将为嗜卷书虱和嗜虫书虱的种群遗传与进化、基因连锁图谱构建、分子系统发育研究等提供大量分子遗传标记,对其在实仓中的持续控制提供遗传学信息。  相似文献   

11.
Efficacy of heat treatment for disinfestation of concrete grain silos   总被引:3,自引:0,他引:3  
Field experiments were conducted in 2007 and 2008 to evaluate heat treatment for disinfestations of empty concrete elevator silos. A Mobile Heat Treatment Unit was used to introduce heat into silos to attain target conditions of 50 degrees C for at least 6 h. Ventilated plastic containers with a capacity of 100 g of wheat, Triticum aestivum L., held Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Polyvinyl chloride containers with a capacity of 300 g of wheat held adults of Liposcelis corrodens (Heymons) (Psocoptera: Liposcelididae) and Liposcelis decolor (Pearman), which were contained in 35-mm Petri dishes within the grain. Containers were fastened to a rope suspended from the top of the silo at depths of 0 m (just under the top manhole), 10 m, 20 m, and 30 m (silo floor). When the highest temperature achieved was approximately 50 degrees C for 6 h, parental mortality ofR. dominica and T. castaneum, and both psocid species was 98-100%. Progeny production of R. dominica occurred when there was parental survival, but in general R. dominica seemed less impacted by the heat treatment than T. castaneum. There was 100% mortality of L. corrodens at all depths in the heat treatments but only 92.5% mortality for L. decolor, with most survivors located in the bioassay containers at the top of the silo. Results show wheat kernels may have an insulating effect and heat treatment might be more effective when used in conjunction with sanitation and cleaning procedures.  相似文献   

12.
秦萌  李志红  孙晓  康芬芬  伍袆 《昆虫知识》2007,44(6):909-912
应用PCR-RFLP技术,对我国4种常见仓储书虱即嗜虫书虱Liposcelis entomophila(Enderlein)、嗜卷书虱L.bostrychophila(Badonnel)、无色书虱L.decolor(Pearman)和小眼书虱L.paeta(Pearman)开展快速识别方法的研究。采用CTAB法从上述4种书虱体内提取基因组DNA,选用1对引物扩增16S rDNA基因区域,分别用5种限制性内切酶对PCR产物进行酶切。结果表明,PCR扩增片段大小约为500bp,用限制性内切酶DraI酶切得到的片段可将供试书虱区分开。该方法不受4种供试书虱地理种群、虫态(成虫、若虫)和性别的影响,可用于4种书虱的快速识别。  相似文献   

13.
Phosphine, a widely used fumigant for the protection of stored grain from insect pests, kills organisms indirectly by inducing oxidative stress. High levels of heritable resistance to phosphine in the insect pest of stored grain, Rhyzopertha dominica have been detected in Asia, Australia and South America. In order to understand the evolution of phosphine resistance and to isolate the responsible genes, we have undertaken genetic linkage analysis of fully sensitive (QRD14), moderately resistant (QRD369) and highly resistant (QRD569) strains of R. dominica collected in Australia. We previously determined that two loci, rph1 and rph2, confer high-level resistance on strain QRD569, which was collected in 1997. We have now confirmed that rph1 is responsible for the moderate resistance of strain QRD369, which was collected in 1990, and is shared with a highly resistant strain from the same geographical region, QRD569. In contrast, rph2 by itself confers only very weak resistance, either as a heterozygote or as a homozygote and was not discovered in the field until weak resistance (probably due to rph1) had become ubiquitous. Thus, high-level resistance against phosphine has evolved via stepwise acquisition of resistance alleles, first at rph1 and thereafter at rph2. The semi-dominance of rph2 together with the synergistic interaction between rph1 and rph2 would have led to rapid selection for homozygosity. A lack of visible fitness cost associated with alleles at either locus suggests that the resistance phenotype will persist in the field.  相似文献   

