首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
The differences between completely and incompletely coupled linear energy converters are discussed using suitable electrochemical cells as examples. The output relation for the canonically simplest class of self-regulated incompletely coupled linear energy converters has been shown to be identical to the Hill force-velocity characteristic for muscle. The corresponding input relation (the “inverse” Hill equation) is now derived by two independent methods. The first method is a direct transformation of the output relation through the phenomenological equations of the converter; Onsager symmetry has no influence on the result. The second method makes use of a model system, a hydroelectric device with a regulator mechanism which depends only on the operational limits of the converter (an electro-osmosis cell operated in reverse) and on the load. The inverse Hill equation is shown to be the simplest solution of the regulator equation. An interesting and testable series of relations between input and output parameters arises from the two forms of the Hill equation. For optimal regulation the input should not be greatly different in the two limiting stationary states (level flow and static head). The output power will then be nearly maximal over a considerable range of load resistance, peak output being obtained at close to peak efficiency.  相似文献   

2.

Background

ETV6/RUNX1 (E/R) (also known as TEL/AML1) is the most frequent gene fusion in childhood acute lymphoblastic leukemia (ALL) and also most likely the crucial factor for disease initiation; its role in leukemia propagation and maintenance, however, remains largely elusive. To address this issue we performed a shRNA-mediated knock-down (KD) of the E/R fusion gene and investigated the ensuing consequences on genome-wide gene expression patterns and deducible regulatory functions in two E/R-positive leukemic cell lines.

Findings

Microarray analyses identified 777 genes whose expression was substantially altered. Although approximately equal proportions were either up- (KD-UP) or down-regulated (KD-DOWN), the effects on biological processes and pathways differed considerably. The E/R KD-UP set was significantly enriched for genes included in the “cell activation”, “immune response”, “apoptosis”, “signal transduction” and “development and differentiation” categories, whereas in the E/R KD-DOWN set only the “PI3K/AKT/mTOR signaling” and “hematopoietic stem cells” categories became evident. Comparable expression signatures obtained from primary E/R-positive ALL samples underline the relevance of these pathways and molecular functions. We also validated six differentially expressed genes representing the categories “stem cell properties”, “B-cell differentiation”, “immune response”, “cell adhesion” and “DNA damage” with RT-qPCR.

Conclusion

Our analyses provide the first preliminary evidence that the continuous expression of the E/R fusion gene interferes with key regulatory functions that shape the biology of this leukemia subtype. E/R may thus indeed constitute the essential driving force for the propagation and maintenance of the leukemic process irrespective of potential consequences of associated secondary changes. Finally, these findings may also provide a valuable source of potentially attractive therapeutic targets.  相似文献   

