首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vectors derived from simian immunodeficiency virus (SIV)   总被引:2,自引:0,他引:2  
Nègre D  Cosset FL 《Biochimie》2002,84(11):1161-1171
In contrast to other retroviruses, lentiviruses have the unique property of infecting non-proliferating cells. Thus vectors derived from lentiviruses are promising tools for in vivo gene delivery applications. Vectors derived from human primate and non-primate lentiviruses have recently been described and, unlike retroviral vectors derived from murine leukemia viruses, lead to stable integration of the transgene into quiescent cells in various organs. Despite all the safety safeguards that have been progressively introduced in lentiviral vectors, the clinical acceptance of vectors derived from pathogenic lentiviruses is subject to debate. It is therefore essential to design vectors derived from a wide range of lentivirus types and to comparatively examine their properties in terms of transduction efficiency and bio-safety. Here, we review the properties of lentiviral vectors derived from simian immunodeficiency virus (SIV).  相似文献   

2.
3.
A distinct African lentivirus from Sykes' monkeys.   总被引:12,自引:8,他引:4       下载免费PDF全文
Asymptomatic infection with simian immunodeficiency virus (SIV) has been demonstrated in African Sykes' monkeys (Cercopithecus mitis albogularis), and virus isolation confirmed infection with a novel SIV from Sykes' monkeys (SIVsyk). Macaques inoculated with SIVsyk became persistently infected but remained clinically healthy. We utilized polymerase chain reaction amplification to generate a full-length, infectious molecular clone of SIVsyk. The genome organization of SIVsyk is similar to that of the other primate lentiviruses, consisting of gag, pol, vif, vpr, tat, rev, env, and nef. A unique feature is the absence of the highly conserved NF-kappa B binding site in the long terminal repeat. SIVsyk is genetically equidistant from other primate lentiviruses. Thus, SIVsyk represents a new group that is distinct from the four previously recognized primate lentivirus groups: human immunodeficiency virus type 1 (HIV-1), SIV from sooty mangabeys (SIVsmm) and HIV-2, SIV from African green monkeys (SIVagm), and SIV from mandrills (SIVmnd). The genetic differences between SIVsyk and SIVagm, isolates derived from monkeys of the same genus, underscore the potential for other distinct SIVs which have yet to be isolated and characterized.  相似文献   

4.
Virion infectivity factor (vif), a gene found in all lentiviruses, plays an essential role in virus replication in certain target cells. We examined the replication competence of the human immunodeficiency virus type 2 (HIV-2) vif mutant in different T-cell lines and primary cells in comparison with that of the HIV-1 vif mutant. Both mutant viruses were unable to replicate in peripheral blood-derived mononuclear cells but replicated with wild-type efficiency in certain T-cell lines, such as SupT1 and MOLT-4/8. These results confirm the importance of vif in the infection of relevant target cells and imply that some cellular factor(s) could compensate for vif function. However, HIV-1 and HIV-2 vif mutant viruses also show differential replications in other cell lines, suggesting either different threshold requirements for the same cellular factor(s) or the involvement of different factors to compensate for vif-1 and vif-2 functions. By cross complementation experiments, we showed that vif-1 and vif-2 have similar functions. Our studies further indicate the existence of two kinds of nonpermissive cells: H9 is unable to complement HIV-1 delta vif but is susceptible to a one-round infection with HIV-1 delta vif produced from permissive cells. In contrast, U937 is nonpermissive for HIV-2 delta vif produced from permissive cells but, once infected, is able to complement the delta vif function. In both types of nonpermissive cells, a step prior to proviral DNA synthesis is affected.  相似文献   

5.
The vif gene of human immunodeficiency virus type 1 (HIV-1) is essential for virus growth in non-permissive cells such as H9. To elucidate the mechanism of action of the Vif protein, vif mutants, which show trans-dominant negative effects on the replication of HIV-1, would be useful tools. In this study, a new assay system to identify the mutants of this category was established. For this new system, various reporter clones carrying both mutant and authentic vif sequences were generated. By determining the growth ability of the viruses derived from the reporter constructs, the potential negative effect of the mutant vif sequence was readily and sensitively monitored. Ten vif mutant sequences tested were found not to exert the trans-dominant negative effect on the replication of HIV-1.  相似文献   

