首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novick &; Weiner (1957) proposed a model in which induction of the lac operon with suboptimal concentrations of inducer generates a population containing both uninduced and fully induced cells. The latter arise as cells acquire the galactoside transport system, thus initiating an autocatalytic cycle of induction since this permease can transport an inducer for its own synthesis. Evidence in favor of this model has been obtained from direct measurements of the enzyme content of individual cells, using a fluorogenic assay sensitive to one molecule of β-d-galactosidase. Fully induced cells, at the predicted frequency, were found in suboptimally induced populations of wild type strains, and of a strain lacking thiogalactoside transacetylase, but not of a strain lacking galactoside permease. In the wild type, the frequency of cells with an enzyme content intermediate between uninduced and fully induced levels was greater than the frequency predicted for cells within the autocatalytic cycle of induction. According to the model, then, in some of these cells, induction of β-d-galactosidase has occurred without formation of the permease necessary to initiate accumulation of inducer.  相似文献   

2.
A structured model of gene expression, which incorporates the stochastic behavior of cellular processes, was developed to examine the "all-or-none" phenomenon observed in autocatalytic systems (e.g. the lac operon). Autocatalytic expression systems typically have the genes encoding the inducer transport proteins controlled by internal inducer levels, so that transport of the inducer increases production of the transport protein. The model was able to predict the unique behaviors of autocatalytic expression systems that have been experimentally observed and provided valuable insight into the role of population heterogeneity in these systems. The simulations substantiate the importance of stochastic processes on induction of gene expression in autocatalytic systems. The simulation results show that the all-or-none phenomenon is governed largely by random cellular events, and that population-averaged variations in gene expression are due to changes in the frequency of full gene induction in individual cells rather than to uniform variations in gene expression across the entire population. In addition, the model shows how concentrations of inducer too low to induce expression in uninduced cells can maintain induction in pre-induced cultures. A comparison of induction behaviors from an autocatalytic system and a system having constitutive synthesis of the transport protein showed that transport protein levels must be decoupled from inducer control to achieve homogeneous expression of a gene of interest in all cells of a culture.  相似文献   

3.
Transient inhibition of catabolic enzyme synthesis in Escherichia coli occurred when a low concentration of 2,4-dinitrophenol (DNP) was simultaneously added with inducer. Using mutant strains defective for gamma-gene product or constitutive for lac enzymes, it was found that the inhibition is not due to the exclusion of inducer by uncoupling. The addition of cyclic adenosine 3',5'-monophosphate overcame repression. The components of the lac operon coordinately responded to DNP inhibition. From deoxyribonucleic acid-ribonucleic acid hybridization experiments, it was found that the inhibition of beta-galactosidase induction occurred at the level of messenger ribonucleic acid synthesis specific for the lac operon. It seems probable that DNP represses induction in a similar manner to that of transient repression observed upon the addition of glucose. Furthermore, it was found that transient repression disappeared if cells were preincubated with DNP before induction. This indicates that new contact of cells with DNP is obligatory for transient repression. From these results, it is suggested that the cell membrane may be responsible for regulation of catabolite-sensitive enzyme synthesis.  相似文献   

4.
Lifetime of bacterial messenger ribonucleic acid   总被引:4,自引:0,他引:4  
Moses, V. (University of California, Berkeley), and M. Calvin. Lifetime of bacterial messenger ribonucleic acid. J. Bacteriol. 90:1205-1217. 1965.-When cells from a stationary culture of Escherichia coli were placed in fresh medium containing inducer for beta-galactosidase, growth, as represented by increase in turbidity and by total protein synthesis, started within 30 sec. By contrast, beta-galactosidase synthesis was greatly delayed compared with induction during exponential growth. Two other inducible enzymes (d-serine deaminase and l-tryptophanase) and one repressible enzyme (alkaline phosphatase) showed similar lags. The lags were not due to catabolite repression. They could not be reduced by pretreatment of the culture with inducer, or by supplementing the fresh medium with amino acids or nucleotides. The lag was also demonstrated by an i(-) mutant constitutive for beta-galactosidase synthesis. An inhibitor of ribonucleic acid (RNA) synthesis, 6-azauracil, preferentially inhibited beta-galactosidase synthesis compared with growth in both inducible and constitutive strains. Puromycin, an inhibitor of protein synthesis, acted as an inhibitor at additional sites during the induction of beta-galactosidase synthesis. No inhibition of the reactions proceeding during the first 20 sec of induction was observed, but puromycin seemed to prevent the accumulation of messenger RNA during the period between 20 sec and the first appearance of enzyme activity after 3 min. It is suggested that these observations, together with many reports in the literature that inducible enzyme synthesis is more sensitive than total growth to some inhibitors and adverse growth conditions, can be explained by supposing that messenger RNA for normally inducible enzymes is biologically more labile than that for some normally constitutive proteins. The possible implications of this hypothesis for the achievement of cell differentiation by genetic regulation of enzyme synthesis are briefly discussed.  相似文献   

5.
The elective isolation of a soil microorganism, tentatively assigned to the genus Arthrobacter, which produced an extracellular neuraminidase is described. The secretion of neuraminidase from washed cells in minimal medium required the presence of sialo-containing glycoproteins, whereas free N-acetyl-neuraminic asid of N-acetylmannosamine were poor inducers. No enzyme could be dected in the induction fitrated of cells, in the absence of inducer or in the culture filtrate of cells grown in a complete medium. The routine enzyme inducer was a hot-water extract of "edible bird's nest." Mild acid treatment (0.05 N H2SO4) of this extract increased enzyme activity two--to threefold and the specific activity about eightfold. Neuraminidase induction with acid-treated bird's nest was manifested at a linear rate for 6 h without increase in cell number. No other anticipated glycohydrolase or protease activities were foud. The amount of enzyme located within the cells was barely detectable as compared to that found in the induction filtrate. Experiments with chloramphenicol or chlortetracycline indicate that de novo protein synthesis was required for neuraminidase production and that this exoenzyme was not released from a preformed pool. Neuraminidase from this source has an apparent molecular weight of 87,000, a pH optimum of 5 to 6, and an apparent Km of 2.08 mg/ml for collocalia mucoid and 3.3 X 10(-3) M for N-acetylneuraminlactose and is insensitive both to Ca2+ ions and ethylenediaminetetraacetic acid. Preliminary studies indicate that the enzyme can hydrolyze alpha-2,3-, alpha-2,6-, or alph-2-8-N-acetylneuraminylglycosidic linkages. From total activity data and purification criteria, it would appear that this isolate can produce about 5 mg of enzyme per liter of induction medium.  相似文献   

6.
7.
An unusual regulatory system of cephalosporinase synthesis in Citrobacter freundii has been found. When the bacteria are grown at 20 C, the cephalosporinase is synthesized as a typical inducible enzyme and benzylpenicillin acts as an effective inducer. The enzyme, however, is synthesized in the absence of the inducer at growth temperatures above 25 C. when the growth temperature is shifted from 20 C to 37 C, the induction of enzyme synthesis is observed after about one half of the organism doubling time, but it does not occur in the presence of chloramphenicol. The reverse control mutants, the enzyme constitutive synthesis of which is markedly depressed by benzylpenicillin, were isolated from the C. freundii wild strain. The possibility that the enzyme synthesis is governed by a regulatory system analogous to the its mutant of the lac operon in Escherichia coli was suggested.  相似文献   

8.
Cellulase of Neurospora crassa.   总被引:4,自引:0,他引:4       下载免费PDF全文
Mycelia and ungerminated conidia of Neurospora crassa were found to secrete extracellular endocellulase (EC 3.2.1.4). A simple induction system of potassium phosphate buffer (ph 6.0) plus inducer relied on the internal metabolic reserves of conicia or mycelia to provide energy and substrates for protein synthesis. Buffer concentration for optimum enzyme production was 100 mM, but at higher buffer concentrations enzyme production was inhibited. Cellobiose was clearly the best inducer, with an optimum effect from 0.05 to 1 mM. In deionized water, cellulase remained mostly associated with the cell, but a variety of salts stimulated the release of cellulase into the medium.  相似文献   

9.
Bacillus subtilis B secretes an inducible, extracellular enzyme, levansucrase. Inhibition studies were undertaken to investigate the possible mechanism of release of this enzyme. The antibiotic cerulenin, at a concentration of 10 micrograms/ml, totally inhibited de novo lipid synthesis in B. subtilis B for at least 1 h, while only slightly reducing protein and RNA synthesis. At this concentration cerulenin, added concomitantly with the inducer sucrose, prevented the release of levansucrase for at least 150 min. This was not due to the prevention of inducer uptake by the cells. The release of the enzyme was also independent of cell division. In B. subtilis 1007 the induction of beta-galactosidase by 5 mM lactose was not prevented by cerulenin. Preliminary evidence indicated the association of a lipid moiety with the enzyme as it passes through the cytoplasmic membrane. Quinacrine (0.2 mM), which inhibits the penicillinase-releasing protease of Bacillus licheniformis, inhibited levansucrase release from B. subtilis B, but had no effect on lipid synthesis.  相似文献   

10.
11.
A number of sugars and derivatives have been tested for their ability to induce the synthesis of alpha-galactosidase from Saccharomyces carlsbergensis. Besides galactose and the substrates of the enzyme melibiose, raffinose and stachyose, D-galacturonic acid, L-arabinose, D-tagatose, methyl-alpha-D-galactoside, lactose and isopropyl-beta-D-thiogalactoside were able to act as inducers. Of these, methyl-alpha-D-galactoside, lactose, isopropyl-beta-D-thiogalactoside and L-arabinose have been shown to be gratuitous inducers with which kinetic studies of induction have been carried out. Lactose was the most efficient inducer, giving a maximal differential rate of synthesis of the enzyme of 110 mU/10(7) cells at a concentration of 180 mM, followed by L-arabinose (60 mU/10(7) cells at 40 mM), isopropyl-beta-D-thiogalactoside (43 mU/10(7) cells at 60 mM) and methyl-alpha-D-galactoside (25 mU/10(7) cells at 150 mM). The concentration of inducer required to obtain half-maximal induction was similar for lactose, L-arabinose and isopropyl-beta-D-thiogalactoside and about 5-fold higher for methyl-alpha-D-galactoside. The property of the compounds to act as inducers was compared to their ability to interact with the enzyme and the results discussed in terms of the molecular structures which are recognized by the enzyme and by the induction machinery.  相似文献   

12.
The effects on a number of parameters of transferringEscherichia coli between protonated and deuterated media were studied; these included growth, oxygen consumption and the synthesis of DNA, RNA, total protein, and β-galactosidase. Similar measurements were made on cells fully adapted to growth on deuterated media. The amino acid compositions of deuterated and protonated cellular protein were similar, but in deuterated cells the ratio protein: DNA was doubled. Deutero- and protio-β-galactosidase had similarK M values and turnover numbers in D2O and H2O. The kinetics of β-galactosidase synthesis were not changed by deuteration, but it was found that lower concentrations of inducer were required to achieve particular levels of induction. Brief exposure to inducer in one medium, followed by removal of inducer and expression of enzyme-forming-potential in either D2O or H2O, showed that mRNA synthesized by deuterated cells was translated equally well in both media. mRNA synthesized by protonated cells was translated about twice as efficiently in H2O. Inducible strains (but not a regulator constitutive) lost the capacity to synthesize enzymically active β-galactosidase after more than 100 generations in D2O-acetate. The defect persisted when such cells were grown in H2O-acetate, but enzyme activity was restored by growth in H2O-glycerol. The failure to produce active enzyme was not due to a failure of the induction mechanism; gel electrophoresis revealed the presence of an inactive protein species. The nature of adaptation to deuteration is discussed.  相似文献   

13.
Summary ACN-hydratase inArthrobacter sp. IPCB-3 has been found to be induced by acetonitrile and urea and repressed by glucose. When acetonitrile was used as an inducer the synthesis of enzyme increased to about 2 folds and 4.5 folds on addition of iron and cobalt to the medium, respectively. However, when urea was used as an inducer only cobalt stimulated the enzyme synthesis and gave maximum activity (70 units/mg dry cells). In contrast to the stimulation of iron containing ACN-hydratase, yeast extract failed to stimulate further the synthesis of cobalt containing enzyme irrespective of the inducer present in the medium.  相似文献   

14.
The regulation of the enzyme phenylalanine ammonia-lyase (PAL), which is of potential use in oral treatment of phenylketonuria, was investigated. Antiserum against PAL was prepared and was shown to be monospecific for the enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native enzyme and two inactive mutant forms of the enzyme were purified to homogeneity by immunoaffinity chromatography, using anti-PAL immunoglobulin G-Sepharose 4B. Both mutant enzymes contained intact prosthetic groups. The formation of PAL catalytic activity after phenylalanine was added to yeast cultures was paralleled by the appearance of enzyme antigen. During induction, uptake of [3H]leucine into the enzyme was higher than uptake into total protein. Our results are consistent with de novo synthesis of an enzyme induced by phenylalanine, rather than activation of a proenzyme. The half-lives of PAL and total protein were similar in both exponential and stationary phase cultures. No metabolite tested affected the rate of enzyme degradation. Glucose repressed enzyme synthesis, whereas ammonia reduced phenylalanine uptake and pool size and so may repress enzyme synthesis through inducer exclusion. The synthesis of enzyme antigen by a mutant unable to metabolize phenylalanine indicated that this amino acid is the physiological inducer of the enzyme.  相似文献   

15.
To determine the inducer(s) of the biodegradative threonine deaminase in Escherichia coli, the effects of various amino acids on the synthesis of this enzyme were investigated. The complex medium used hitherto for the enzyme induction can be completely replaced by a synthetic medium composed of 18 natural amino acids. In this synthetic medium, the omission of each of the seven amino acids threonine, serine, aspartic acid, methionine, valine, leucine, and arginine resulted in the greatest loss of enzyme formation. These seven amino acids did not significantly influence the uptake of other amino acids into the cells. Furthermore, they did not stimulate the conversion of inactive enzyme into an active form, since they did not affect the enzyme level in cells in which protein synthesis was inhibited by chloramphenicol. Threonine, serine, aspartic acid, and methionine failed to stimulate enzyme production in cells in which messenger ribonucleic acid synthesis was arrested by rifampin, whereas valine, leucine, and arginine stimulated enzyme synthesis under the same conditions. Therefore, the first four amino acids appear to act as inducers of the biodegradative threonine deaminase in E. coli and the last three amino acids appear to be amplifiers of enzyme production. The term "multivalent induction" has been proposed for this type of induction, i.e., enzyme induction only by the simultaneous presence of several amino acids.  相似文献   

16.
17.
Enzymatic adaptation by bacteria under pressure.   总被引:1,自引:1,他引:0       下载免费PDF全文
A study of enzymic adaptation under hydrostatic pressure by moderately barotolerant bacteria that can grow at pressure up to about 500 atm revealed that some adaptive processes are relatively insensitive to pressure, whereas others are sufficiently barosensitive to compromise survival capacity in situations requiring adaptation to new substrates under pressure. Examples of the former include adaptation of Escherichia coli to arabinose catabolism for growth and adaptation of Streptococcus faecalis to catabolism of lactose, ribose, or maltose. Examples of the latter include derepression of the lac operon in Escherichia coli and induction of penicillinase synthesis by Bacillus licheniformis. For both these barosensitive systems, pressure had little effect on enzyme levels in constitutive strains or in bacteria that had previously been induced at 1 atm. Moreover, it had no detectable effect on penicillinase secretion. However, pressures of 300 to 400 atm were found to reduce markedly rates and extents of enzyme synthesis by bacteria undergoing derepression or adaptation. This inhibitory effect of pressure was reflected in greater barosensitivity with extended lag and slower growth of initially unadapted Escherichia coli cells inoculated into minimal medium with lactose as sole source of carbon and fuel, and by major reductions in the minimal inhibitory concentrations of penicillin G for unadapted B. licheniformis cells inoculated into complex, antibiotic-containing media. Cyclic adenosine 5'-monophosphate did not reverse pressure inhibition of derepression of the lac operon, and catabolite repression was complete under pressure. However, derepression of the lac operon was more sensitive to pressure at low concentrations of inducer than at high concentrations. Apparent volume changes for derepression were 94 and 60 ml/mol at inducer concentrations of about 0.5 and 5 mM, respectively. Pressure was found not to be inhibitory for uptake of beta-galactosides; in fact, it was somewhat stimulatory. Therefore, results were interpreted in terms of inducer binding and subsequent conversion of an operator-inducer-repressor complex to inactive repressor and operator. Both reactions appeared to result in an increase in volume, the former more so than the latter. We found also that 200 atm was actually stimulatory for growth of Escherichia coli in minimal media, and the bacterium was in a sense barophilic.  相似文献   

18.
In the work, a study of cell growth and the regulation of heterologous glucoamylase synthesis under the control of the positively regulated alcA promoter in a recombinant Aspergillus nidulans is presented. We found that similar growth rates were obtained for both the host and recombinant cells when either glucose or fructose was employed as sole carbon and energy source. Use of the potent inducer cyclopentanone in concentrations greater than 3 mM resulted n maximum glucoamylase concentration and maximum overall specific glucoamylase concentration over 80 h of batch cultivation. However, cyclopentanone concentrations in excess of 3 mM also showed an inhibitory effect on spore germination as well as fungal growth. In contrast, another inducer, threonine, had no negative effect on spore germination even when concentrations of up to 100 mM were used with either glucose or fructose as carbon source. Glucoamylase synthesis in the presence of glucose plus either inducer did not begin until glucose was totally depleted, suggesting strong catabolite repression. Similar results were obtained when fructose was employed, although low levels of glucoamylase were detected before fructose depletion, suggesting partial catabolite repression. The highest enzyme concentration (570 mg/L) and overall specific enzyme concentration (81 mg/g cell) were observed in batch culture when cyclopentanone was the inducer and fructose the primary carbon source. A maximum glucoamylase concentration of 1.1 g/L and an overall specific glucoamylase concentration of 167 mg/g cell were obtained in a bioreactor using cyclopentanone as the inducer and limited-fructose feeding strategy, which nearly doubles the glucoamylase productivity from batch cultures. (c) 1993 John Wiley & Sons, Inc.  相似文献   

19.
To study the effect of steroid hormones on bile acid synthesis by cultured rat hepatocytes, cells were incubated with various amounts of these compounds during 72 h and conversion of [4-14C]cholesterol into bile acids was measured. Bile acid synthesis was stimulated in a dose-dependent way by glucocorticoids, but not by sex steroid hormones, pregnenolone or the mineralocorticoid aldosterone in concentrations up to 10 microM. Dexamethasone proved to be the most efficacious inducer, giving 3-fold and 7-fold increases in bile acid synthesis during the second and third 24 h incubation periods respectively, at a concentration of 50 nM. Mass production of bile acids as measured by g.l.c. during the second day of culture (28-52 h) was 2.2-fold enhanced by 1 microM-dexamethasone. No change in the ratio of bile acids produced was observed during this period in the presence of dexamethasone. Conversion of [4-14C]7 alpha-hydroxycholesterol, an intermediate of the bile acid pathway, to bile acids was not affected by dexamethasone. Measurement of cholesterol 7 alpha-hydroxylase activity in homogenates of hepatocytes, incubated with 1 microM-dexamethasone, showed 10-fold and 90-fold increases after 48 and 72 h respectively, as compared with control cells. As with bile acid synthesis from [14C]cholesterol, no change in enzyme activity was found in hepatocytes cultured in the presence of 10 microM steroid hormones other than glucocorticoids. Addition of inhibitors of protein and mRNA synthesis lowered bile acid production and cholesterol 7 alpha-hydroxylase activity and prevented the rise of both parameters with dexamethasone, suggesting regulation at the mRNA level. We conclude that glucocorticoids regulate bile acid synthesis in rat hepatocytes by induction of enzyme activity of cholesterol 7 alpha-hydroxylase.  相似文献   

20.
The conditions for the induction of chondroitinase ABC by Proteus vulgaris cells were studied to obtain cells with high chondroitinase ABC activity. The activity of the enzyme was found to increase when the cells were incubated in an induction medium containing chondroitin sulfate C as an inducer. The induction was most effective at pH 8.0, 25°C and the inducer was depolymerized in association with the increase in enzyme activity. For maximal induction, the addition of yeast extract, peptone and casamino acid was required. The increase in activity was inhibited by the presence of such antibiotics as chloramphenicol and actinomycine D. The induction was also catabolically repressed by the presence of glucose, glycerol or tricarboxylic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号