3.
With the advent of molecular biology, genomics, and proteomics, the intersection between science and law has become increasingly significant. In addition to the ethical and legal concerns surrounding the collection, storage, and use of genomic data, patent disputes for new biotechnologies are quickly becoming part of mainstream business discussions. Under current patent law, new technologies cannot be patented if they are “obvious” changes to an existing patent. The definition of “obvious,” therefore, has a huge impact on determining whether a patent is granted. For example, are modifications to microarray protocols, popular in diagnostic medicine, considered “obvious” improvements of previous products? Also, inventions that are readily apparent now may not have been obvious when discovered. Polymerase chain reaction, or PCR, is now a common component of every biologist’s toolbox and seems like an obvious invention, though it clearly was not in 1983. Thus, there is also a temporal component that complicates the interpretation of an invention’s obviousness. The following article discusses how a recent Supreme Court decision has altered the definition of “obviousness” in patent disputes. By examining how the obviousness standard has changed, the article illuminates how legal definitions that seem wholly unrelated to biology or medicine could still potentially have enormous effects on these fieldsJust what is obvious or not is a question that has provoked substantial litigation in the Federal Circuit, the appellate court with special jurisdiction over patent law disputes. Under U.S. patent law, an inventor may not obtain a patent, which protects his invention from infringement by others, if the differences between the subject matter sought to be patented and the prior art are such that “the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill” in the patent’s subject matter area [1]. However, what was “obvious” at the time of invention to a person of ordinary skill is hardly clear and is, in effect, a legal fiction designed to approximate objectivity. As illustrated by Chief Justice John Roberts of the Supreme Court in a moment of levity, “Who do you get to ... tell you something’s not obvious … the least insightful person you can find?” [2] Despite the apparent objectivity provided by a “person of ordinary skill” obviousness standard, the difficulty lies in that such a standard is still susceptible to multiple interpretations, depending on the point of view and knowledge ascribed to the “ordinary person.” As such, how obviousness is defined and interpreted by the courts will have important implications on biotechnology patents and the biotechnology business.The issue of obviousness arose in April 2007 when the Supreme Court handed down its decision in KSR Int’l Co. v. Teleflex, Inc. [3] The facts of the case were anything but glamorous; in the suit, Teleflex, a manufacturer of adjustable pedal systems for automobiles, sued KSR, its rival, for infringement of its patent, which “describe[d] a mechanism for combining an electronic sensor with an adjustable automobile pedal so that the pedal’s position can be transmitted to a computer that controls the throttle in the vehicle’s engine.” [4] Teleflex believed that KSR’s new pedal design was too similar to its own patented design and therefore infringed upon it [5]. In defense, KSR argued that Teleflex’s patent was merely the obvious combination of two pre-existing elements and, thus, the patent, upon which Teleflex’s infringement claim was based, was invalid.Patent law relies on the concept of obviousness to distinguish whether new inventions are worthy of being protected by a patent. If a new invention is too obvious, it is not granted a patent and is therefore not a legally protected property interest. However, if an invention is deemed not obvious and has met the other patentability requirements, a patent will be granted, thereby conferring exclusive use of the invention to the patent holder. This exclusive right prohibits others from making, using, selling, offering to sell, or importing into the United States the patented invention [6]. Essentially, the definition of obviousness sets the balance between rewarding new inventions with exclusive property rights and respecting old inventions by not treating minor variations of existing patents as new patents. In this manner, the law seeks to provide economic incentives for the creation of new inventions by ensuring that the property right conferred by the patent will be protected against insignificant variations. The importance of where the line for obviousness is drawn and how clearly it is drawn is especially important in the biotechnology industry. Studies have shown that the development of a new pharmaceutical therapy can take up to 14 years with costs exceeding $800 million [7]. Such an enormous investment of time and money would not be practical if it did not predictably result in a legally enforceable property right.The standard for what constitutes a patentable discovery has evolved over the last 150 years. In 1851, the Supreme Court held in Hotchkiss v. Greenwood that a patentable discovery required a level of ingenuity above that possessed by an ordinary person [8]. Lower courts treated the Hotchkiss standard as a subjective