6.
X Y Ma  P Sova  W Chao    D J Volsky 《Journal of virology》1994,68(3):1714-1720
The infectivity factor of human immunodeficiency virus type 1 (HIV-1), Vif, contains two cysteine residues which are highly conserved among animal lentiviruses. We introduced substitutions of leucine for cysteine residues in the vif gene of a full-length HIV-1 clone to analyze their roles in viral infection. Mutant viruses containing substitutions in either Cys-114, Cys-133, or both displayed a vif-negative infection phenotype similar to that of an isogeneic vif deletion mutant, namely, a cell-dependent complete to partial loss of infectivity. The vif defect could be complemented by cotransfection of mutant viral DNA with a Vif expression vector, and there was no evidence that recombination contributed to the repair of the vif deficiency. The viral protein profile, as determined by immunoblotting, in cells infected with cysteine substitution mutants and that in wild-type virus were similar, including the presence of the 23-kDa Vif polypeptide. In addition, immunoblotting with an antiserum directed against the carboxyl terminus of gp41 revealed that gp41 was intact in cells infected with either wild-type or vif mutant HIV-1, excluding that Vif cleaves the C terminus of gp41. Our results indicate that the cysteines in HIV-1 Vif are critical for Vif function in viral infectivity.  相似文献   

7.
Madani N  Kabat D 《Journal of virology》2000,74(13):5982-5987
The vif gene of human immunodeficiency virus type 1 (HIV-1) greatly enhances the infectivity of HIV-1 virions that are released from cells classified as nonpermissive (e.g., lymphocytes, macrophages, and H9 leukemic T cells) but is irrelevant in permissive cells (e.g., HeLa or COS cells). Recently, it was reported that vif expression in nonpermissive cells dramatically increases infectivity not only of HIV-1 but also of other enveloped viruses, including murine leukemia viruses (MLVs). This was surprising in part because MLVs and other murine retroviruses lack vif genes yet replicate efficiently in T lymphocytes. To investigate these issues, we first developed improved methods for producing substantial quantities of HIV-1 virions with vif deletions from healthy H9 cells. These virions had approximately the same amounts of major core proteins and envelope glycoproteins as the control wild-type virions but were only approximately 1% as infectious. We then produced H9 cells that contained wild-type or vif deletion HIV-gpt proviruses, which lack a functional env gene. After superinfection with either xenotropic or amphotropic MLVs, these cells released HIV-gpt virions pseudotyped with an MLV envelope plus replication-competent MLV. Interestingly, the pseudotyped HIV-gpt (vif deletion) virions were noninfectious, whereas the MLV virions simultaneously released from the same H9 cells were fully infectious. These results strongly suggest that the Vif protein functions in a manner that is both cell specific and at least substantially specific for HIV-1 and related lentiviruses. In addition, these results confirm that vif deletion HIV-1 virions from nonpermissive cells are blocked at a postpenetration stage of the infection pathway.  相似文献   

8.
9.
A coding region homologous to the sequence for essential eukaryotic enzyme dUTPase has been identified in different genomic regions of several viral lineages. Unlike the nonprimate lentiviruses (caprine arthritis- encephalitis virus, equine infectious anemia virus, feline immunodeficiency virus, and visna virus), where dUTPase is integrated into the pol coding region, this enzyme has never been demonstrated to be present in the primate lentivirus genomes (human immunodeficiency virus type 1 [HIV-1], HIV-2, or the related simian immunodeficiency virus). A novel approach allowed us to identify a weak but significant sequence similarity between HIV-1 gp120 and the human dUTPase. This finding was then extended to all of the primate lentivirus lineages. Together with the recently reported fragmentary structural similarity between the V3 loop region and the Escherichia coli dUTPase (P. D. Kwong, R. Wyatt, J. Robinson, R. W. Sweet, J. Sodroski, and W. A. Hendrickson, Nature 393:648–659, 1998), our results strongly suggest that an ancestral dUTPase gene has evolved into the present primate lentivirus CD4 and cytokine receptor interacting region of gp120.  相似文献   

10.
Retrovirus tropism can be restricted by cellular factors such as Fv1, Ref1, and Lv1 that inhibit infection by targeting the incoming viral capsid. Here, we show that rodent cells exhibit differential sensitivity to infection by vesicular stomatitis virus G-pseudotyped lentiviruses and that differences between human immunodeficiency virus type 1 and simian immunodeficiency virus (SIVmac) infectivity are sometimes, but not always, governed by determinants in capsid-p2. In at least one case, resistance to SIVmac infection could be eliminated by saturation of target cells with noninfectious SIVmac particles. However, cross-saturation experiments and analysis of Fv1-null cells engineered to express natural or artificial Fv1 proteins revealed that lentivirus restriction in mouse cells is independent of Fv1. Overall, these findings indicate that novel restriction factors in rodents can modulate sensitivity to specific primate lentiviruses.  相似文献   