14.
Essential oil extracted from the leaves of turmeric, Curcuma longa L., was investigated for contact and fumigant toxicity and its effect on progeny production in three stored-product beetles, Rhyzopertha dominica F. (lesser grain borer), Sitophilus oryzae L. (rice weevil), and Tribolium castaneum Herbst (red flour beetle). Oviposition-deterrent and ovicidal actions of C. longa leaf oil were also evaluated against T. castaneum. The oil was insecticidal in both contact and fumigant toxicity assays. The adults of R. dominica were highly susceptible to contact action of C. longa leaf oil, with LD50 value of 36.71 microg/mg weight of insect, whereas in the fumigant assay, adults of S. oryzae were highly susceptible with LC50 value of 11.36 mg/liter air. Further, in T. castaneum, the C. longa oil reduced oviposition and egg hatching by 72 and 80%, respectively at the concentration of 5.2 mg/cm2. At the concentration of 40.5 mg/g food, the oil totally suppressed progeny production of all the three test insects. Nutritional indices indicate >81% antifeedant action of the oil against R. dominica, S. oryzae and T castaneum at the highest concentration tested.  相似文献   

15.
Two field strains of the Indianmeal moth, Plodia interpunctella (Hübner); red flour beetle, Tribolium castaneum (Herbst); and lesser grain borer, Rhyzopertha dominica (F.), and one field strain of the rusty grain beetle, Cryptolestes ferrugineus (Stephens), were collected from hard red winter wheat stored on farms in northeastern Kansas. Fifty eggs of P. interpunctella and 25 beetle adults of each species were exposed to 100 g of untreated wheat or wheat treated with various rates of spinosad, to determine susceptibility of the field and corresponding insecticide-susceptible laboratory strains. Mortality of beetle adults and P. interpunctella larvae was assessed after 7 and 21 d postinfestation, respectively. Field strains of P. interpunctella, C. ferrugineus, and T. castaneum were less susceptible to spinosad than the corresponding laboratory strains. The LD50 and LD95 values for P. interpunctella and C. ferrugineus field strains were 1.7-2.5 times greater than values for corresponding laboratory strains. Adults of both laboratory and field strains of T. castaneum were tolerant to spinosad, resulting in <88% mortality at 8 mg/kg. The LD50 and LD95 values for the field strains of T. castaneum were 2.0-7.5 times greater compared with similar values for the laboratory strain. The field and laboratory strains of R. dominica were highly susceptible to spinosad, and one of the field strains was relatively less susceptible to spinosad than the laboratory strain. Our results confirm a range of biological variability in field populations, which is consistent with findings for other compounds, and underscores the need to adopt resistance management programs with stored grain insect pests. The baseline data generated on the susceptibility of the four insect species to spinosad will be useful for monitoring resistance development and for setting field rates.  相似文献   

16.
In laboratory experiments, toxicity of acrolein vapors was investigated against four species of stored-product insects. In empty-space trials, estimates of the median lethal doses of acrolein against adults of Oryzaephilus surinamensis (L.), Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Tribolium castaneum (Herbst), were 1.87, 2.35, 3.12, and 6.65 mg/liter, respectively. Penetration tests revealed that acrolein vapors could penetrate into the wheat mass and kill concealed insects in interkernel spaces. Comparison of LD50 values between empty-space tests and penetration experiments after 24-h exposure indicated that the increase in penetration toxicity was 6.34-, 6.31-, 7.17-, and 4.54-fold for O. surinamensis, S. oryzae, R. dominica, and T. castaneum, respectively. In the hidden infestation trials, the acrolein vapors destroyed all the developmental stages of S. oryzae and R. dominica concealed inside the wheat kernels, resulted in a complete control with dose of 80 mg/liter for 24 h, and subsequently observed during 8 wk after the exposure. Wheat germination rate was diminished by fumigation with acrolein. The plumule length was reduced after exposure to all doses of acrolein. Together, the data suggest acrolein could be a potential compound for empty-space fumigations.  相似文献   

17.
Plant oils (cottonseed, soybean, corn, groundnut and palm) at different dosages were evaluated in the laboratory for their ability to suppress the populations ofCryptolestes pusillus andRhyzopertha dominica in maize and sorghum. Exposure of adults of both beetle species to grains treated with 10 ml/kg of the different oils induced 100% mortality within 24 h. A dose of 5 ml/kg of each oil significantly decreased the progeny produced byR. dominica. Complete protection was achieved on grains treated with 10 ml/kg. These oils also repelled the adults of both species. Percentage weight loss caused byR. dominica in grains treated with 5 ml/kg and 10 ml/kg levels were significantly lower than in untreated grains. Oil treatment did not affect the germination of, or water absorption by, maize and sorghum grains compared with untreated grains. The potential use of plant oils in the management of insect pests in traditional grain storage is discussed.  相似文献   

18.
Diatomaceous earth (DE) is a desiccant insecticide and most efficacious in low humidity. It acts on insect cuticle by absorbing lipids, and perhaps by cuticular abrasion. Beauveria bassiana (Balsamo) Vuillemin, an entomopathogenic fungus, is most efficacious in high humidity and has a complex interaction with cuticular lipids. Interaction between these materials may enhance insect control performance. Assays with stored-grain beetles were conducted with B. bassiana at rates of 11, 33, 100, and 300 mg of conidia per kilogram of grain with and without single rates of DE that killed 10% or less of the target beetles. The assays revealed synergism in effects on adult Rhyzopertha dominica (F.) and Oryzaephilus surinamensis (L.) at all doses. There was statistically significant synergism for adult Cryptolestes ferrugineus (Stephens) and larval R. dominica but at only one B. bassiana rate for each target. Both amorphous silicon dioxide, a sorptive dust, and diamond dust, an abrasive, showed synergistic interaction with B. bassiana on adult R. dominica. These results may provide a basis for a least-toxic approach to control of stored-product beetles and for efficacy-enhancing formulation of entomopathogenic fungi.  相似文献   

19.
研究了石菖蒲4种溶剂无水乙醇、丙酮、乙酸乙酯、石油醚提取物对玉米象、谷蠹、长角扁谷盗和锯谷盗4种储粮害虫的驱避作用和触杀作用。结果表明:石菖蒲4种溶剂提取物对4种试虫均有明显的驱避作用和触杀作用,处理60 h的平均驱避等级均达到Ⅲ级以上,对4种试虫的触杀死亡率均达到41.11%以上。  相似文献   

20.
The lesser grain borer Rhyzopertha dominica (F.) is one of the most destructive insect pests of stored grain. This pest has been controlled successfully by fumigation with phosphine for the last several decades, though strong resistance to phosphine in many countries has raised concern about the long term usefulness of this control method. Previous genetic analysis of strongly resistant (SR) R. dominica from three widely geographically dispersed regions of Australia, Queensland (SR(QLD)), New South Wales (SR(NSW)) and South Australia (SR(SA)), revealed a resistance allele in the rph1 gene in all three strains. The present study confirms that the rph1 gene contributes to resistance in a fourth strongly resistant strain, SR2(QLD), also from Queensland. The previously described rph2 gene, which interacts synergistically with rph1 gene, confers strong resistance on SR(QLD) and SR(NSW). We now provide strong circumstantial evidence that weak alleles of rph2, together with rph1, contribute to the strong resistance phenotypes of SR(SA) and SR2(QLD). To test the notion that rph1 and rph2 are solely responsible for the strong resistance phenotype of all resistant R. dominica, we created a strain derived by hybridising the four strongly resistant lines. Following repeated selection for survival at extreme rates of phosphine exposure, we found only slightly enhanced resistance. This suggests that a single sequence of genetic changes was responsible for the development of resistance in these insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号