standard, whereby courts sought to determine “what constitute[d] an invention” [9] and a “flash of creative genius” [10]. However, the attempts at imposing the Hotchkiss standard proved unworkable, and in 1952, Congress overrode the case law with the Patent Act, “mandat[ing] that patentability be governed by an objective nonobviousness standard.” [11] This new statutory standard moved the courts away from subjective determinations and toward a more workable, objective obviousness standard.While the Patent Act laid the foundation for the current obviousness standard, the Supreme Court in Graham v. John Deere Co. interpreted the statutory language in an attempt to provide greater clarity as to what exactly “obvious” meant [12]. The Supreme Court determined that the objective analysis would require “the scope and content of the prior art ... to be determined; differences between the prior art and the claims at issue ... to be ascertained; and the level of ordinary skill in the pertinent art resolved.” [13] In addition to analysis under this three-part framework, the Supreme Court called for several secondary considerations to be weighed, including “commercial success, long felt but unresolved needs, [and the] failure of others [to solve the problem addressed].” [13]Unsurprisingly, lower courts were unsatisfied with the Supreme Court’s attempts to clarify the obviousness standard and sought to provide “more uniformity and consistency” to their evaluation of obviousness than the Supreme Court’s jumble of factors provided [14]. In search of consistency, the Federal Circuit created the “teaching, suggestion, or motivation” test (TSM test) “under which a patent is only proved obvious if ‘some motivation or suggestion to combine prior art teachings’ can be found in the prior art, the nature of the problem, or the knowledge of a person having ordinary skill in the art.” [14] Through implementation of the TSM test, the Federal Circuit sought to maintain the flexibility envisioned by the Supreme Court in Graham, while at the same time providing more certainty and predictability to obviousness determinations.The issue before the Supreme Court in KSR Int’l Co. v. Teleflex, Inc. was whether the Federal Circuit’s elaboration on the statutory language of the Patent Act, the TSM test, was consistent with the terms of the Patent Act itself and the Supreme Court’s own analysis in Graham. The Supreme Court determined that while the TSM test was, on its terms, consistent with the framework set out in Graham, the rigid manner in which the Federal Circuit had taken to applying that standard was inconsistent with the flexible approach established by Graham [15]. More generally, it appears the Supreme Court was mainly interested in restoring a more rounded, thorough inquiry to the evaluation of obviousness: “Graham set forth a broad inquiry and invited courts, where appropriate, to look at any secondary considerations that would prove instructive.” [16] As stated by the Supreme Court, “[r]igid preventative rules that deny factfinders recourse to common sense, however, are neither necessary under our case law nor consistent with it.” [17] As such, the Supreme Court reversed the findings of the Federal Circuit, which had found the Teleflex patent valid, and remanded the case back to the lower court with directions to analyze, without rigid adherence to the TSM test, whether the Teleflex patent was obvious [18].The Supreme Court’s ruling in KSR Int’l Co. v. Teleflex, Inc. that the Federal Circuit apply its TSM test less rigidly may have implications for those seeking biotechnology patents in the future. As discussed above, the large investments necessary to develop a marketable biotechnology product demand that entrepreneurs making those investments be reasonably assured that they can predict any future legal hurdles in patenting their invention and in ultimately protecting their patent. As explained by the Biotechnology Industry Organization in its amicus curiae brief in KSR Int’l Co. v. Teleflex, Inc., “[i]nvestment thus is predicated on an expected return on investment in the form of products or services that are protected by patents whose validity can be fairly determined.” [19] Therefore, the Supreme Court’s insistence that the Federal Circuit no longer rigidly rely on the TSM test could increase uncertainty in the grant of future patents. However, the Supreme Court’s refusal to completely dismiss the TSM test, while in fact endorsing its continued use, albeit on a less rigid basis, has to be viewed as a profound victory for an industry with a significant stake in maintaining the status quo. Moreover, it is unclear how much the Supreme Court’s holding in KSR Int’l Co. v. Teleflex, Inc. will truly change the legal analysis of the lower courts, given the evidence that lower courts already were independently shifting away from rigid adherence to the TSM test before the Supreme Court’s ruling [20].More importantly, several aspects of the Supreme Court’s reasoning in KSR Int’l Co. v. Teleflex, Inc. seem to directly address relevant concerns of the biotechnology market in favorable ways. First, the Supreme Court made clear that though a product is the result of a combination of elements that were “obvious to try,” it is not necessarily “obvious” under the Patent