11.
Because lentiviruses are able to infect nondividing cells, these viruses might be utilized in gene therapy applications where the target cell does not divide. However, it has been suggested that the introduction of primate lentivirus sequences, particularly those of human immunodeficiency virus, into human cells may pose a health risk for the patient. To avoid this concern, we have constructed gene transfer systems based on a nonprimate lentivirus, bovine immunodeficiency virus. A panel of vectors and packaging constructs was generated and analyzed in a transient expression system for virion production and maturation, vector expression and encapsidation, and envelope protein pseudotyping. Virion preparations were also analyzed for transduction efficiency in a panel of human and nonhuman primary cells and immortalized cell lines. The virion preparations transduced most of the target cell types, with efficiencies up to 90% and with titers of unconcentrated virus up to 5 x 10(5) infectious doses/ml. In addition, infection of nondividing human cells, including unstimulated hematopoietic stem cells and irradiated endothelial cells, was observed.  相似文献   

12.
13.
The viral infectivity factor gene vif of human immunodeficiency virus type 1 has been shown to affect the infectivity but not the production of virus particles. In this study, the effect of vif in the context of the HXB2 virus on virus replication in several CD4+ T-cell lines was investigated. vif was found to be required for replication in the CD4+ T-cell lines CEM and H9 as well as in peripheral blood T lymphocytes. vif was not required for replication in the SupT1, C8166, and Jurkat T-cell lines. The infectivity of vif-defective viruses depended on the cell type in which the virus was produced. In CEM cells, vif was required for production of virus capable of initiating infection in all cell lines studied. vif-defective virus produced by SupT1, C8166, and Jurkat cells and the monkey cell line COS-1 could initiate infection in multiple cell lines, including CEM and H9. These results suggest that vif can compensate for cellular factors required for production of infectious virus particles that are present in some cell lines such as SupT1, C8166, and Jurkat but are absent in others such as CEM and H9 as well as peripheral blood T lymphocytes. The effect of vif was not altered by deletion of the carboxyl terminus of gp41, a proposed target for vif (B. Guy, M. Geist, K. Dott, D. Spehner, M.-P. Kieny, and J.-P. Lecocq, J. Virol. 65:1325-1331, 1991). These studies demonstrate that vif enhances viral infectivity during virus production and also suggest that vif is likely to be important for natural infections.  相似文献   

14.
A seroprevalence survey was conducted for simian immunodeficiency virus (SIV) antibody in household pet monkeys in Gabon. Twenty-nine monkeys representing seven species were analyzed. By using human immunodeficiency virus type 2 (HIV-2)/SIVsm, SIVmnd, and SIVagm antigens, one red-capped mangabey (RCM) (Cercocebus torquatus torquatus) was identified as harboring SIV-cross-reactive antibodies. A virus isolate, termed SIVrcm, was subsequently established from this seropositive RCM by cocultivation of its peripheral blood mononuclear cells (PBMC) with PBMC from seronegative humans or RCMs. SIVrcm was also isolated by cocultivation of CD8-depleted RCM PBMC with Molt 4 clone 8 cells but not with CEMx174 cells. The lack of growth in CEMx174 cells distinguished this new SIV from all previously reported sooty mangabey-derived viruses (SIVsm), which grow well in this cell line. SIVrcm was also successfully transmitted (cell free) to human and rhesus PBMC as well as to Molt 4 clone 8 cells. To determine the evolutionary origins of this newly identified virus, subgenomic pol (475 bp) and gag (954 bp) gene fragments were amplified from infected cell culture DNA and sequenced. The position of SIVrcm relative to those of members of the other primate lentivirus lineages was then examined in evolutionary trees constructed from deduced protein sequences. This analysis revealed significantly discordant phylogenetic positions of SIVrcm in the two genomic regions. In trees derived from partial gag sequences, SIVrcm clustered independently from all other HIV and SIV strains, consistent with a new primate lentivirus lineage. However, in trees derived from pol sequences, SIVrcm grouped with the HIV-1/SIVcpz lineage. These findings suggest that the SIVrcm genome is mosaic and possibly is the result of a recombination event involving divergent lentiviruses in the distant past. Further analysis of this and other SIVrcm isolates may shed new light on the origin of HIV-1.  相似文献   

