首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microaerophilic bacterium Campylobacter jejuni is a significant food-borne pathogen and is predicted to possess two terminal respiratory oxidases with unknown properties. Inspection of the genome reveals an operon (cydAB) apparently encoding a cytochrome bd-like oxidase homologous to oxidases in Escherichia coli and Azotobacter vinelandii. However, C. jejuni cells lacked all spectral signals characteristic of the high-spin hemes b and d of these oxidases. Mutation of the cydAB operon of C. jejuni did not have a significant effect on growth, but the mutation reduced formate respiration and the viability of cells cultured in 5% oxygen. Since cyanide resistance of respiration was diminished in the mutant, we propose that C. jejuni CydAB be renamed CioAB (cyanide-insensitive oxidase), as in Pseudomonas aeruginosa. We measured the oxygen affinity of each oxidase, using a highly sensitive assay that exploits globin deoxygenation during respiration-catalyzed oxygen uptake. The CioAB-type oxidase exhibited a relatively low affinity for oxygen (K(m) = 0.8 microM) and a V(max) of >20 nmol/mg/s. Expression of cioAB was elevated fivefold in cells grown at higher rates of oxygen provision. The alternative, ccoNOQP-encoded cyanide-sensitive oxidase, expected to encode a cytochrome cb'-type enzyme, plays a major role in the microaerobic respiration of C. jejuni, since it appeared to be essential for viability and exhibited a much higher oxygen affinity, with a K(m) value of 40 nM and a V(max) of 6 to 9 nmol/mg/s. Low-temperature photodissociation spectrophotometry revealed that neither oxidase has ligand-binding activity typical of the heme-copper oxidase family. These data are consistent with cytochrome oxidation during photolysis at low temperatures.  相似文献   

2.
3.
The cbb3 cytochrome c oxidase has the dual function as a terminal oxidase and oxygen sensor in the photosynthetic bacterium, Rhodobacter sphaeroides. The cbb3 oxidase forms a signal transduction pathway together with the PrrBA two-component system that controls photosynthesis gene expression in response to changes in oxygen tension in the environment. Under aerobic conditions the cbb3 oxidase generates an inhibitory signal, which shifts the equilibrium of PrrB kinase/phosphatase activities towards the phosphatase mode. Photosynthesis genes are thereby turned off under aerobic conditions. The catalytic subunit (CcoN) of the R. sphaeroides cbb3 oxidase contains five histidine residues (H214, H233, H303, H320, and H444) that are conserved in all CcoN subunits of the cbb3 oxidase, but not in the catalytic subunits of other members of copper-heme superfamily oxidases. H214A mutation of CcoN affected neither catalytic activity nor sensory (signaling) function of the cbb3 oxidase, whereas H320A mutation led to almost complete loss of both catalytic activity and sensory function of the cbb3 oxidase. H233V and H444A mutations brought about the partial loss of catalytic activity and sensory function of the cbb3 oxidase. Interestingly, the H303A mutant form of the cbb3 oxidase retains the catalytic function as a cytochrome c oxidase as compared to the wild-type oxidase, while it is defective in signaling function as an oxygen sensor. H303 appears to be implicated in either signal sensing or generation of the inhibitory signal to the PrrBA two-component system.  相似文献   

4.
Several components of the respiratory chain of the eubacterium Thermus thermophilus have previously been characterized to various extent, while no conclusive evidence for a cytochrome bc(1) complex has been obtained. Here, we show that four consecutive genes encoding cytochrome bc(1) subunits are organized in an operon-like structure termed fbcCXFB. The four gene products are identified as genuine subunits of a cytochrome bc(1) complex isolated from membranes of T. thermophilus. While both the cytochrome b and the FeS subunit show typical features of canonical subunits of this respiratory complex, a further membrane-integral component (FbcX) of so far unknown function copurifies as a subunit of this complex. The cytochrome c(1) carries an extensive N-terminal hydrophilic domain, followed by a hydrophobic, presumably membrane-embedded helical region and a typical heme c binding domain. This latter sequence has been expressed in Escherichia coli, and in vitro shown to be a kinetically competent electron donor to cytochrome c(552), mediating electron transfer to the ba(3) oxidase. Identification of this cytochrome bc(1) complex bridges the gap between the previously reported NADH oxidation activities and terminal oxidases, thus, defining all components of a minimal, mitochondrial-type electron transfer chain in this evolutionary ancient thermophile.  相似文献   

