首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manduca sexta (L.) larvae were unable to discriminate between transgenic tobacco leaves expressing high or low levels of phenylalanine ammonia-lyase (PAL) in dual choice arenas. Tobacco leaves overexpressing PAL had up to ten times more chlorogenic acid and up to twice as much rutin in their leaves than leaves containing the same sense-suppressed gene. Caterpillars reared previously on artificial diet or tobacco leaves had no preference for either leaves over- or underexpressing PAL. Application of exogenous chlorogenic acid to PAL-suppressed leaves at levels similar to the overexpressed leaves did not affect M. sexta's choice. When applied at higher rates, treated leaves were preferred by caterpillars reared on tobacco leaves but not by diet-reared larvae. Our results with leaves confirm earlier studies with M. sexta using simpler substrates and mixtures of test compounds and provides further evidence that leaf phenolics, such as chlorogenic acid, do not act as feeding deterrents for larval M. sexta.  相似文献   

2.
Tobacco plants over-expressing L-phenylalanine ammonia-lyase (PAL(+)) produce high levels of chlorogenic acid (CGA) and exhibit markedly reduced susceptibility to infection with the fungal pathogen Cercospora nicotianae, although their resistance to tobacco mosaic virus (TMV) is unchanged. Levels of the signal molecule salicylic acid (SA) were similar in uninfected PAL(+) and control plants and also following TMV infection. In crosses of PAL(+) tobacco with tobacco harboring the bacterial NahG salicylate hydroxylase gene, progeny harboring both transgenes lost resistance to TMV, indicating that SA is critical for resistance to TMV and that increased production of phenylpropanoid compounds such as CGA cannot substitute for the reduction in SA levels. In contrast, PAL(+)/NahG plants showed strongly reduced susceptibility to Cercospora nicotianae compared to the NahG parent line. These results are consistent with a recent report questioning the role of PAL in SA biosynthesis in Arabidopsis, and highlight the importance of phenylpropanoid compounds such as CGA in plant disease resistance.  相似文献   

3.
4.
5.
Understanding regulation of phenolic metabolism underpins attempts to engineer plants for diverse properties such as increased levels of antioxidant flavonoids for dietary improvements or reduction of lignin for improvements to fibre resources for industrial use. Previous attempts to alter phenolic metabolism at the level of the second enzyme of the pathway, cinnamate 4-hydroxylase have employed antisense expression of heterologous sequences in tobacco. The present study describes the consequences of homologous sense expression of tomato CYP73A24 on the lignin content of stems and the flavonoid content of fruits. An extensive number of lines were produced and displayed four developmental variants besides a normal phenotype. These aberrant phenotypes were classified as dwarf plants, plants with distorted (curly) leaves, plants with long internodes and plants with thickened waxy leaves. Nevertheless, some of the lines showed the desired increase in the level of rutin and naringenin in fruit in a normal phenotype background. However this could not be correlated directly to increased levels of PAL and C4H expression as other lines showed less accumulation, although all lines tested showed increases in leaf chlorogenic acid which is typical of Solanaceous plants when engineered in the phenylpropanoid pathway. Almost all transgenic lines analysed showed a considerable reduction in stem lignin and in the lines that were specifically examined, this was correlated with partial sense suppression of C4H. Although not the primary purpose of the study, these reductions in lignin were amongst the greatest seen in plants modified for lignin by manipulation of structural genes. The lignin showed higher syringyl to coniferyl monomeric content contrary to that previously seen in tobacco engineered for downregulation of cinnamate 4-hydroxylase. These outcomes are consistent with placing CYP73A24 more in the lignin pathway and having a role in flux control, while more complex regulatory processes are likely to be involved in flavonoid and chlorogenic acid accumulation.  相似文献   

6.
Chorismate mutase (CM, EC 5.4.99.5), phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and chalcone synthase (CHS, EC 2.3.1.74) activities were studied in constitutive salicylic acid-producing (CSA) tobacco plants in relation to the accumulation of flavonoids and chlorogenic acid. The CM, PAL and CHS activities in CSA-tobacco (Nicotiana tabacum cv. Samsun NN) plants were lower than in non-transgenic tobacco plants. Flavonoid and chlorogenic acid accumulation was suppressed in CSA-tobacco plants compared to those of non-transgenic tobacco plants.  相似文献   

