首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution analysis of tubulin structure and docking the structure of tubulin dimer into a map of microtubules led to a prediction that sites for tubulin acetylation are in the interior of microtubules. This is somehow difficult to reconcile with their susceptibility to proteases and acetylation in assembled microtubules. To assess the availability of acetylated alpha-tubulin for antibodies, immunofluorescence on detergent-extracted cells, on cells fixed under various conditions and in microinjected cells was performed with monoclonal antibodies of known epitope locations. The presented data indicate that acetylated alpha:Lys40 is not exposed on unfixed microtubules but that this region of lumenal microtubule surface becomes easily exposed under mild fixation conditions.  相似文献   

2.
Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha-tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha-tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus-membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.  相似文献   

3.
HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo   总被引:14,自引:0,他引:14  
Microtubules are cylindrical cytoskeletal structures found in almost all eukaryotic cell types which are involved in a great variety of cellular processes. Reversible acetylation on the epsilon-amino group of alpha-tubulin Lys40 marks stabilized microtubule structures and may contribute to regulating microtubule dynamics. Yet, the enzymes catalysing this acetylation/deacetylation have remained unidentified until recently. Here we report that beta-tubulin interacts with histone deacetylase-6 (HDAC-6) in a yeast two-hybrid assay and in vitro. We find that HDAC-6 is a micro tubule-associated protein capable of deacetylating alpha-tubulin in vivo and in vitro. HDAC-6's microtubule binding and deacetylation functions both depend on the hdac domains. Overexpression of HDAC-6 in mammalian cells leads to tubulin hypoacetylation. In contrast, inhibition of HDAC-6 function by two independent mechanisms--pharmacological (HDAC inhibitors) or genetic (targeted inactivation of HDAC-6 in embryonic stem cells)--leads to hyperacetylation of tubulin and microtubules. Taken together, our data provide evidence that HDAC-6 might act as a dual deacetylase for tubulin and histones, and suggest the possibility that acetylated non-histone proteins might represent novel targets for pharmacological therapy by HDAC inhibitors.  相似文献   

4.
《The Journal of cell biology》1995,129(5):1301-1310
In Tetrahymena, at least 17 distinct microtubule structures are assembled from a single primary sequence type of alpha- and beta- tubulin heterodimer, precluding distinctions among microtubular systems based on tubulin primary sequence isotypes. Tetrahymena tubulins also are modified by several types of posttranslational reactions including acetylation of alpha-tubulin at lysine 40, a modification found in most eukaryotes. In Tetrahymena, axonemal alpha-tubulin and numerous other microtubules are acetylated. We completely replaced the single type of alpha-tubulin gene in the macronucleus with a version encoding arginine instead of lysine 40 and therefore cannot be acetylated at this position. No acetylated tubulin was detectable in these transformants using a monoclonal antibody specific for acetylated lysine 40. Surprisingly, mutants lacking detectable acetylated tubulin are indistinguishable from wild-type cells. Thus, acetylation of alpha- tubulin at lysine 40 is non-essential in Tetrahymena. In addition, isoelectric focusing gel analysis of axonemal tubulin from cells unable to acetylate alpha-tubulin leads us to conclude that: (a) most or all ciliary alpha-tubulin is acetylated, (b) other lysines cannot be acetylated to compensate for loss of acetylation at lysine 40, and (c) acetylated alpha-tubulin molecules in wild-type cells contain one or more additional charge-altering modifications.  相似文献   