5.
In this work, the genes for cytochrome aa3 oxidase and the cytochrome bc1 complex in the gram-positive soil bacterium Corynebacterium glutamicum were identified. The monocistronic ctaD gene encoded a 65-kDa protein with all features typical for subunit I of cytochrome aa3 oxidases. A ctaD deletion mutant lacked the characteristic 600 nm peak in redox difference spectra, and growth in glucose minimal medium was strongly impaired. The genes encoding subunit III of cytochrome aa3 (ctaE) and the three characteristic subunits of the cytochrome bc1 complex (qcrABC) were clustered in the order ctaE-qcrCAB. Analysis of the deduced primary structures revealed a number of unusual features: (1) cytochrome c1 (QcrC, 30 kDa) contained two Cys-X-X-Cys-His motifs for covalent heme attachment, indicating that it is a diheme c-type cytochrome; (2) the 'Rieske' iron-sulphur protein (QcrA, 45 kDa) contained three putative transmembrane helices in the N-terminal region rather than only one; and (3) cytochrome b (QcrB, 60 kDa) contained, in addition to the conserved part with eight transmembrane helices, a C-terminal extension of about 120 amino acids, which presumably is located in the cytoplasm. Staining of C. glutamicum proteins for covalently bound heme indicated the presence of a single, membrane-bound c-type cytochrome with an apparent molecular mass of about 31 kDa. Since this protein was missing in a qcrCAB deletion mutant, it most likely corresponds to cytochrome c1. Similar to the deltactaD mutant, the deltaqcrCAB mutant showed strongly impaired growth in glucose minimal medium, which indicates that the bc1-aa3 pathway is the main route of respiration under these conditions.  相似文献   

6.
7.
We have recently established that the facultative phototrophic bacterium Rhodobacter sphaeroides, like the closely related Rhodobacter capsulatus species, contains both the previously characterized mobile electron carrier cytochrome c2 (cyt c2) and the more recently discovered membrane-anchored cyt cy. However, R. sphaeroides cyt cy, unlike that of R. capsulatus, is unable to function as an efficient electron carrier between the photochemical reaction center and the cyt bc1 complex during photosynthetic growth. Nonetheless, R. sphaeroides cyt cy can act at least in R. capsulatus as an electron carrier between the cyt bc1 complex and the cbb3-type cyt c oxidase (cbb3-Cox) to support respiratory growth. Since R. sphaeroides harbors both a cbb3-Cox and an aa3-type cyt c oxidase (aa3-Cox), we examined whether R. sphaeroides cyt cy can act as an electron carrier to either or both of these respiratory terminal oxidases. R. sphaeroides mutants which lacked either cyt c2 or cyt cy and either the aa3-Cox or the cbb3-Cox were obtained. These double mutants contained linear respiratory electron transport pathways between the cyt bc1 complex and the cyt c oxidases. They were characterized with respect to growth phenotypes, contents of a-, b-, and c-type cytochromes, cyt c oxidase activities, and kinetics of electron transfer mediated by cyt c2 or cyt cy. The findings demonstrated that both cyt c2 and cyt cy are able to carry electrons efficiently from the cyt bc1 complex to either the cbb3-Cox or the aa3-Cox. Thus, no dedicated electron carrier for either of the cyt c oxidases is present in R. sphaeroides. However, under semiaerobic growth conditions, a larger portion of the electron flow out of the cyt bc1 complex appears to be mediated via the cyt c2-to-cbb3-Cox and cyt cy-to-cbb3-Cox subbranches. The presence of multiple electron carriers and cyt c oxidases with different properties that can operate concurrently reveals that the respiratory electron transport pathways of R. sphaeroides are more complex than those of R. capsulatus.  相似文献   

8.
Detailed comparison of the 'Rhodopseudomonas sphaeroides GA' strain used by Gabellini et al. (1985) with genuine R. sphaeroides and R. capsulata strains indicated that the previously reported fbc operon of R. sphaeroides (Gabellini and Sebald, 1986) encoding the structural genes for the Rieske Fe-S protein, cytochrome b and cytochrome c1 subunits of the ubiquinol:cytochrome c2 oxidoreductase, is not from R. sphaeroides, but is rather from a strain of R. capsulata. Consequently, the genuine bc1 genes from R. sphaeroides were cloned using corresponding R. capsulata genes as probes, and a partial nucleotide sequence for the Rieske Fe-S protein of R. sphaeroides was determined and compared with that of R. capsulata.  相似文献   

9.
A novel scenario for the evolution of haem-copper oxygen reductases   总被引:1,自引:0,他引:1  
The increasing sequence information on oxygen reductases of the haem-copper superfamily, together with the available three-dimensional structures, allows a clear identification of their common, functionally important features. Taking into consideration both the overall amino acid sequences of the core subunits and key residues involved in proton transfer, a novel hypothesis for the molecular evolution of these enzymes is proposed. Three main families of oxygen reductases are identified on the basis of common features of the core subunits, constituting three lines of evolution: (i) type A (mitochondrial-like oxidases), (ii) type B (ba3-like oxidases) and (iii) type C (cbb3-type oxidases). The first group can be further divided into two subfamilies, according to the helix VI residues at the hydrophobic end of one of the proton pathways (the so-called D-channel): (i) type A1, comprising the enzymes with a glutamate residue in the motif -XGHPEV-, and (ii) type A2, enzymes having instead a tyrosine and a serine in the alternative motif -YSHPXV-. This second subfamily of oxidases is shown to be ancestor to the one containing the glutamate residue, which in the Bacteria domain is only present in oxidases from Gram-positive or purple bacteria. It is further proposed that the Archaea domain acquired terminal oxidases by gene transfer from the Gram-positive bacteria, implying that these enzymes were not present in the last common ancestor before the divergence between Archaea and Bacteria. In fact, most oxidases from archaea have a higher amino acid sequence identity and similarity with those from bacteria, mainly from the Gram-positive group, than with oxidases from other archaea. Finally, a possible relation between the dihaemic subunit (FixP) of the cbb3 oxidases and subunit II of caa3 oxidases is discussed. As the families of haem-copper oxidases can also be identified by their subunit II, a parallel evolution of subunits I and II is suggested.  相似文献   

10.
Chemolithoautotrophic acidophilic bacteria, which belong to the genus Leptospirillum, can only grow with Fe(II) as electron donor and oxygen as an electron acceptor. Members of this genus play an important role in bioleaching sulfide ores. We used nearly complete genome sequences of Leptospirillum ferrooxidans (group I), Leptospirillum rubarum, Leptospirillum '5-way CG' (group II) and Leptospirillum ferrodiazotrophum (group III) to identify cytochromes that are likely involved in electron transfer chain(s). The results show the presence of genes encoding a number of c-type cytochromes (18-20 genes were identified in each species), as well as bd and cbb? oxidases. Genes encoding cbb? oxidase are clustered, with predicted genes involved in cbb? maturation proteins. Duplication of cbb? encoding genes (ccoNO) was detected in all four genomes. Interestingly, these micro-organisms also contain genes that potentially encode bc? and b?f-like complexes organized into two putative operon structures. To date, the Leptospirillum genus includes the only organisms reported to have genes coding for two different bc complexes. This study provides detailed insights into the components of electron transfer chains of Leptospirillum spp., revealing their conservation among leptospirilla groups and suggesting that there may be a single common pathway for electron transport between Fe(II) and oxygen.  相似文献   

11.
Cytochrome oxidases are perfect model substrates for analyzing the assembly of multisubunit complexes because the need for cofactor incorporation adds an additional level of complexity to their assembly. cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) consist of the catalytic subunit CcoN, the membrane-bound c-type cytochrome subunits CcoO and CcoP, and the CcoQ subunit, which is required for cbb(3)-Cox stability. Biogenesis of cbb(3)-Cox proceeds via CcoQP and CcoNO subcomplexes, which assemble into the active cbb(3)-Cox. Most bacteria expressing cbb(3)-Cox also contain the ccoGHIS genes, which encode putative cbb(3)-Cox assembly factors. Their exact function, however, has remained unknown. Here we analyzed the role of CcoH in cbb(3)-Cox assembly and showed that CcoH is a single spanning-membrane protein with an N-terminus-out-C-terminus-in (N(out)-C(in)) topology. In its absence, neither the fully assembled cbb(3)-Cox nor the CcoQP or CcoNO subcomplex was detectable. By chemical cross-linking, we demonstrated that CcoH binds primarily via its transmembrane domain to the CcoP subunit of cbb(3)-Cox. A second hydrophobic stretch, which is located at the C terminus of CcoH, appears not to be required for contacting CcoP, but deleting it prevents the formation of the active cbb(3)-Cox. This suggests that the second hydrophobic domain is required for merging the CcoNO and CcoPQ subcomplexes into the active cbb(3)-Cox. Surprisingly, CcoH does not seem to interact only transiently with the cbb(3)-Cox but appears to stay tightly associated with the active, fully assembled complex. Thus, CcoH behaves more like a bona fide subunit of the cbb(3)-Cox than an assembly factor per se.  相似文献   

12.
Abstract The quinone and cytochrome components of the respiratory chain of the microaerophilic bacterium Helicobacter pylori have been investigated. The major isoprenoid quinone was menaquinone-6, with traces of menaquinone-4; no methyl-substituted or unusual menaquinone species were found. Cell yield was highest after growth at 10% (v/v) oxygen and menaquinone levels (per dry cell mass) were maximal at 5–10% (v/v) oxygen. Helicobacter pylori cells and membranes contained b -and c -type cytochromes, but not terminal oxidases of the a -or d -types, as judged by reduced minus oxidised difference spectra. Spectra consistent with the presence of a CO-binding terminal oxidase of the cytochrome b -or o -type were obtained. The soluble fraction from disrupted cells also contained cytochrome c . There were no significant qualitative differences in the cytochrome complements of cells grown at oxygen concentrations in the range 2–15% (v/v) but putative oxidases were highest in cells grown at 5–10% (v/v) oxygen.  相似文献   

13.
14.
Mutations in respiratory chain complexes and human diseases   总被引:3,自引:0,他引:3  
Literary evidence for a link between mutations in genes encoding respiratory chain components and human disorders is reviewed with particular emphasis on defects in respiratory complexes III and IV and their assembly factors. To date, mutations in genes encoding cytochrome band QP-C structural subunits of cytochrome bc1 complex; the BCS1L assembly factor for the bc1 complex; structural subunits I-III of cytochrome c oxidase; as well as the SURF-1, COX10, SCO1, and SCO2 assembly factors for cytochrome c oxidase, have been reported. These mutations are responsible for different neuromuscular and non-neuromuscular human diseases.  相似文献   

15.
16.
17.
Helicobacter hepaticus is an important pathogen in laboratory mice and induces the development of liver tumors and gastrointestinal disease in susceptible strains of mice. In this study, a miniset of 36 cosmid clones from a genomic library of H. hepaticus was ordered and grouped into four large contigs representing approximately 1 Mb of the H. hepaticus genome using PCR, DNA sequencing, Southern and dot-blot hybridization and pulsed-field gel electrophoresis. From the 200-300 terminal nucleotide sequences of 38 cosmid clones, 56 coding regions were predicted, of which 51 were found to have orthologs in the public databases and five appeared to be unique to H. hepaticus. Of these 51 genes, 36 have orthologs in Helicobacter pylori and 25 display the highest sequence similarity to H. pylori. However, chromosomal positions of these genes are not conserved between these two helicobacters. In addition, 10 H. hepaticus genes had the highest sequence similarity to orthologs in Campylobacter jejuni. The GC content in a randomly selected 21-kb H. hepaticus genomic sequence was 35.8%, which approximates the average between H. pylori (39%) and C. jejuni (30.6%). These results demonstrate that: (1) H. hepaticus is more closely related to H. pylori than C. jejuni; (2) significant genomic alterations exist between H. hepaticus and H. pylori, including gene organization, protein sequences and GC content, probably in part due to specific adaptation to distinct ecological niches.  相似文献   

18.
Bacillus subtilis contains two aa3-type terminal oxidases (caa3-605 and aa3-600) catalyzing cytochrome c and quinol oxidation, respectively, with the concomitant reduction of O2 to H2O (Lauraeus, M., Haltia, T., Saraste, M., and Wikstr?m, M. (1991) Eur. J. Biochem. 197, 699-705). Previous studies characterized only the structural genes of caa3-605 oxidase. We isolated the genes coding for the four subunits of a B. subtilis terminal oxidase from a genomic DNA library. These genes, named qoxA to qoxD, are organized in an operon. Examination of the deduced amino acid sequence of Qox subunits showed that this oxidase is structurally related to the large family of mitochondrial-type aa3 terminal oxidases. In particular, the amino acid sequences are very similar to those of subunits of Escherichia coli bo quinol oxidase and B. subtilis caa3-605 cytochrome c oxidase. We produced, by in vitro mutagenesis, a mutation in the qox operon. From the phenotype of the mutant strain devoid of Qox protein, the study of expression of the qox operon in different growth conditions, and the analysis of the deduced amino acid sequence of the subunits, we concluded that Qox protein and aa3-600 quinol oxidase are the same protein. Although several terminal oxidases are found in B. subtilis, Qox oxidase (aa3-600) is predominant during the vegetative growth and its absence leads to important alterations of the phenotype of B. subtilis.  相似文献   

19.
Paracoccus denitrificans strains with mutations in the genes encoding the cytochrome c(550), c(552), or c(1) and in combinations of these genes were constructed, and their growth characteristics were determined. Each mutant was able to grow heterotrophically with succinate as the carbon and free-energy source, although their specific growth rates and maximum cell numbers fell variably behind those of the wild type. Maximum cell numbers and rates of growth were also reduced when these strains were grown with methylamine as the sole free-energy source, with the triple cytochrome c mutant failing to grow on this substrate. Under anaerobic conditions in the presence of nitrate, none of the mutant strains lacking the cytochrome bc(1) complex reduced nitrite, which is cytotoxic and accumulated in the medium. The cytochrome c(550)-deficient mutant did denitrify provided copper was present. The cytochrome c(552) mutation had no apparent effect on the denitrifying potential of the mutant cells. The studies show that the cytochromes c have multiple tasks in electron transfer. The cytochrome bc(1) complex is the electron acceptor of the Q-pool and of amicyanin. It is also the electron donor to cytochromes c(550) and c(552) and to the cbb(3)-type oxidase. Cytochrome c(552) is an electron acceptor both of the cytochrome bc(1) complex and of amicyanin, as well as a dedicated electron donor to the aa(3)-type oxidase. Cytochrome c(550) can accept electrons from the cytochrome bc(1) complex and from amicyanin, whereas it is also the electron donor to both cytochrome c oxidases and to at least the nitrite reductase during denitrification. Deletion of the c-type cytochromes also affected the concentrations of remaining cytochromes c, suggesting that the organism is plastic in that it adjusts its infrastructure in response to signals derived from changed electron transfer routes.  相似文献   

20.
The effect of mutations in the genes encoding dehydrogenases and oxidases on the resistance of the Synechocystis sp. PCC 6803 cyanobacterium to menadione, an oxidative stress inducer, was studied. An enhanced sensitivity to menadione was observed in the mutants carrying inserts in the drgA gene encoding the NAD(P)H:quinone oxidoreductase (NQR) and in the ndhB gene encoding the subunit of NDH-1 complex. The menadione resistance in the mutants lacking oxidases (Ox), succinate dehydrogenase (SDH), and NDH-2 dehydrogenase do not differ from those in wild-type cells. An additional mutation in the drgA gene increased the sensitivity to menadione in the NDH-2 and Ox mutants. The double mutant that lacks both SDH and NQR was not viable. The expression of the drgA gene decreased during cell incubation in the dark but increased in the presence of glucose both in the dark and in light. Under photoautotrophic growth conditions, the dehydrogenase activity of the cells mainly depends on the NQR and NDH-1 functions. The re-reduction rate of the photosystem I reaction center (P700+) increased in wild-type and NDH-1 mutants after its oxidation with white light in the presence of DCMU after addition of menadione, and it decreased in the NQR mutant. The reduction of P700+ was accelerated in the presence of menadiol in all the strains studied. These results suggest that NQR provides defense of cyanobacterium cells from the toxic effect of menadione via its two-electron reduction to menadiol. An increased sensitivity of the NDH-1 mutant to menadione may result from the inhibition of respiration and the cyclic electron transport in photosystem I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号