Act. Retaining the possibility that “obvious to try” inventions still may be patentable is extremely important to the biotechnology industry in particular because “many patentable inventions in biotechnology spring from known components and methodologies found in [the] prior art.” [21] Rather than foreclosing all “obvious to try” inventions as being obvious, and therefore not patentable, the Supreme Court instead explained that where there is “a design need or market pressure to solve a problem and there are a finite number of identified, predictable solutions,” it is more likely that a person of ordinary skill would find it obvious to pursue “known options.” [22] Thus, the proper inquiry, as stated by the Supreme Court, is “whether the improvement is more than the predictable use of prior art elements according to their established functions.” [23] While this reasoning may prevent some “obvious to try” inventions from being patented, it is unlikely to have a substantial effect on inventions in the biotechnology market because “most advances in biotechnology are only won through great effort and expense, and with only a low probability of success in achieving the claimed invention at the outset.” [24] In other words, it would be hard to characterize the use of prior art in the biotechnology context as predictable based on the inherent unpredictability of obtaining favorable results. As such, most biotechnology inventions would presumably fall outside the Supreme Court’s “obvious to try” reasoning due to the very nature of the industry, meaning they would remain patentable under the Supreme Court’s KSR Int’l Co. v. Teleflex, Inc. decision.Second, the Supreme Court recognized the “distortion caused by hindsight bias” and the importance of avoiding “arguments reliant upon ex post reasoning,” though it lessened the Federal Circuit’s rigid protection against hindsight bias [24]. Hindsight bias requires that obviousness be viewed at the time the invention was made, because what may seem revolutionary at the time of invention may, upon the passage of time, seem “obvious.” Cognizance of hindsight bias is crucial for biotechnology patents because “there often is a long ‘passage of time between patent application filing and litigation with biotechnology inventions [that] can exacerbate the problem’ of hindsight bias.” [25] The problem is further exacerbated by the “significantly longer durations of commercial utility” biotechnology inventions enjoy as compared to those in other fields [25]. The more time between the filing of a patent and the subsequent litigation over its validity, the greater the risk that “reliable accounts of [the] context” in which the discovery is made will no longer exist [26]. As such, inventions that were not obvious when they were created will be inescapably colored by the passage of time and by new knowledge and discoveries; the likelihood of this occurrence is higher the further removed the litigation is from the patent filing date. Once again, however, it seems clear that despite the Supreme Court’s abandonment of the TSM test’s rigidity, strong protections against hindsight bias still were emphasized in the Supreme Court’s KSR Int’l Co. v. Teleflex, Inc. decision. In fact, lower courts applying KSR Int’l Co. v. Teleflex, Inc. acknowledge they are “cautious” to avoid “using hindsight” in biotechnology obviousness determinations [27].Finally, the Supreme Court seems to believe that the imposition of a more flexible approach will be more likely to benefit markets not directly at issue in KSR Int’l Co. v. Teleflex, Inc. The Supreme Court asserted, “[t]he diversity of inventive pursuits and of modern technology counsels against limiting the analysis” to the rigid TSM test of the Federal Circuit [28]. This language suggests that the Supreme Court expects lower courts to take into consideration the special considerations facing unique markets, such as the biotechnology market. As such, the specific concerns of the biotechnology market discussed above may receive more attention under the flexible framework asserted by the Supreme Court in KSR Int’l Co. v. Teleflex, Inc.Leading up to the oral argument in KSR Int’l Co. v. Teleflex, Inc., there was widespread speculation that the case could result in a watershed moment, significantly altering the definition of obviousness in patent law. For many, including those in the biotechnology industry, there was ample reason to be concerned. Any change in the definition of obviousness would effectively shift property rights from new patent holders to old, or vice versa. However, the Supreme Court acted with restraint. While the decision purports to make substantial changes by doing away with the Federal Circuit’s TSM test, the opinion seems more like a mild-mannered rebuke of lower courts that had become too complacent in the implementation of their beloved test. If anything, the Supreme Court’s insistence on a more flexible formula is simply a call for lower courts to employ common sense, in addition to considering the factors from Graham and the TSM test. Accordingly, the Supreme Court’s opinion in KSR Int’l Co. v. Teleflex, Inc. is unlikely to have a pronounced effect on the biotechnology market, despite the widespread concern generated before the actual decision was handed down.  相似文献   

4.
Bouillard K  Nordez A  Hug F 《PloS one》2011,6(12):e29261

Background

Estimation of an individual muscle force still remains one of the main challenges in biomechanics. In this way, the present study aimed: (1) to determine whether an elastography technique called Supersonic Shear Imaging (SSI) could be used to estimate muscle force, (2) to compare this estimation to that one provided by surface electromyography (EMG), and (3) to determine the effect of the pennation of muscle fibers on the accuracy of the estimation.

Methods and Results

Eleven subjects participated in two experimental sessions; one was devoted to the shear elastic modulus measurements and the other was devoted to the EMG recordings. Each session consisted in: (1) two smooth linear torque ramps from 0 to 60% and from 0 to 30% of maximal voluntary contraction, for the first dorsal interosseous and the abductor digiti minimi, respectively (referred to as “ramp contraction”); (2) two contractions done with the instruction to freely change the torque (referred to as “random changes contraction”). Multi-channel surface EMG recordings were obtained from a linear array of eight electrodes and the shear elastic modulus was measured using SSI. For ramp contractions, significant linear relationships were reported between EMG activity level and torque (R2 = 0.949±0.036), and between shear elastic modulus and torque (R2 = 0.982±0.013). SSI provided significant lower RMSdeviation between measured torque and estimated torque than EMG activity level for both types of contraction (1.4±0.7 vs. 2.8±1.4% of maximal voluntary contraction for “ramp contractions”, p<0.01; 4.5±2.3 vs. 7.9±5.9% of MVC for “random changes contractions”, p<0.05). No significant difference was reported between muscles.

Conclusion

The shear elastic modulus measured using SSI can provide a more accurate estimation of individual muscle force than surface EMG. In addition, pennation of muscle fibers does not influence the accuracy of the estimation.  相似文献   

5.
Besides Erasipteroides valentini (Brauckmann in Brauckmann, Koch & Kemper, 1985), Zessinella siope Brauckmann, 1988, and Namurotypus sippeli Brauckmann & Zessin, 1989, Rasnitsynala sigambrorum gen. et sp. n. is the fourth species of the Odonatoptera from the early Late Carboniferous (Early Pennsylvanian: Namurian B, Marsdenian) deposits of the important Hagen-Vorhalle Konservat-Lagerstätte in Germany. With its wing-span of about 55 mm it is unusually small even for the “Eomeganisoptera”. Its venation resembles other small “Eomeganisoptera”, in particular Zessinella siope. This is why it is here assigned to the probably paraphyletic “Erasipteridae” Carpenter, 1939.  相似文献   

6.
Despite the widely documented influence of gender stereotypes on social behaviour, little is known about the electrophysiological substrates engaged in the processing of such information when conveyed by language. Using event-related brain potentials (ERPs), we examined the brain response to third-person pronouns (lei “she” and lui “he”) that were implicitly primed by definitional (passeggera FEM “passenger”, pensionato MASC “pensioner”), or stereotypical antecedents (insegnante “teacher”, conducente “driver”). An N400-like effect on the pronoun emerged when it was preceded by a definitionally incongruent prime (passeggera FEMlui; pensionato MASClei), and a stereotypically incongruent prime for masculine pronouns only (insegnante – lui). In addition, a P300-like effect was found when the pronoun was preceded by definitionally incongruent primes. However, this effect was observed for female, but not male participants. Overall, these results provide further evidence for on-line effects of stereotypical gender in language comprehension. Importantly, our results also suggest a gender stereotype asymmetry in that male and female stereotypes affected the processing of pronouns differently.  相似文献   

7.

Background

Syphilis is resurgent in many regions of the world. Molecular typing is a robust tool for investigating strain diversity and epidemiology. This study aimed to review original research on molecular typing of Treponema pallidum (T. pallidum) with three objectives: (1) to determine specimen types most suitable for molecular typing; (2) to determine T. pallidum subtype distribution across geographic areas; and (3) to summarize available information on subtypes associated with neurosyphilis and macrolide resistance.

Methodology/Principal Findings

Two researchers independently searched five databases from 1998 through 2010, assessed for eligibility and study quality, and extracted data. Search terms included “Treponema pallidum,” or “syphilis,” combined with the subject headings “molecular,” “subtyping,” “typing,” “genotype,” and “epidemiology.” Sixteen eligible studies were included. Publication bias was not statistically significant by the Begg rank correlation test. Medians, inter-quartile ranges, and 95% confidence intervals were determined for DNA extraction and full typing efficiency. A random-effects model was used to perform subgroup analyses to reduce obvious between-study heterogeneity. Primary and secondary lesions and ear lobe blood specimens had an average higher yield of T. pallidum DNA (83.0% vs. 28.2%, χ2 = 247.6, p<0.001) and an average higher efficiency of full molecular typing (80.9% vs. 43.1%, χ2 = 102.3, p<0.001) compared to plasma, whole blood, and cerebrospinal fluid. A pooled analysis of subtype distribution based on country location showed that 14d was the most common subtype, and subtype distribution varied across geographic areas. Subtype data associated with macrolide resistance and neurosyphilis were limited.

Conclusions/Significance

Primary lesion was a better specimen for obtaining T. pallidum DNA than blood. There was wide geographic variation in T. pallidum subtypes. More research is needed on the relationship between clinical presentation and subtype, and further validation of ear lobe blood for obtaining T. pallidum DNA would be useful for future molecular studies of syphilis.  相似文献   

8.
The human DNA polymerase κ homolog Sulfolobus solfataricus DNA polymerase IV (Dpo4) produces “−1” frameshift deletions while copying unmodified DNA and, more frequently, when bypassing DNA adducts. As judged by steady-state kinetics and mass spectrometry, bypass of purine template bases to produce these deletions occurred rarely but with 10-fold higher frequency than with pyrimidines. The DNA adduct 1,N2-etheno-2′-deoxyguanosine, with a larger stacking surface than canonical purines, showed the highest frequency of formation of −1 frameshift deletions. Dpo4 T239W, a mutant we had previously shown to produce fluorescence changes attributed to conformational change following dNTP binding opposite cognate bases (Beckman, J. W., Wang, Q., and Guengerich, F. P. (2008) J. Biol. Chem. 283, 36711–36723), reported similar conformational changes when the incoming dNTP complemented the base following a templating purine base or bulky adduct (i.e. the “+1” base). However, in all mispairing cases, phosphodiester bond formation was inefficient. The frequency of −1 frameshift events and the associated conformational changes were not dependent on the context of the remainder of the sequence. Collectively, our results support a mechanism for −1 frameshift deletions by Dpo4 that involves formation of active complexes via a favorable conformational change that skips the templating base, without causing slippage or flipping out of the base, to incorporate a complementary residue opposite the +1 base, in a mechanism previously termed “dNTP-stabilized incorporation.” The driving force is attributed to be the stacking potential between the templating base and the incoming dNTP base.  相似文献   

9.
Cândido Godói (CG) is a small municipality in South Brazil with approximately 6,000 inhabitants. It is known as the “Twins'' Town” due to its high rate of twin births. Recently it was claimed that such high frequency of twinning would be connected to experiments performed by the German Nazi doctor Joseph Mengele. It is known, however, that this town was founded by a small number of families and therefore a genetic founder effect may represent an alternatively explanation for the high twinning prevalence in CG. In this study, we tested specific predictions of the “Nazi''s experiment” and of the “founder effect” hypotheses. We surveyed a total of 6,262 baptism records from 1959–2008 in CG catholic churches, and identified 91 twin pairs and one triplet. Contrary to the “Nazi''s experiment hypothesis”, there is no spurt in twinning between the years (1964–1968) when Mengele allegedly was in CG (P = 0.482). Moreover, there is no temporal trend for a declining rate of twinning since the 1960s (P = 0.351), and no difference in twinning among CG districts considering two different periods: 1927–1958 and 1959–2008 (P = 0.638). On the other hand, the “founder effect hypothesis” is supported by an isonymy analysis that shows that women who gave birth to twins have a higher inbreeding coefficient when compared to women who never had twins (0.0148, 0.0081, respectively, P = 0.019). In summary, our results show no evidence for the “Nazi''s experiment hypothesis” and strongly suggest that the “founder effect hypothesis” is a much more likely alternative for explaining the high prevalence of twinning in CG. If this hypothesis is correct, then this community represents a valuable population where genetic factors linked to twinning may be identified.  相似文献   

10.

Background

Intentional forgetting refers to the surprising phenomenon that we can forget previously successfully encoded memories if we are instructed to do so. Here, we show that participants cannot only intentionally forget episodic memories but they can also mirror the “forgetting performance” of an observed model.

Methodology/Principal Findings

In four experiments a participant observed a model who took part in a memory experiment. In Experiment 1 and 2 observers saw a movie about the experiment, whereas in Experiment 3 and 4 the observers and the models took part together in a real laboratory experiment. The observed memory experiment was a directed forgetting experiment where the models learned two lists of items and were instructed either to forget or to remember the first list. In Experiment 1 and 3 observers were instructed to simply observe the experiment (“simple observation” instruction). In Experiment 2 and 4, observers received instructions aimed to induce the same learning goal for the observers and the models (“observation with goal-sharing” instruction). A directed forgetting effect (the reliably lower recall of to-be-forgotten items) emerged only when models received the “observation with goal-sharing” instruction (P<.001 in Experiment 2, and P<.05 in Experiment 4), and it was absent when observers received the “simple observation” instruction (P>.1 in Experiment 1 and 3).

Conclusion

If people observe another person with the same intention to learn, and see that this person is instructed to forget previously studied information, then they will produce the same intentional forgetting effect as the person they observed. This seems to be a an important aspect of human learning: if we can understand the goal of an observed person and this is in line with our behavioural goals then our learning performance will mirror the learning performance of the model.  相似文献   

11.
An attempt was made to determine the factors causing the load-inertia compensation that has been observed in skeletal muscle. Cat skeletal muscle force output was determined as a function of the two variables, length and stimulus pulse rate. The results were represented in a system diagram from which it becomes apparent that: (a) the length-tension relationship in muscle forms a functional, non-neural servo feedback; (b) the force-velocity curve appears as an oscillation-damping, velocity feedback in the muscle servo; (c) the nonlinear action of pulse rate on response is, in effect, in the input element to the muscle servo system. For purpose of analysis of the motor system it appears that these signal handling characteristics of muscle make it more nearly a “position servo” than a “force motor.”  相似文献   

12.
13.
Wolinsky H 《EMBO reports》2011,12(2):107-109
Considering a patient''s ethnic background can make some diagnoses easier. Yet, ‘racial profiling'' is a highly controversial concept and might soon be replaced by the advent of individualized medicine.In 2005, the US Food and Drug Administration (FDA; Bethesda, MD, USA) approved BiDil—a combination of vasodilators to treat heart failure—and hailed it as the first drug to specifically treat an ethnic group. “Approval of a drug to treat severe heart failure in self-identified black population is a striking example of how a treatment can benefit some patients even if it does not help all patients,” announced Robert Temple, the FDA''s Director of Medical Policy. “The information presented to the FDA clearly showed that blacks suffering from heart failure will now have an additional safe and effective option for treating their condition” (Temple & Stockbridge, 2007). Even the National Medical Association—the African-American version of the American Medical Association—advocated the drug, which was developed by NitroMed, Inc. (Lexington, MA, USA). A new era in medicine based on racial profiling seemed to be in the offing.By January 2008, however, the ‘breakthrough'' had gone bust. NitroMed shut down its promotional campaign for BiDil—a combination of the vasodilators isosorbide dinitrate, which affects arteries and veins, and hydralazine hydrochloride, which predominantly affects arteries. In 2009, it sold its BiDil interests and was itself acquired by another pharmaceutical company.In the meantime, critics had largely discredited the efforts of NitroMed, thereby striking a blow against the drug if not the concept of racial profiling or race-based medicine. Jonathan Kahn, a historian and law professor at Hamline University (St Paul, MN, USA), described the BiDil strategy as “a leap to genetics.” He demonstrated that NitroMed, motivated to extend its US patent scheduled to expire in 2007, purported to discover an advantage for a subpopulation of self-identified black people (Kahn, 2009). He noted that NitroMed conducted a race-specific trial to gain FDA approval, but, as there were no comparisons with other populations, it never had conclusive data to show that BiDil worked in black people differently from anyone else.“If you want to understand heart failure, you look at heart failure, and if you want to understand racial disparities in conditions such as heart failure or hypertension, there is much to look at that has nothing to do with genetics,” Kahn said, adding “that jumping to race as a genetic construct is premature at best and reckless generally in practice.” The USA, he explained, has a century-old tradition of marketing to racial and ethnic groups. “BiDil brought to the fore the notion that you can have ethnic markets not only in things like cigarettes and food, but also in pharmaceuticals,” