首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of ethylene biosynthesis in pine needles by hydrogen peroxide and sodium bisulfite coincided with the activation of ACC oxidase at the level of protein synthesis. Decrease in ethylene production at high concentrations of sodium bisulfite (above 7 mM) was apparently due to inhibition of ACC oxidase activity. Treatment of pine needles with aminotriazole caused an inhibition of both ethylene production and ACC oxidase activity. Both methylviologen and methyl jasmonate stimulated ACC oxidase activity in a concentration-dependent manner with no parallel changes in ethylene production. The presented results suggest that ACC oxidase plays an important role in regulation of ethylene formation in pine needles in response to different stimuli.  相似文献   

2.
3.
4.
5.
The temporal and spatial expression of one member of the Arabidopsis 1-aminocyclopropane-1-carboxylate (ACC) synthase gene family (ACS1) was analyzed using a promoter-[beta]-glucuronidase fusion. The expression of ACS1 is under developmental control both in shoot and root. High expression was observed in young tissues and was switched off in mature tissues. ACS1 promoter activity was strongly correlated with lateral root formation. Dark-grown seedlings exhibited a different expression pattern from light-grown ones. The ACC content and the in vivo activity of ACC oxidase were determined. ACC content correlated with ACS1 gene activity. ACC oxidase activity was demonstrated in young Arabidopsis seedlings. Thus, the ACC formed can be converted into ethylene. In addition, ethylene production of immature leaves was fourfold higher compared to that of mature leaves. The possible involvement of ACS1 in influencing plant growth and development is discussed.  相似文献   

6.
Koch KA  Capitani G  Gruetter MG  Kirsch JF 《Gene》2001,272(1-2):75-84
The sequences of genes encoding homologues of 1-aminocyclopropane-1-carboxylate (ACC) synthase, the first enzyme in the two-step biosynthetic pathway of the important plant hormone ethylene, have recently been found in Fugu rubripes and Homo sapiens (Peixoto et al., Gene 246 (2000) 275). ACC synthase (ACS) catalyzes the formation of ACC from S-adenosyl-L-methionine. ACC is oxidized to ethylene in the second and final step of ethylene biosynthesis. Profound physiological questions would be raised if it could be demonstrated that ACC is formed in animals, because there is no known function for ethylene in these organisms. We describe the cloning of the putative human ACS (PHACS) cDNA that encodes a 501 amino acid protein that exhibits 58% sequence identity to the putative Fugu ACS and approximately 30% sequence identity to plant ACSs. Purified recombinant PHACS, expressed in Pichia pastoris, contains bound pyridoxal-5'-phosphate (PLP), but does not catalyze the synthesis of ACC. PHACS does, however, catalyze the deamination of L-vinylglycine, a known side-reaction of apple ACS. Bioinformatic analysis indicates that PHACS is a member of the alpha-family of PLP-dependent enzymes. Molecular modeling data illustrate that the conservation of residues between PHACS and the plant ACSs is dispersed throughout its structure and that two active site residues that are important for ACS activity in plants are not conserved in PHACS.  相似文献   

7.
A plant hormone, ethylene, is formed through 1-aminocyclopropane-1-carboxylic acid (ACC). A fungus, Penicillium citrinum, was found to synthesize ACC and to degrade ACC into 2-oxobutyrate and ammonia. ACC synthase, responsible for ACC synthesis in P. citrinum, was characterized on the molecular level by sequencing of N terminal and proteolytic peptides of the enzyme, and cloning and sequencing of its cDNA. The ACC synthase from P. citrinum had 430 amino acid residues and a shorter C terminal than the plant enzyme. The enzyme purified from Escherichia coli transformed with ACC-synthase-encoding DNA showed similar properties to those of the purified enzyme from P. citrinum. Saccharomyces cerevisiae with ACC synthase accumulated ACC in the medium with increasing time of incubation. The sequence of ACC synthase from P. citrinum was compared with that of the plant enzyme with discussion about important residues for catalysis.  相似文献   

8.
9.
10.
An Overview of the Biology of Reaction Wood Formation   总被引:1,自引:0,他引:1  
Reaction wood possesses altered properties and performs the function of regulating a tree's form, but it is a serious defect in wood utility. Trees usually develop reaction wood in response to a gravistimulus. Reaction wood in gymnosperms is referred to as compression wood and develops on the lower side of leaning stems or branches. In arboreal, dicotyledonous angiosperms, however, it is called tension wood and is formed on the upper side of the leaning. Exploring the biology of reaction wood formation is of great value for the understanding of the wood differentiation mechanisms, cambial activity, gravitropism, and the systematics and evolution of plants. After giving an outline of the variety of wood and properties of reaction wood, this review lays emphasis on various stimuli for reaction wood induction and the extensive studies carried out so far on the roles of plant hormones in reaction wood formation. Inconsistent results have been reported for the effects of plant hormones. Both auxin and ethylene regulate the formation of compression wood in gymnosperms. However, the role of ethylene may be indirect as exogenous ethylene cannot induce compression wood formation. Tension wood formation is mainly regulated by auxin and gibberellin. Interactions among hormones and other substances may play important parts in the regulation of reaction wood formation.  相似文献   

11.
The plant hormone ethylene is believed to be responsible for the ability of rice to grow in the deepwater regions of Southeast Asia. Ethylene production is induced by hypoxia, which is caused by flooding, because of enhanced activity of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, the key enzyme in the ethylene biosynthetic pathway. We have cloned three divergent members, (OS-ACS1, OS-ACS2, and OS-ACS3), of a multigene family encoding ACC synthase in rice. OS-ACS1 resides on chromosome 3 and OS-ACS3 on chromosome 5 in the rice genome. The OS-ACS1 and OS-ACS3 genes are induced by anaerobiosis and indoleacetic acid (IAA) + benzyladenine (BA) + LiCl treatment. The anaerobic induction is differential and tissue specific; OS-ACS1 is induced in the shoots, whereas OS-ACS3 is induced in the roots. These inductions are insensitive to protein synthesis inhibitors, suggesting that they are primary responses to the inducers. All three genes are actually induced when protein synthesis is inhibited, indicating that they may be under negative control or that their mRNAs are unstable. The OS-ACS1 gene was structurally characterized, and the function of its encoded protein (M(r) = 53 112 Da, pI 8.2) was confirmed by expression experiments in Escherichia coli. The protein contains all eleven invariant amino acid residues that are conserved between aminotransferases and ACC synthases cloned from various dicotyledonous plants. The amino acid sequence shares significant identity to other ACC synthases (69-34%) and is more similar to sequences in other plant species (69% with the tomato LE-ACS3) than to other rice ACC synthases (50-44%). The data suggest that the extraordinary degree of divergence among ACC synthase isoenzymes within each species arose early in plant evolution and before the divergence of monocotyledonous and dicotyledonous plants.  相似文献   

12.
13.
14.
15.
Riov J  Yang SF 《Plant physiology》1982,69(3):687-690
Wound ethylene formation induced in flavede tissue of citrus fruit (Citrus paradisi MacFad. cv. Ruby Red) by slicing was almost completely inhibited by exogenous ethylene. The inhibition lasted for at least 6 hours after removal of exogenous ethylene and was then gradually relieved. The extent of inhibition was dependent upon the concentration of ethylene (1 to 10 microliters/liter) and the duration of treatment. The increase in wound ethylene production in control discs was paralleled by an increase in 1-aminocyclopropane-1-carboxylic acid (AAC) content, whereas in ethylene-treated discs there was little increase in ACC content. Application of ACC completely restored ethylene production in ethylene-pretreated discs, indicating that the conversion of ACC to ethylene is not impaired by the presence of ethylene. Thus, autoinhibition of ethylene synthesis was exerted by reducing the availability of ACC. Ethylene treatment resulted in a decrease in extractable ACC synthase activity, but this decrease was too small to account for the marked inhibition of ACC formation. The data indicate that autoinhibition of ethylene production in citrus flavede discs results from suppression of ACC formation through repression of the synthesis of ACC synthase and inhibition of its activity.  相似文献   

16.
Ethylene performs an important function in plant growth and development. 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), the key enzyme involved in ethylene biosynthesis, has been the focus of most ethylene studies. Here, a cotton ACS gene referred to as Gossypium hirsutum ACS1 (GhACS1), was isolated. The full-length cDNA of GhACS1 encodes for a 476-amino acid protein which harbors seven conserved regions, 11 invariant amino acid residues, and the PLP binding active site, all of which characterize ACC synthases. Alignment analysis showed that GhACS1 shared a high degree of identity with other known ACC synthases from different species. Two introns were detected in the genomic DNA sequence, and the results of Southern blot analysis suggested that there might be a multi-gene family encoding for ACC synthase in cotton. From the phylogenetic tree constructed with 24 different kinds of ACC synthases, we determined that GhACS1 falls into group II, and was closely associated with the wound-inducible ACS of citrus. The analysis of the 5' flanking region of GhACS1 revealed a group of putative cis-acting elements. The results of expression analysis showed that GhACS1 displayed its transient expression nature after wounding, abscisic acid (ABA), and CuCl(2) treatments. These results indicate that GhACS1, which was transiently expressed in response to certain stimuli, may be involved in the production of ethylene for the transmission of stress signals.  相似文献   

17.
Bradyrhizobium elkanii produces rhizobitoxine, an enol-ether amino acid, which has been regarded as a phytotoxin because it causes chlorosis in soybeans. However, recent studies have revealed that rhizobitoxine plays a positive role in establishing symbiosis between B. elkanii and host legumes: rhizobitoxine enhances the nodulation process by inhibiting ACC (1-aminocyclopropane-1-carboxylate) synthase in the ethylene biosynthesis of host roots. B. elkanii rtxA and rtxC genes are required for rhizobitoxine production. In particular, rtxC gene is involved in the desaturation of dihydrorhizobitoxine into rhizobitoxine. A legume with a mutated ethylene receptor gene produced markedly higher numbers of rhizobial infection threads and nodule primordia. Thus, endogenous ethylene in legume roots negatively regulates the formation of nodule primordia, which is overcome by rhiozbitoxine. Although a plant pathogen Burkholderia andropogonis has been known to produce rhizobitoxine, the genome sequence of Xanthomonas oryzae showed the existence of a putative rhizobitoxine transposon in the genome. The cumulative evidence suggests that rhizobitoxine-producing bacteria modulate plant-microbe interactions via ethylene in the rhizosphere and phyllosphere environments. In addition, rhizobitoxine-producing capability might be utilized as tools in agriculture and biotechnology.  相似文献   

18.
Using degenerate oligonucleotides that correspond to conserved amino acid residues of known 1-aminocyclopropane-1-carboxylic acid (ACC) synthases, we cloned a genomic fragment that encodes ACC synthase in Stellaria longipes. Southern analysis suggests that ACC synthase is encoded by a small gene family comprising about 4 members. We isolated four unique ACC synthase cDNA clones under different growth conditions from alpine and prairie ecotypes of S. longipes. Northern analyses suggest that ACC synthase genes are differentially and synergistically regulated by photoperiod and temperature. Such differential regulation of ACC synthase genes positively correlate with the levels of ACC and ethylene. Since ethylene has previously been shown to partly control the stem elongation plasticity in S. longipes, we propose that differential regulation of ACC synthase genes may represent one of the underlying molecular mechanisms of phenotypic plasticity in S. longipes.  相似文献   

19.
We have already described how 1-aminocyclopropane-1-carboxylic acid (ACC), which is a precursor of the plant hormone ethylene, is synthesized in Penicillium citrinum through the same reaction by the catalysis of ACC synthase [EC 4.4.1.14] as in higher plants. In addition, ACC deaminase [EC 4.1.99.4], which degrades ACC to 2-oxobutyrate and ammonia, was also purified from this strain. To study control of induction of ACC deaminase in this organism, we have isolated and analyzed the cDNA of P. citrinum ACC deaminase and studied the expression of ACC deaminase mRNA in P. citrinum cells. By the analysis of peptides from the digests of the purified and modified ACC deaminase with lysylendopeptidase, 70 % of its amino acid sequences were obtained. These amino acid sequences were used to identify a cDNA, consisting of 1,233 bp with an open reading frame of 1,080 bp encoding ACC deaminase with 360 amino acids. The deduced amino acids from the cDNA are identical by 52% and 45% to those of enzymes of Pseudomonas sp. ACP and Hansenula saturnus. Through Northern blot analysis, we found that the mRNA of ACC deaminase was expressed in P. citrinum cells grown in a medium containing 0.05% L-methionine. These findings suggest that ACC synthesized by ACC synthase and accumulated in P. citrinum intracellular spaces can induce the ACC deaminase that degrades the ACC.  相似文献   

20.
Our understanding of the contribution of Golgi proteins to cell wall and wood formation in any woody plant species is limited. Currently, little Golgi proteomics data exists for wood-forming tissues. In this study, we attempted to address this issue by generating and analyzing Golgi-enriched membrane preparations from developing xylem of compression wood from the conifer Pinus radiata. Developing xylem samples from 3-year-old pine trees were harvested for this purpose at a time of active growth and subjected to a combination of density centrifugation followed by free flow electrophoresis, a surface charge separation technique used in the enrichment of Golgi membranes. This combination of techniques was successful in achieving an approximately 200-fold increase in the activity of the Golgi marker galactan synthase and represents a significant improvement for proteomic analyses of the Golgi from conifers. A total of thirty known Golgi proteins were identified by mass spectrometry including glycosyltransferases from gene families involved in glucomannan and glucuronoxylan biosynthesis. The free flow electrophoresis fractions of enriched Golgi were highly abundant in structural proteins (actin and tubulin) indicating a role for the cytoskeleton during compression wood formation. The mass spectrometry proteomics data associated with this study have been deposited to the ProteomeXchange with identifier PXD000557.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号