首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: To elucidate the role of neurofilaments in microtubule stabilization in the axon, we studied the effects of β,β'-iminodipropionitrile (IDPN) on the solubility and transport of tubulin as well as neurofilament phosphorylation in the motor fibers of the rat sciatic nerve. IDPN is known to impair the axonal transport of neurofilaments, causing accumulation of neurofilaments in the proximal axon and segregation of neurofilaments to the peripheral axoplasm throughout the nerve. Administration of IDPN at various intervals after radioactive labeling of the spinal cord with l -[35S]methionine revealed that transport inhibition occurred all along the nerve within 1–2 days. Transport of cold-insoluble tubulin, which accounts for 50% of axonal tubulin, was also affected. A significant increase in the proportion of cold-soluble tubulin was observed, reaching a maximum at 3 days after IDPN treatment and returning to the control level in the following weeks. Preceding this change in tubulin solubility, a transient decrease in the phosphorylation level of the 200-kDa neurofilament protein was detected in the ventral root using phosphorylation-dependent antibodies. These early changes agreed in timing with the onset of segregation and transport inhibition, suggesting that interaction between neurofilaments and microtubules possibly regulated by phosphorylation plays a significant role in microtubule stabilization.  相似文献   

2.
beta, beta'-Iminodipropionitrile (IDPN), a synthetic compound that selectively impairs slow axonal transport, produced a rearrangement of the axonal cytoskeleton, smooth endoplasmic reticulum, and mitochondria. Immunoperoxidase staining using an antiserum to the 68,000-dalton neurofilament subunit demonstrated a displacement of neurofilaments toward the periphery of the axons of IDPN-treated rats. This change occurred simultaneously along the entire length of the sciatic nerve. Ultrastructural morphometry of the axonal organelles confirmed the peripheral relocation of neurofilaments and also showed a displacement of microtubules, smooth endoplasmic reticulum, and mitochondria to the center of the axons. The overall density of axonal mitochondria was increased, whereas those of other organelles were not significantly changed. Axons were reduced in size by 10--24%, the large axons being more affected than the small ones. The observed rearrangement of axonal organelles may be due to an effect of IDPN on microtubule-neurofilament interactions, which could in turn explain the impairment of the slow transport. Axons in IDPN intoxication are a useful model to study the organization of the axoplasm and the mechanism of axonal transport.  相似文献   

3.
Beta,beta'-iminodipropionitrile (IDPN) produces a rearrangement of axoplasmic organelles with displacement of microtubules, smooth endoplasmic reticulum, and mitochondria toward the center and of neurofilaments toward the periphery of the axon, whereas the rate of the fast component of axonal transport is unchanged. Separation of microtubules and neurofilaments makes the IDPN axons an excellent model for study of the role of these two organelles in axonal transport. The cross-sectional distribution of [3H]-labeled proteins moving with the front of the fast transport was analyzed by quantitative electron microscopic autoradiography in sciatic nerves of IDPN-treated and control rats, 6 h after injection of a 1:1 mixture of [3H]-proline and [3H]-lysine into lumbar ventral horns. In IDPN axons most of the transported [3H] proteins were located in the central region with microtubules, smooth endoplasmic reticulum and mitochondria, whereas few or none were in the periphery with neurofilaments. In control axons the [3H]-labeled proteins were uniformly distributed within the axoplasm. It is concluded that in fast axonal transport: (a) neurofilaments play no primary role; (b) the normal architecture of the axonal cytoskeleton and the normal cross-sectional distribution of transported materials are not indispensable for the maintenance of a normal rate of transport. The present findings are consistent with the models of fast transport that envision microtubules as the key organelles in providing directionality and propulsive force to the fast component of axonal transport.  相似文献   

4.
We have demonstrated a differential association between two types of spectrin, from erythrocytes and brain, with two types of intermediate filaments, vimentin filaments and neurofilaments. Electron microscopy showed that erythrocyte spectrin promoted the binding of vimentin filaments to red cell inside-out vesicles via lateral associations with the filaments. In vitro binding studies showed that the association of spectrin with vimentin filaments was apparently saturable, increased with temperature, and could be prevented by heat denaturation of the spectrin. Comparisons were made between erythrocyte and brain spectrin binding to both vimentin filaments and neurofilaments. We found that vimentin filaments bound more erythrocyte spectrin than brain spectrin, while neurofilaments bound more brain spectrin than erythrocyte spectrin. Our results show that both erythroid and nonerythroid spectrins are capable of binding to intermediate filaments and that such associations may be characterized by differential affinities of the various types of spectrin with the several classes of intermediate filaments present in cells. Our results also suggest a role for both erythroid and nonerythroid spectrins in mediating the association of intermediate filaments with plasma membranes or other cytoskeletal elements.  相似文献   

5.
Following a single intraperitoneal injection of beta,beta'-iminodipropionitrile (IDPN) simultaneously with or 5 weeks after injection of [35S]methionine into the ventral horn area of rat spinal cord, the changes of slowly migrating axonal proteins were analyzed electrophoretically up to 10 weeks after labeling, and the following results were obtained. After a single injection of IDPN, only the transport of neurofilament proteins is inhibited, leaving that of tubulin and actin almost unaffected, though a small portion of the former was retarded through the interaction with neurofilaments. The inhibitory effect of IDPN on neurofilament transport is not a complete blockage, but a slowing of the rate of transport to about a half of the control with a possible short halting period just after IDPN treatment. The dose-response data indicate a threshold between 0.5 and 1.0 g/kg of body weight, increasing the dose above which does not further affect the neurofilament transport. The transport of neurofilaments is uniformly impaired by IDPN along the whole axon.  相似文献   

6.
Control of axonal caliber by neurofilament transport   总被引:30,自引:13,他引:17  
The role of neurofilaments, the intermediate filaments of nerve cells, has been conjectural. Previous morphological studies have suggested a close relationship between neurofilament content and axonal caliber. In this study, the regenerating neuron was used as a model system for testing the hypotheses that neurofilaments are intrinsic determinants of axonal caliber, and that neurofilament content is controlled by the axonal transport of neurofilaments. This system was chosen because previous studies had shown that, after axotomy, axonal caliber was reduced within the proximal stump of the regenerating nerve and, because the relative amount of neurofilament protein undergoing axonal transport in regenerating axons was selectively reduced. The relationship between axonal caliber and neurofilament number was examined in a systematic fashion in both regenerating and control motor axons in rat L5 ventral root. Reconstruction of the spatial and temporal sequences of axonal atrophy in the proximal stump after axotomy showed that reductions in axonal caliber were first detected in the most proximal region of the root and subsequently progressed in a proximal-to-distal direction at a rate of 1.7 mm/day, which is identical to the rate of neurofilament transport in these neurons. Quantitative ultrastructural studies showed that these reductions in caliber correlated with a proportional decrease in the number of axonal neurofilaments but not microtubules. These results support the hypotheses that neurofilament content is a major intrinsic determinant of axonal caliber and that neurofilament content is controlled by the axonal transport of neurofilaments. On this basis, we suggest a role for neurofilaments in the control of axonal volume.  相似文献   

7.
Giant axonal neuropathy (GAN) is a severe autosomal recessive disease affecting both the peripheral and central nervous systems. It is characterized by segmental axonal ballooning due to large neurofilamentous masses and abnormal aggregation of filaments in other cell types including glial cells. Coomassie blue staining of the detergent-resistant cytoskeleton of cultured skin fibroblasts from three patients with GAN revealed the presence of large cytoplasmic filamentous aggregates in the great majority of cells. The aggregates were birefringent when viewed under polarization microscopy and electron microscopy showed that they were composed of aggregates of 8 to 10 nm intermediate filaments. The aggregates stained with antisera specific for vimentin but did not stain with antibodies to actin, tubulin, or the high molecular weight (HMW) microtubule associated protein. Examination of the fibroblasts containing the vimentin aggregates with antibodies to tubulin and the HMW protein showed that they had a normal distribution of microtubules and that the microtubules present were normally associated with the HMW protein. The results suggest that giant axonal neuropathy is a generalized inborn error of organization of intermediate filaments and that a defect in microtubules or their association with HMW protein is not responsible for the observed aggregation of intermediate filaments in this disease. Further study of GAN may be useful in understanding the function of intermediate filaments.  相似文献   

8.
Actin filaments and microtubules lengthen and shorten by addition and loss of subunits at their ends, but it is not known whether this is also true for intermediate filaments. In fact, several studies suggest that in vivo, intermediate filaments may lengthen by end-to-end annealing and that addition and loss of subunits is not confined to the filament ends. To test these hypotheses, we investigated the assembly dynamics of neurofilament and vimentin intermediate filament proteins in cultured cells using cell fusion, photobleaching, and photoactivation strategies in combination with conventional and photoactivatable fluorescent fusion proteins. We show that neurofilaments and vimentin filaments lengthen by end-to-end annealing of assembled filaments. We also show that neurofilaments and vimentin filaments incorporate subunits along their length by intercalation into the filament wall with no preferential addition of subunits to the filament ends, a process which we term intercalary subunit exchange.  相似文献   

9.
beta,beta'-Iminodipropionitrile (IDPN), a neurotoxin, causes redistribution of neurofilaments in axons followed by the development of proximal axonal swellings and, in chronic intoxication, a distal decrease in axonal caliber. The latter changes are caused by a selective impairment in the slow anterograde axonal transport of neurofilament proteins. To assess the role of retrograde axonal transport in IDPN toxicity, we used [3H]N-succinimidyl propionate ([3H]NSP) to label covalently endogenous axonal proteins in sciatic nerve of the rat and measured the accumulation of radioactively labeled proteins in the cell bodies of motor and sensory neurons over time. IDPN was injected intraneurally 6 h or intraperitoneally 1 day before subepineurial injection of [3H]NSP into the sciatic nerve, and the animals were killed 1, 2, and 7 days after [3H]NSP injection. Neurotoxicity was assessed by electron microscopic observation of the nerves of similarly treated animals. Both intraneural and intraperitoneal injection of IDPN caused an acute reduction in the amount of labeled proteins transported back to the cell bodies. The early appearance of these changes suggests that alterations in retrograde transport may play a role in the production of the neuropathic changes.  相似文献   

10.
We reported recently that two glycosphingolipids (GSLs), globoside (Gb4) and ganglioside GM3, colocalized with vimentin intermediate filaments of human umbilical vein endothelial cells. To determine whether this association is unique to endothelial cells or to vimentin, we analyzed a variety of cell types. Double-label immunofluorescent staining of fixed, permeabilized cells, with and without colcemid treatment, was performed with antibodies against glycolipids and intermediate filaments. Globoside colocalized with vimentin in human and mouse fibroblasts, with desmin in smooth muscle cells, with keratin in keratinocytes and hepatoma cells, and with glial fibrillary acidic protein (GFAP) in glial cells. Globoside colocalization was detected only with vimentin in MDCK and HeLa cells, which contain separate vimentin and keratin networks. GM3 ganglioside also colocalized with vimentin in human fibroblasts. Association of other GSLs with intermediate filaments was not detected by immunofluorescence, but all cell GSLs were detected in cytoskeletal fractions of metabolically labelled endothelial cells. These observations indicate that globoside colocalizes with vimentin, desmin, kertain and GFAP, with a preference for vimentin in cells that contain both vimentin and keratin networks. The nature of the association is not yet known. Globoside and GM3 may be present in vesicles associated with intermediate filaments (IF), or bound directly to IF or IF associated proteins. The prevalence of this association suggests that colocalization of globoside with the intermediate filament network has functional significance. We are investigating the possibility that intermediate filaments participate in the intracellular transport and sorting of glycosphingolipids.  相似文献   

11.
Neuronal and glial cytoskeletons   总被引:1,自引:0,他引:1  
Long-awaited evidence for in vivo functions of the major neuronal microtubule associated proteins indicates that they are directly involved in neurite extension. Companion evidence reveals an intrinsic role for glial intermediate filaments in glial cell extension along neurites and for neurofilaments in establishing axonal caliber. New fluorescence and photoactivation experiments require a re-thinking of models of slow axonal transport and of the part the cytoskeleton plays in axonal guidance.  相似文献   

12.
Phosphorylation of types III and IV intermediate filaments (IFs) is known to regulate their organization and function. Phosphorylation of the amino-terminal head domain sites on types III and IV IF proteins plays a key role in the assembly/disassembly of IF subunits into 10 nm filaments, and influences the phosphorylation of sites on the carboxyl-terminal tail domain. These phosphorylation events are largely under the control of second messenger-dependent protein kinases and provide the cells a mechanism to reorganize the IFs in response to the changes in second messenger levels. In mitotic cells, Cdk1, Rho kinase, PAK1 and Aurora-B kinase are believed to regulate vimentin and glial fibrillary acidic protein phosphorylation in a spatio-temporal manner. In neurons, the carboxyl-terminal tail domains of the NF-M and NF-H subunits of heteropolymeric neurofilaments (NFs) are highly phosphorylated by proline-directed protein kinases. The phosphorylation of carboxyl-terminal tail domains of NFs has been suspected to play roles in forming cross-bridges between NFs and microtubules, slowing axonal transport and promoting their integration into cytoskeleton lattice and, in doing so, to control axonal caliber and stabilize the axon. The role of IF phosphorylation in disease pathobiology is discussed.  相似文献   

13.
Double immunofluorescence staining of quail embryo fibroblasts with rabbit antibody to vinculin and mouse monoclonal antibody to vimentin revealed a coincidence between fluorescence patterns for cell-substrate focal contacts and intermediate filaments. Most of the vinculin-containing adhesion plaques coincided with the ends of vimentin-positive fibrils. This association was further corroborated by immunoelection microscopic observations of the cytoskeletons of quail and mouse fibroblasts using a platinum replica technique. The intermediate filaments were identified either by direct treatment with antivimentin IgM or by an indirect immunogold staining method. Colcemid treatment of the cells caused a collapse of intermediate filaments and destroyed their association with focal contacts. During the early stages of the colcemid-induced collapse of the intermediate filaments, single vimentin fibrils appeared to retain their association with focal contacts. The possible role of the intermediate filaments in the formation and maintenance of focal contacts is discussed.  相似文献   

14.
Soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptors (SNAREs) are core machinery for membrane fusion during intracellular vesicular transport. Synaptosome-associated protein of 23 kDa (SNAP23) is a target SNARE previously identified at the plasma membrane, where it is involved in exocytotic membrane fusion. Here we show that SNAP23 associates with vimentin filaments in a Triton X-100 insoluble fraction in fibroblasts in primary culture and HeLa cells. Upon treatment of human fibroblasts with N-ethyl-maleimide, SNAP23 dissociates from vimentin filaments and forms a protein complex with syntaxin 4, a plasma membrane SNARE. The vimentin-associated pool of SNAP23 can therefore be a reservoir, which would supply the plasma membrane fusion machinery, in fibroblasts. Our observation points to a yet unexplored role of intermediate filaments.  相似文献   

15.
Human cells grown in monolayer culture were microinjected with intermediate filament subunit proteins. In fibroblasts with a preexisting vimentin network, injected porcine glial fibrillary acidic protein (GFAP) co-localized with the vimentin network within 24 hours. Phosphorylated GFAP variants were found to become dephosphorylated concomitantly with their incorporation into filamentous structures. After microinjection of either porcine GFAP or murine vimentin into human carcinoma cells lacking cytoplasmic intermediate filaments, we observed that different types of filament networks developed. Whereas vimentin was incorporated into short filaments immediately after injection, GFAP was found to aggregate into rodlike structures. This may indicate a differential filament forming ability of these intermediate filament proteins in vivo.  相似文献   

16.
The neurotoxic agent, 3,3'-iminodiproprionitrile (IDPN), is a disrupter of neurofilament- and intermediate filament-organelle association. In the present study, the effect of IDPN on corticosteroidogenesis was investigated using isolated rat (having few intermediate filaments) and domestic fowl (having abundant intermediate filaments) adrenocortical cells. Cells were incubated with or without steroidogenic agents and precursors and with or without various concentrations of IDPN for 2 hr. IDPN had similar inhibitory potencies (as indicated by the half-maximal inhibitor concentrations (ID50 values] with both rat and domestic fowl cells despite their grossly different intermediate filament content. However, the average ID50 values of IDPN varied with the different steroidogenic agents and precursors used. The average IDPN ID50 values for maximal ACTH- and 8-bromo-cyclic AMP (8-Br-cAMP)-induced corticosterone production were equivalent (49.7 and 45.7 mM, respectively). However, the IDPN ID50 values for maximal ACTH-induced cAMP production, maximal 25-hydroxycholesterol- and pregnenolone-supported corticosterone production, and maximal ACTH- and 8-Br-cAMP-induced protein synthesis varied from 3.7 to 5.4 times the average ID50 values for maximal ACTH- and 8-Br-cAMP-induced corticosterone production. Thus, the inhibitory action of IDPN was not closely linked to the inhibition of ACTH-transmembrane signaling via cAMP, protein synthesis, and steroidogenic enzyme activity. The data suggest that IDPN inhibited corticosteroidogenesis at at a step after cAMP but before cholesterol side-chain cleavage and that the inhibition was not dependent on the presence of intermediate filaments.  相似文献   

17.
Overexpression of tau compromises axonal transport and induces retraction of growing neurites. We tested the hypothesis that increased stability provided by neurofilaments (NFs) may prevent axonal retraction. NB2a/d1 cells were differentiated for 3 days, at which time phosphorylated NFs appear and for 14 days, which induces continued neurite elongation and further phospho-NF accumulation. Cultures were transfected with a construct that expresses full-length, 4-repeat tau. Consistent with prior studies, overexpression of tau induced retraction of day three axonal neurites even following treatment with the microtubule-stabilizing drug taxol. Axonal neurites of day 14 cells were more resistant to tau-mediated retraction. To test whether or not this resistance was derived from their additional NF content, day 3 cultures were co-transfected with constructs expressing tau and NF-M (which increases overall axonal NFs). Overexpression of NF-M attenuated tau-mediated retraction of day 3 axonal neurites. By contrast, co-transfection with constructs expressing tau and vimentin (which increases axonal neurites length) did not attenuate tau-mediated neurite retraction. Co-precipitation experiments indicate that tau is a cargo of kinesin, and that tau overexpression may displace other kinesin-based cargo, including both critical cytoskeletal proteins and organelles. However, cultures simultaneously transfected with constructs expressing NF-M and tau, the level of examined vesicles was maintained. These collectively indicate that NFs stabilize developing axonal neurites and can counteract the destabilizing force resulting from overexpression of tau, and underscore that the development and stabilization of axonal neurites is dependent upon a balance of cytoskeletal elements.  相似文献   

18.
J Ngai  T R Coleman  E Lazarides 《Cell》1990,60(3):415-427
We have assessed the mechanism of intermediate filament assembly by assaying the sites of incorporation of chicken vimentin subunits expressed under the control of an inducible promoter in transfected mouse fibroblasts. The localization of newly synthesized vimentin was determined by immunofluorescence and immunoelectron microscopy at short time periods of induced synthesis, using antibodies specific for chicken vimentin. Under conditions where neither the soluble subunit pools nor the steady-state distribution of endogenous filaments are affected, newly synthesized vimentin incorporates into the vimentin filament network at numerous and discrete sites throughout the cell. Over time, the pattern of newly assembled vimentin converts to a continuous array coincident with preexisting vimentin filaments. These results are consistent with a novel mechanism of intermediate filament assembly, whereby growth of intermediate filaments occurs by topographically restricted and localized subunit addition, necessitating a transient disruption of filament integrity.  相似文献   

19.
2,5-hexanedione (2,5HD) induces focal accumulation of neurofilaments in nerve axons and juxtanuclear aggregation of vimentin-intermediate filaments (vimentin-IF) in cultured human skin fibroblasts. It has been postulated that 2,5HD prevents the cross-filament associations of intermediate filaments (IF) with microtubules which are required for their transport. If this is true, only subclasses of IF which depend on microtubules for their cellular distribution should be affected by 2,5HD-treatment and the aggregates formed should resemble the juxtanuclear coils which form following dissolution of microtubules by colchicine. We have tested this hypothesis in PtK1 cells which contain two separate networks of IF: vimentin-IF which aggregate in the presence of colchicine, and keratin-filaments (keratin-IF) whose distribution is not altered by depolymerization of microtubules. Treatment of confluent monolayers of PtK1 cells with 2,5HD (4 to 6 mM for 14 to 21 days) induced aggregates of vimentin-IF which resembled those induced by colchicine (5 X 10(-6)M for 48 hours), but had no effect on the distribution of keratin-IF.  相似文献   

20.
The organization of the axonal cytoskeleton is a key determinant of the normal function of an axon, which is a long thin projection of a neuron. Under normal conditions two axonal cytoskeletal polymers, microtubules and neurofilaments, align longitudinally in axons and are interspersed in axonal cross-sections. However, in many neurotoxic and neurodegenerative disorders, microtubules and neurofilaments segregate apart from each other, with microtubules and membranous organelles clustered centrally and neurofilaments displaced to the periphery. This striking segregation precedes the abnormal and excessive neurofilament accumulation in these diseases, which in turn leads to focal axonal swellings. While neurofilament accumulation suggests an impairment of neurofilament transport along axons, the underlying mechanism of their segregation from microtubules remains poorly understood for over 30 years. To address this question, we developed a stochastic multiscale model for the cross-sectional distribution of microtubules and neurofilaments in axons. The model describes microtubules, neurofilaments and organelles as interacting particles in a 2D cross-section, and is built upon molecular processes that occur on a time scale of seconds or shorter. It incorporates the longitudinal transport of neurofilaments and organelles through this domain by allowing stochastic arrival and departure of these cargoes, and integrates the dynamic interactions of these cargoes with microtubules mediated by molecular motors. Simulations of the model demonstrate that organelles can pull nearby microtubules together, and in the absence of neurofilament transport, this mechanism gradually segregates microtubules from neurofilaments on a time scale of hours, similar to that observed in toxic neuropathies. This suggests that the microtubule-neurofilament segregation can be a consequence of the selective impairment of neurofilament transport. The model generates the experimentally testable prediction that the rate and extent of segregation will be dependent on the sizes of the moving organelles as well as the density of their traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号