7.
Pharmacological evidence implicates trans-cinnamic acid as a feedback modulator of the expression and enzymatic activity of the first enzyme in the phenylpropanoid pathway, L-phenylalanine ammonia-lyase (PAL). To test this hypothesis independently of methods that utilize potentially non-specific inhibitors, we generated transgenic tobacco lines with altered activity levels of the second enzyme of the pathway, cinnamic acid 4-hydroxylase (C4H), by sense or antisense expression of an alfalfa C4H cDNA. PAL activity and levels of phenylpropanoid compounds were reduced in leaves and stems of plants in which C4H activity had been genetically down-regulated. However, C4H activity was not reduced in plants in which PAL activity had been down-regulated by gene silencing. In crosses between a tobacco line over-expressing PAL from a bean PAL transgene and a C4H antisense line, progeny populations harboring both the bean PAL sense and C4H antisense transgenes had significantly lower extractable PAL activity than progeny populations harboring the PAL transgene alone. Our data provide genetic evidence for a feedback loop at the entry point into the phenylpropanoid pathway that had previously been inferred from potentially artifactual pharmacological experiments.  相似文献   

8.
Cytokinins (CKs) are involved in the regulation of plant development including plastid differentiation and function. Partial location of CK biosynthetic pathways in plastids suggests the importance of CKs for chloroplast development. The impact of genetically modified CK metabolism on endogenous CK, indole-3-acetic acid, and abscisic acid contents in leaves and isolated intact chloroplasts of Nicotiana tabacum was determined by liquid chromatography/mass spectrometry and two-dimensional high-performance liquid chromatography, and alterations in chloroplast ultrastructure by electron microscopy. Ectopic expression of Sho, a gene encoding a Petunia hybrida isopentenyltransferase, was employed to raise CK levels. The increase in CK levels was lower in chloroplasts than in leaves. CK levels were reduced in leaves of tobacco harbouring a CK oxidase/dehydrogenase gene, AtCKX3. The total CK content also decreased in chloroplasts, but CK phosphate levels were higher than in the wild type. In a transformant overexpressing a maize beta-glucosidase gene, Zm-p60.1, naturally targeted to plastids, a decrease of CK-O-glucosides in chloroplasts was found. In leaves, the changes were not significant. CK-O-glucosides accumulated to very high levels in leaves, but not in chloroplasts, of plants overexpressing a ZOG1 gene, encoding trans-zeatin-O-glucosyltransferase from Phaseolus lunatus. Manipulation of the CK content affected levels of indole-3-acetic and abscisic acid. Chloroplasts of plants constitutively overexpressing Sho displayed ultrastructural alterations including the occasional occurrence of crystalloids and an increased number of plastoglobuli. The other transformants did not exhibit any major differences in chloroplast ultrastructure. The results suggest that plant hormone compartmentation plays an important role in hormone homeostasis and that chloroplasts are rather independent organelles with respect to regulation of CK metabolism.  相似文献   

9.
Metabolic channeling has been proposed to occur at the entry point into plant phenylpropanoid biosynthesis. To determine whether isoforms of L-Phe ammonia-lyase (PAL), the first enzyme in the pathway, can associate with the next enzyme, the endomembrane-bound cinnamate 4-hydroxylase (C4H), to facilitate channeling, we generated transgenic tobacco (Nicotiana tabacum) plants independently expressing epitope-tagged versions of two PAL isoforms (PAL1 and PAL2) and C4H. Subcellular fractionation and protein gel blot analysis using epitope- and PAL isoform-specific antibodies indicated both microsomal and cytosolic locations of PAL1 but only cytosolic localization of PAL2. However, both PAL isoforms were microsomally localized in plants overexpressing C4H. These results, which suggest that C4H itself may organize the complex for membrane association of PAL, were confirmed using PAL-green fluorescent protein (GFP) fusions with localization by confocal microscopy. Coexpression of unlabeled PAL1 with PAL2-GFP resulted in a shift of fluorescence localization from endomembranes to cytosol in C4H overexpressing plants, whereas coexpression of unlabeled PAL2 with PAL1-GFP did not affect PAL1-GFP localization, indicating that PAL1 has a higher affinity for its membrane localization site than does PAL2. Dual-labeling immunofluorescence and fluorescence energy resonance transfer (FRET) studies confirmed colocalization of PAL and C4H. However, FRET analysis with acceptor photobleaching suggested that the colocalization was not tight.  相似文献   

10.
The effects of boron (B) deficiency on several phenolics and enzyme activities involved in the biosynthesis of these compounds were investigated in tobacco plants (Nicotiana tabacum L. cv. Gatersleben). The levels of phenylpropanoids (mainly the caffeic acid esters, chlorogenic acid and its isomers) as well as phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and polyphenoloxidase (PPO, EC 1.14.18.1) activities were determined in plants subjected to B starvation for 1–7 d. The results presented here show that a short-term B deficiency causes both quantitative and qualitative changes in the phenolic metabolism of tobacco plants, which are especially evident after 3 d of B starvation. Although the concentration of B decreased from the onset of B starvation, root B level was less affected than leaf B by a short-term B deficiency. The concentration of phenylpropanoids as well as PAL and PPO activities increased mainly in the leaves of tobacco plants during B starvation. Moreover, leaves starved of B for 7 d showed the accumulation of new compounds, one of which was identified as caffeoylputrescine. In addition, a positive correlation between PAL activity and phenylpropanoid concentration was observed in tobacco leaves, especially after 5–7 d of B starvation, suggesting that an increase in PAL activity during B starvation could be responsible for the enhancement in the levels of phenylpropanoids.  相似文献   

11.
Salicylic acid (SA) has been shown to act as a signal molecule that is produced by many plants subsequent to the recognition of potentially pathogenic microbes. Increases in levels of SA often trigger the activation of plant defenses and can result in increased resistance to subsequent challenge by pathogens. We observed that the polyketide 6-methylsalicylic acid (6-MeSA), a compound that apparently is not endogenous to tobacco, can mimic SA. Tobacco leaves treated with 6-MeSA show enhanced accumulation of the pathogenesis-related (PR) proteins PR1, beta-1,3-glucanase, and chitinase and also develop increased resistance to tobacco mosaic virus. We transformed tobacco with 6msas, the 6-methylsalicylic acid synthase (6MSAS) gene from Penicillium patulum, to generate plants that constitutively accumulate 6-MeSA. Analysis of primary transformants and the first generation progeny of 6MSAS tobacco revealed that plants can be engineered to accumulate significant amounts of 6-MeSA as a conjugate. Levels of total 6-MeSA increased with plant age. Increased 6-MeSA accumulation correlated with increased levels of PR1 and chitinase proteins and resulted in enhanced resistance of NN genotype 6MSAS tobacco to tobacco mosaic virus. Our results demonstrate that a multistep biosynthetic pathway can be engineered into plants using a single fungal polyketide synthase gene. The functional expression of 6msas can be used to activate disease resistance pathways that normally are induced by SA.  相似文献   

12.
13.
14.
Interactions between nitrogen and carbon metabolism modulate many aspects of the metabolism, physiology and development of plants. This paper investigates the contribution of nitrate and nitrogen metabolism to the regulation of phenylpropanoid and nicotine synthesis. Wild-type tobacco was grown on 12 or 0.2 mm nitrate and compared with a nitrate reductase-deficient mutant [Nia30(145)] growing on 12 mm nitrate. Nitrate-deficient wild-type plants accumulate high levels of a range of phenylpropanoids including chlorogenic acid, contain high levels of rutin, are highly lignified, but contain less nicotine than nitrogen-replete wild-type tobacco. Nia30(145) resembles nitrate-deficient wild-type plants with respect to the levels of amino acids, but accumulates large amounts of nitrate. The levels of phenylpropanoids, rutin and lignin resemble those in nitrogen-replete wild-type plants, whereas the level of nicotine resembles that in nitrate-deficient wild-type plants. Expression arrays and real time RT-PCR revealed that a set of genes required for phenylpropanoid metabolism including PAL, 4CL and HQT are induced in nitrogen-deficient wild-type plants but not in Nia30(145). It is concluded that nitrogen deficiency leads to a marked shift from the nitrogen-containing alkaloid nicotine to carbon-rich phenylpropanoids. The stimulation of phenylpropanoid metabolism is triggered by changes of nitrate, rather than downstream nitrogen metabolites, and is mediated by induction of a set of enzymes in the early steps of the phenylpropanoid biosynthetic pathway.  相似文献   

15.
The response of tobacco (Nicotiana tabacum L. cv. Xanthinc) plants, epigenetically suppressed for phenylalanine ammonia-lyase (PAL) activity, was studied following infection by tobacco mosaic virus (TMV). These plants contain a bean PAL2 transgene in the sense orientation, and have reduced endogenous tobacco PAL mRNA and suppressed production of phenylpropanoid products. Lesions induced by TMV infection of PAL-suppressed plants are markedly different in appearance from those induced on control plants that have lost the bean transgene through segregation, with a reduced deposition of phenofics. However, they develop at the same rate as on control tobacco, and pathogenesis-related (PR) proteins are induced normally upon primary infection. The levels of free salicylic acid (SA) produced in primary inoculated leaves of PAL-suppressed plants are approximately fourfold lower than in control plants after 84 h, and a similar reduction is observed in systemic leaves. PR proteins are not induced in systemic leaves of PAL-suppressed plants, and secondary infection with TMV does not result in the restriction of lesion size and number seen in control plants undergoing systemic acquired resistance (SAR). In grafting experiments between wild-type and PAL-suppressed tobacco, the SAR response can be transmitted from a PAL-suppressed root-stock, but SAR is not observed if the scion is PAL-suppressed. This indicates that, even if SA is the systemic signal for establishment of SAR, the amount of pre-existing phenylpropanoid compounds in systemic leaves, or the ability to synthesize further phenylpropanoids in response to the systemic signal, may be important for the establishment of SAR. Treatment of PAL-suppressed plants with dichloro-isonicotinic acid (INA) induces PR protein expression and SAR against subsequent TMV infection. However, treatment with SA, while inducing PR proteins, only partially restores SAR, further suggesting that de novo synthesis of SA, and/or the presence or synthesis of other phenylpropanoids, is required for expression of resistance in systemic leaves.  相似文献   

16.
Zhang W  Yang X  Qiu D  Guo L  Zeng H  Mao J  Gao Q 《Molecular biology reports》2011,38(4):2549-2556
Systemic acquired resistance (SAR) is an inducible defense mechanism which plays a central role in protecting plants from pathogen attack. A new elicitor, PeaT1 from Alternaria tenuissima, was expressed in Escherichia coil and characterized with systemic acquired resistance to tobacco mosaic virus (TMV). PeaT1-treated plants exhibited enhanced systemic resistance with a significant reduction in number and size of TMV lesions on wild tobacco leaves as compared with control. The quantitative analysis of TMV CP gene expression with real-time quantitative PCR showed there was reduction in TMV virus concentration after PeaT1 treatment. Similarly, peroxidase (POD) activity and lignin increased significantly after PeaT1 treatment. The real-time quantitative PCR revealed that PeaT1 also induced the systemic accumulation of pathogenesis-related gene, PR-1a and PR-1b which are the markers of systemic acquired resistance (SAR), NPR1 gene for salicylic acid (SA) signal transduction pathway and PAL gene for SA synthesis. The accumulation of SA and the failure in development of similar level of resistance as in wild type tobacco plants in PeaT1 treated nahG transgenic tobacco plants indicated that PeaT1-induced resistance depended on SA accumulation. The present work suggested that the molecular mechanism of PeaT1 inducing disease resistance in tobacco was likely through the systemic acquired resistance pathway mediated by salicylic acid and the NPR1 gene.  相似文献   

17.
The tumour-inducing T-DNA gene 4 (T-cyt gene) of the nopaline Ti plasmid pTiC58 was cloned and introduced into tobacco cells by leaf disc transformation using Agrobacterium plasmid vectors. Tobacco shoots exposed to elevated cytokinin levels were unable to develop roots and lacked apical dominance. Using exogenously applied phytohormone manipulations we were able to regenerate morphologically normal transgenic tobacco plants which differed in endogenous cytokinin levels from normal untransformed plants. Although T-cyt gene mRNA levels, as revealed by dot-blot hybridization data, in these rooting plants were only about half those in primary transformed shoots the total amount of cytokinins was much lower than in crown gall tissue or cytokinin-type transformed shoots as reported by others. Nevertheless the cytokinin content in T-cyt plants was about 3 times greater than in control tobacco plants.Elevated cytokinin levels have been shown to change the expression of several plant genes, including some nuclear genes encoding chloroplast proteins. Our results show that the mRNA levels of chloroplast rbcL gene increase in cytokinin-type transgenic tobacco plants as compared with untransformed plants. Data obtained suggest that T-cyt transgenic plants are a good model for studying plant gene activity in different parts of the plant under endogenous cytokinin stress.  相似文献   

18.
19.
To investigate the contribution of farnesyl diphosphate synthase (FPS) to the overall control of the mevalonic acid pathway in plants, we have generated transgenic Arabidopsis thaliana overexpressing the Arabidopsis FPS1S isoform. Despite high levels of FPS activity in transgenic plants (8- to 12-fold as compared to wild-type plants), the content of sterols and the levels of 3-hydroxy-3-methylglutaryl-CoA reductase activity in leaves were similar to those in control plants. Plants overexpressing FPS1S showed a cell death/senescence-like phenotype and grew less vigorously than wild-type plants. The onset and the severity of these phenotypes directly correlated with the levels of FPS activity. In leaves of plants with increased FPS activity, the expression of the senescence activated gene SAG12 was prematurely induced. Transgenic plants grown in the presence of either mevalonic acid (MVA) or the cytokinin 2-isopentenyladenine (2-iP) recovered the wild-type phenotype. Quantification of endogenous cytokinins demonstrated that FPS1S overexpression specifically reduces the levels of endogenous zeatin-type cytokinins in leaves. Altogether these results support the notion that increasing FPS activity without a concomitant increase of MVA production leads to a reduction of IPP and DMAPP available for cytokinin biosynthesis. The reduced cytokinin levels would be, at least in part, responsible for the phenotypic alterations observed in the transgenic plants. The finding that wild-type and transgenic plants accumulated similar increased amounts of sterols when grown in the presence of exogenous MVA suggests that FPS1S is not limiting for sterol biosynthesis.  相似文献   

20.
Changes in the levels of secondary compounds can trigger plant defenses. To identify phenolic compounds induced by Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) in tobacco (Nicotiana tobacco L.), the content changes of 11 phenolic compounds in plants infested by B. tabaci MEAM1 or Trialeurodes vaporariorum were compared. The chlorogenic acid, catechin, caffeic acid, p-coumaric acid, rutin, and ferulic acid contents in B. tabaci MEAM1-infested tobacco plants increased significantly, having temporal and spatial effects, compared with uninfested control and T. vaporariorum infested plants. The contents were 4.10, 2.84, 2.25, 3.81, 1.46, and 1.91 times higher, respectively, than those in the control. However, a T. vaporariorum nymphal infestation just caused smaller chlorogenic acid, catechin, caffeic acid, and rutin contents increase, which were 2.33, 2.13, 1.59, and 3.19 times higher, respectively, than those in the control. In B. tabaci MEAM1 third-instar nymph-infested plants, chlorogenic acid, catechin, caffeic acid, and rutin increased more significantly in systemic than in local leaves. Salicylate-deficient plants inhibited the induction of the content of 10 phenolic compounds, but not caffeic acid, after a B. tabaci MEAM1 nymphal infestation. Thus, the elevated levels of phenolic compounds induced by B. tabaci MEAM1 were correlated with the salicylic acid signaling pathway and induced the responses of defense-related phenolic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号