15.
16.
Previously we have described a stepwise, energy-dependent pathway for human immunodeficiency virus type 1 (HIV-1) capsid assembly in a cell-free system. In this pathway, Gag polypeptides utilize the cellular factor HP68 and assemble into immature capsids by way of assembly intermediates that have defined biochemical characteristics. Here we address whether this pathway is universally conserved among primate lentiviruses and can be observed in mammalian cells. We demonstrate that HIV-2 Gag associates with human HP68 in a cell-free system and that Gag proteins of HIV-2, simian immunodeficiency virus SIVmac239, and SIVagm associate with endogenous HP68 in primate cells, as is seen for HIV-1. Analysis of primate cells expressing lentivirus Gag proteins revealed Gag-containing complexes with the same sedimentation values as seen for previously described HIV-1 assembly intermediates in the cell-free system (10S, 80-150S, and 500S). These complexes fit criteria for assembly intermediates as judged by energy sensitivity, pattern of HP68 association, and the failure of specific complexes to be formed by assembly-incompetent Gag mutants. We also demonstrate that virus-like particles released from cells do not appear to contain HP68, suggesting that HP68 is released from Gag upon completion of capsid assembly in cells, as was observed previously in the cell-free system. Together these findings support a model in which all primate lentivirus capsids assemble by a conserved pathway of HP68-containing, energy-dependent assembly intermediates that have specific biochemical features.  相似文献   

17.
18.
Development of safe and effective gene transfer systems is critical to the success of gene therapy protocols for human diseases. Currently, several primate lentivirus-based gene transfer systems, such as those based on human and simian immunodeficiency viruses (HIV/SIV), are being tested; however, their use in humans raises safety concerns, such as the generation of replication-competent viruses through recombination with related endogenous retroviruses or retrovirus-like elements. Due to the greater phylogenetic distance from primate lentiviruses, feline immunodeficiency virus (FIV) is becoming the lentivirus of choice for human gene transfer systems. However, the safety of FIV-based vector systems has not been tested experimentally. Since lentiviruses such as HIV-1 and SIV have been shown to cross-package their RNA genomes, we tested the ability of FIV RNA to get cross-packaged into primate lentivirus particles such as HIV-1 and SIV, as well as a nonlentiviral retrovirus such as Mason-Pfizer monkey virus (MPMV), and vice versa. Our results reveal that FIV RNA can be cross-packaged by primate lentivirus particles such as HIV-1 and SIV and vice versa; however, a nonlentivirus particle such as MPMV is unable to package FIV RNA. Interestingly, FIV particles can package MPMV RNA but cannot propagate the vector RNA further for other steps of the retrovirus life cycle. These findings reveal that diverse retroviruses are functionally more similar than originally thought and suggest that upon coinfection of the same host, cross- or copackaging may allow distinct retroviruses to generate chimeric variants with unknown pathogenic potential.  相似文献   

19.
We analyzed the function of human immunodeficiency virus type 1 (HIV-1) vif gene from Japanese long-term nonprogressors (LTNPRs) and progressors (PRs) for acquired immunodeficiency syndrome (AIDS). We constructed a basic HIV-1 infectious clone, which facilitated the incorporation and evaluation of vif from infected individuals. Proviral reporter clones carrying vif from six Japanese LTNPRs and seven PRs were then generated and their in vitro growth kinetics were analyzed. The vif clones, which could confer infectivity on reporter viruses, were considered active, and the ratio of the active clones to the number of clones examined per individual was determined. For the majority of LTNPRs, there was no correlation between presence or absence of functional vif with long-term nonprogression for AIDS. There was one exception in which all the clones examined had inactive vif, suggesting a probable association of inactive vif with the nonprogression. All PRs with high viral load had a high ratio of active vif clones. Our results suggest that the presence of functional vif would influence HIV-1 infectivity and disease progression in infected individuals.  相似文献   

20.
A highly sensitive single-round infection assay using a bacterial chloramphenicol acetyltransferase was developed to analyze an early stage of human immunodeficiency virus type 1 replication. By a combination of transfection and single-round infection assay, a virus with a vif mutation, depending on host cells from which the virus was derived, was demonstrated to be defective at the early phase of infection cycle. Analysis of viral proteins synthesized in cells indicated that incorporation of the Env surface protein into virions of the vif mutant, again in a cell-dependent way, was greatly restricted. Taken together, it is concluded that the Vif protein acts through modulation of the Env protein in the virions, directly or indirectly, to enhance viral infectivity in a certain cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号