5.
Auxin controls the orientation of cortical microtubules in maize coleoptile segments. We used tyrosinylated alpha-tubulin as a marker to assess auxin-dependent changes in microtubule turnover. Auxin-induced tyrosinylated alpha-tubulin, correlated with an elevated sensitivity of growth to antimicrotubular compounds such as ethyl-N-phenylcarbamate (EPC). We determined the affinity of alpha-tubulin to EPC and found that it was dramatically increased when the tubulin was de-tyrosinylated. By proteolytic cleavage of the carboxy terminal tyrosine, such an increased affinity could be induced in vitro. Thus, the auxin-induced sensitivity of growth to EPC is not caused by an increased affinity for this inhibitor, but caused by a reduced microtubule turnover. Double visualization assays revealed that the transverse microtubules induced by auxin consist predominantly of tyrosinylated alpha-tubulin, whereas the longitudinal microtubules induced by auxin depletion contain de-tyrosinylated alpha-tubulin. The results are discussed in terms of direction-dependent differences in the lifetime of microtubules.  相似文献   

6.
We have examined the distribution of acetylated alpha-tubulin using immunofluorescence microscopy in fibroblastic cells of rat brain meninges. Meningeal fibroblasts showed heterogeneous staining patterns with a monoclonal antibody against acetylated alpha-tubulin ranging from staining of primary cilia or microtubule-organising centers (MTOCs) alone to extensive microtubule networks. Staining with a broad spectrum anti-alpha-tubulin monoclonal indicated that all cells possessed cytoplasmic microtubule networks. From double-labeling experiments using an antibody against acetylated alpha-tubulin (6-11B-1) and antibodies against either tyrosinated or detyrosinated alpha-tubulin, it was found that acetylated alpha-tubulin and tyrosinated alpha-tubulin were often segregated to different microtubules. The microtubules containing acetylated but not tyrosinated alpha-tubulin were cold stable. Therefore, it appeared that in general meningeal cells possessed two subset of microtubules: One subset contained detyrosinated and acetylated alpha-tubulin and was cold stable, and the other contained tyrosinated alpha-tubulin and was cold labile. These results are consistent with the idea that acetylation and detyrosination of alpha-tubulin are involved in the specification of stable microtubules.  相似文献   

7.
We have used monoclonal antibodies specific for acetylated and unacetylated alpha-tubulin to characterize the acetylated alpha-tubulin isotype of Physarum polycephalum, its expression in the life cycle, and its localization in particular microtubular organelles. We have used the monoclonal antibody 6-11B-1 (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094) as the probe for acetylated alpha-tubulin and have provided a biochemical characterization of the monoclonal antibody KMP-1 as a probe for unacetylated tubulin in Physarum. Concomitant use of these two probes has allowed us to characterize the acetylated alpha-tubulin of Physarum as the alpha 3 isotype. We have detected this acetylated alpha 3 tubulin isotype in both the flagellate and in the myxameba, but not in the plasmodium. In the flagellate, acetylated tubulin is present in both the flagellar axonemes and in an extensive array of cytoplasmic microtubules. The extensive arrangement of acetylated cytoplasmic microtubules and the flagellar axonemes are elaborated during the myxameba-flagellate transformation. In the myxameba, acetylated tubulin is not present in the cytoplasmic microtubules nor in the mitotic spindle microtubules, but is associated with the two centrioles of this cell. These findings, taken together with the apparent absence of acetylated alpha-tubulin in the ephemeral microtubules of the plasmodium suggest a natural correspondence between the presence of acetylated alpha-tubulin and microtubule organelles that are intrinsically stable or cross-linked.  相似文献   

8.
9.
Trichostatin A (TSA) inhibits all histone deacetylases (HDACs) of both class I and II, whereas trapoxin (TPX) cannot inhibit HDAC6, a cytoplasmic member of class II HDACs. We took advantage of this differential sensitivity of HDAC6 to TSA and TPX to identify its substrates. Using this approach, alpha-tubulin was identified as an HDAC6 substrate. HDAC6 deacetylated alpha-tubulin both in vivo and in vitro. Our investigations suggest that HDAC6 controls the stability of a dynamic pool of microtubules. Indeed, we found that highly acetylated microtubules observed after TSA treatment exhibited delayed drug-induced depolymerization and that HDAC6 overexpression prompted their induced depolymerization. Depolymerized tubulin was rapidly deacetylated in vivo, whereas tubulin acetylation occurred only after polymerization. We therefore suggest that acetylation and deacetylation are coupled to the microtubule turnover and that HDAC6 plays a key regulatory role in the stability of the dynamic microtubules.  相似文献   

10.
The effect of the nucleophilic reagent NaF on the microtubular system of Tetrahymena was studied by using scanning electron microscopy (SEM), confocal microscopy, and flow cytometry. Treatments with 40 mM NaF significantly reduced the amount of alpha-tubulin while 80 mM treatment did not alter its quantity. One possible explanation for this alpha-tubulin overexpression is that the higher amount of alpha-tubulin enables this organism to carry out the appropriate function of the cytoskeleton under this undesirable influence of higher amounts of 80 nM NaF. However, the amount of acetylated tubulin increased in a dose-dependent manner. The cilia became fragile under the effect of 80 mM NaF. Confocal microscopy revealed that after 40 mM NaF treatment transversal microtubule bands (TMs) and longitudinal microtubule bands (LMs) as well as basal bodies (BBs) were extremely strong decorated with anti-acetylated tubulin antibody and TM-localization abnormalities were visible. In the 80 mM NaF-treated cells, the deep fiber of oral apparatus was very strongly labeled, while the TMs and LMs were less decorated with anti-acetylated tubulin antibody, and LM deformities were visible. It is supposed that post-translational tubulin modifications (e.g., acetylation) defend the microtubules against the NaF-induced injury. NaF is able to influence the activity of several enzymes and G-proteins, therefore is capable to alter the structure, metabolism, and the dynamics of microtubular system. The possible connection of signaling and cytoskeletal system in Tetrahymena is discussed.  相似文献   

11.
In the testis, microtubule-disrupting agents cause breakdown of the Sertoli cell cytoskeleton and sloughing of germ cells with associated Sertoli cell fragments, although the mechanism underlying this event is not understood. In this study, we investigated the effects of carbendazim and colchicine on microtubule polymerization status and posttranslational modifications of tubulin in freshly isolated rat seminiferous tubules. Soluble and polymerized tubulin pools were separated and tubulin was quantified using a competitive ELISA. Carbendazim and colchicine caused extensive microtubule depolymerization, shifting the ratio of soluble to polymerized tubulin from 40%:60% to 78%:22%, and to 84%:16%, respectively. Total tubulin levels remained relatively constant after carbendazim treatment but decreased twofold after colchicine treatment. To determine if modifications to tubulin may be associated with polymerization status, tubulin pools were analyzed by immunoblotting. Acetylated alpha-tubulin and betaIII-tubulin distribution in tubulin pools was not affected by treatment. Tyrosinated alpha-tubulin (52 kDa) was localized in both tubulin pools and had decreased tyrosination in the microtubule pool after carbendazim treatment. A 47-kDa protein immunoreactive with both tyrosinated alpha-tubulin and general alpha-tubulin antibodies was found only in the microtubule pool. The 47-kDa protein (potentially an alpha-tubulin isoform) lost tyrosination, yet was still present in the microtubule pool based on detection with the general alpha-tubulin antibody, after carbendazim treatment. Similar effects were seen with colchicine, although loss of total tubulin protein was measured. Thus, decreased tyrosination of the microtubule pool of tubulin appears to be associated with depolymerization of microtubules.  相似文献   

12.
A major end product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), is an electrophilic alkenal and produces Michael adducts with cellular proteins. It is known that exposure of cultured cells to HNE causes rapid disappearance of microtubule networks. In this study we addressed the mechanism. Immunochemical studies revealed that HNE preferentially modified alpha-tubulin in rat primary neuronal cells, PC12 cells, and rat fibroblast cell line 3Y1 cells. This was morphologically associated with the disappearance of microtubule structures in those cells. In a purified rat brain microtubule fraction, HNE modified unpolymerized tubulin and impaired its polymerizability, with a concomitant increase in insolubilized tubulin. Nevertheless, HNE had a marginal effect on the stability of pre-polymerized microtubules. These results suggest that disruption of microtubule assembly as a result of HNE modification of unpolymerized tubulin, rather than destruction of assembled microtubules, is responsible for the disappearance of microtubule structures in cells exposed to HNE.  相似文献   

13.
In mammalian cells most microtubules are enriched in tyrosinated alpha-tubulin (tyr-tubulin). Other subclasses of microtubules are present in variable amounts and some are enriched in detyrosinated alpha-tubulin (glu-tubulin). We examined the effect of cell-cell interactions on the level of glu-tubulin in microtubules. This was studied by quantitative immunofluorescence using antibodies against tyr- and glu-tubulin. We found that in cells which have established cell-cell contacts, the ratio of glu-/tyr-tubulin is higher than in isolated cells. We also examined the effect of cell-cell interactions on the glu-/tyr-tubulin ratio by using the antibody blocking method of Schulze and Kirschner [42]. Microtubules containing mainly tyr-tubulin had been blocked first by a polyclonal antibody against tyr-tubulin and several layers of secondary antibodies. The unblocked microtubules were then labeled by a monoclonal antibody against alpha-tubulin. Since the coating efficiency of microtubules by the anti-tyr tubulin depends on the amount of tyr-tubulin in each microtubule, this procedure allows the visualization of microtubules enriched or depleted in tyr-tubulin in specific domains of each cell. Microtubules were more extensively blocked in subconfluent than in confluent cells and preferentially at the periphery of the cytoplasm. In cells present at the margin of an artificial wound produced in a confluent monolayer, the amount of blocked microtubules increased slowly with time (between 2 and 4 h). These results are consistent with the hypothesis that cell-cell contacts lead to increased tubulin dytyrosination both in fibroblastic and epithelial cells.  相似文献   

14.
The subcellular distribution of microtubules containing acetylated alpha-tubulin in mammalian cells in culture was analyzed with 6-11B-1, a monoclonal antibody specific for acetylated alpha-tubulin. Cultures of 3T3, HeLa, and PtK2 cells were grown on coverslips and observed by immunofluorescence microscopy after double-staining by 6-11B-1 and B-5-1-2, a monoclonal antibody specific for all alpha-tubulins. The antibody 6-11B-1 binds to primary cilia, centrioles, mitotic spindles, midbodies, and to subsets of cytoplasmic microtubules in 3T3 and HeLa cells, but not in PtK2 cells. These observations confirm that the acetylation of alpha-tubulin is a modification occurring in different microtubule structures and in a variety of eukaryotic cells. Some features of the acetylation of cytoplasmic microtubules of mammalian cells are also described here. First, acetylated alpha-tubulin is present in microtubules that, under depolymerizing conditions, are more stable than the majority of cytoplasmic microtubules. In addition to the specific microtubule frameworks already mentioned, cytoplasmic microtubules resistant to nocodazole or colchicine, but not cold-resistant microtubules, contain more acetylated alpha-tubulin than the rest of cellular microtubules. Second, the alpha-tubulin in all cytoplasmic microtubules of 3T3 and HeLa cells becomes acetylated in the presence of taxol, a drug that stabilizes microtubules. Third, acetylation and deacetylation of cytoplasmic microtubules are reversible in cells released from exposure to 0 degrees C or antimitotic drugs. Fourth, the epitope recognized by the antibody 6-11B-1 is not absolutely necessary for cell growth and division. This epitope is absent in PtK2 cells. The acetylation of alpha-tubulin could regulate the presence of microtubules in specific intracellular spaces by selective stabilization.  相似文献   

15.
Tau is a neuronal microtubule-associated protein that plays a central role in many cellular processes, both physiological and pathological, such as axons stabilization and Alzheimer's disease. Despite extensive studies, very little is known about the detailed molecular basis of tau binding to microtubules. We used the four-repeat recombinant htau40 and tubulin dimers to show for the first time that tau is able to induce both microtubule and ring formation from 6S alphabeta tubulin in phosphate buffer without added magnesium (nonassembly conditions). The amount of microtubules or rings formed was protein concentration-, temperature-, and nucleotide-dependent. By means of biophysical approaches, we showed that tau binds to tubulin without global-folding change, detectable by circular dichroism. We also demonstrated that the tau-tubulin interaction follows a ligand-mediated elongation process, with two tau-binding site per tubulin dimer. Moreover, using a tubulin recombinant alpha-tubulin C-terminal fragment (404-451) and a beta-tubulin C-terminal fragment (394-445), we demonstrated the involvement of both of these tubulin regions in tau binding. From this model system, we gain new insight into the mechanisms by which tau binds to tubulin and induces microtubule formation.  相似文献   

16.
The post-translational modification of tubulin appears to be a highly controlled mechanism that regulates microtubule functioning. Acetylation of the ϵ-amino group of Lys-40 of α-tubulin marks stable microtubules, although the causal relationship between tubulin acetylation and microtubule stability has remained poorly understood. HDAC6, the tubulin deacetylase, plays a key role in maintaining typical distribution of acetylated microtubules in cells. Here, by using tubastatin A, an HDAC6-specific inhibitor, and siRNA-mediated depletion of HDAC6, we have explored whether tubulin acetylation has a role in regulating microtubule stability. We found that whereas both pharmacological inhibition of HDAC6 as well as its depletion enhance microtubule acetylation, only pharmacological inhibition of HDAC6 activity leads to an increase in microtubule stability against cold and nocodazole-induced depolymerizing conditions. Tubastatin A treatment suppressed the dynamics of individual microtubules in MCF-7 cells and delayed the reassembly of depolymerized microtubules. Interestingly, both the localization of HDAC6 on microtubules and the amount of HDAC6 associated with polymeric fraction of tubulin were found to increase in the tubastatin A-treated cells compared with the control cells, suggesting that the pharmacological inhibition of HDAC6 enhances the binding of HDAC6 to microtubules. The evidence presented in this study indicated that the increased binding of HDAC6, rather than the acetylation per se, causes microtubule stability. The results are in support of a hypothesis that in addition to its deacetylase function, HDAC6 might function as a MAP that regulates microtubule dynamics under certain conditions.  相似文献   

17.
Early development in Xenopus is characterized by dramatic changes in the organization of the microtubule cytoskeleton. We have used whole-mount immunocytochemistry to follow the expression of the acetylated form of alpha-tubulin during early Xenopus development. In the egg and early embryo, the monoclonal anti-acetylated tubulin antibody 6-11B-1 stained meiotic and mitotic spindles, midbody microtubules, and what appears to be the central region of the sperm aster; the antibody did not stain the sperm aster itself or the cortical microtubule system associated with the rotation of the fertilized egg. Following gastrulation, acetylated tubulin disappeared from all but mitotic midbody microtubules. During the course of neurulation high levels of acetylated tubulin reappeared in the precursors of the ciliated epidermal cells (stage 15), transiently in neural folds (stage 16/17), in neuronal processes (stage 18/19), and in somas (stage 21). The changing pattern of anti-acetylated tubulin staining during Xenopus development raises intriguing questions as to the physiological significance of tubulin acetylation.  相似文献   

18.
We describe the presence of alpha-tubulin and MAP2 acetyltransferase activities in mouse brain. The enzyme(s) copurified with microtubules through two cycles of assembly-disassembly. Incubation of microtubule proteins with [3H]acetyl CoA resulted in a strong labeling of both alpha-tubulin and MAP2. To determine the site of the modification, tubulin was purified and digested with Glu-C endoproteinase. A unique radioactive peptide was detected and purified by HPLC. Edman degradation sequencing showed that this peptide contained epsilon N-acetyllysine at position 40 of the alpha-tubulin molecule. This result demonstrates that mouse brain alpha-tubulin was acetylated at the same site as in Chlamydomonas. Isoelectric focusing analysis showed that acetylated alpha-tubulin was resolved into five isoelectric variants, denoted alpha 3 and alpha 5 to alpha 8. This heterogeneity is not due to acetylation of other sites but results from a single acetylation of Lys40 of an heterogeneous population of alpha-tubulin isoforms. These isoforms are produced by posttranslational addition of one to five glutamyl units. Thus, neuronal alpha-tubulin is extensively modified by a combination of modifications including acetylation, glutamylation, tyrosylation, and other yet unknown modifications.  相似文献   

19.
Immunofluorescence staining of Drosophila embryos with a monoclonal antibody specific for acetylated alpha-tubulin has revealed that acetylated and nonacetylated alpha-tubulin isoforms have different patterns of distribution during early development. Acetylated alpha-tubulin was not detected in either interphase or mitotic spindle microtubules during the rapid early cleavage or syncytial blastoderm divisions. Acetylated alpha-tubulin was first observed as interphase lengthened at the end of syncytial blastoderm, and at cycle 14 was localized to a ring of structures clustered around the interphase nuclei. These structures probably represent a set of stable microtubules involved in nuclear elongation. Absence of detectable acetylated alpha-tubulin prior to cellular blastoderm seems to be due to rapid turnover of microtubule arrays rather than to lack of the enzyme required for modification, since acetylated alpha-tubulin appeared in early embryos when micro-tubules were stabilized by taxol treatment or anoxia. Because acetylated alpha-tubulin seems to be characteristic of stable microtubule arrays, the appearance of the antigen at cycle 14 represents a fundamental change in microtubule behaviour in the somatic cells of the embryo. Acetylated alpha-tubulin was not detected in pole cells during the blastoderm or early gastrula stages, indicating that acetylation of alpha-tubulin is not merely a consequence of cellularization. After the onset of gastrulation, interphase microtubule arrays in most cell types contain acetylated alpha-tubulin. However, cells in mitosis lack antibody staining. The resulting unstained patches reveal the stereotyped spatial pattern of cell division during gastrulation. Although the cells that give rise to the amnioserosa have acetylated alpha-tubulin in their interphase arrays at early gastrulation, by germ band elongation these large, plastic cells completely lack staining with anti-acetylated alpha-tubulin. In contrast, differentiated cell types such as neurones, which have arrays of stable axonal microtubules, stain brightly with the specific antibody. Although acetylated and nonacetylated alpha-tubulin are present in roughly equal amounts by the late stages of embryogenesis, acetylated alpha-tubulin is partitioned into the pellet during centrifugation of extracts of embryos homogenized at 4 degrees C.  相似文献   

20.
Mitra A  Sept D 《Biochemistry》2004,43(44):13955-13962
Several naturally occurring peptides and depsipeptides which include the cryptophycins, dolastatin 10, hemiasterlin, and phomopsin A have been found to be potent antimitotic agents, causing cell death at picomolar or low nanomolar concentrations. These compounds inhibit microtubule growth, modulate the dynamics of microtubules, and induce the self-association of tubulin dimers into single-walled rings and spirals. These peptides exhibit mutual competitive inhibition in binding to beta-tubulin, while noncompetitively inhibiting the binding of vinblastine and vincristine to beta-tubulin. Despite the abundance of biochemical information, the details of their molecular interactions with tubulin are not known. In this study, using a combination of molecular dynamics simulations and molecular docking studies, a common binding site for cryptophycin 1, cryptophycin 52, dolastatin 10, hemiasterlin, and phomopsin A on beta-tubulin has been identified. Application of these same methods to alpha-tubulin indicated no interaction between alpha-tubulin and any of the peptides. On the basis of the docking results, a model for the mechanism of microtubule disruption and formation of aberrant nonmicrotubule structures is proposed. Both the active site and mechanism of microtubule depolymerization predictions are in good agreement with experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号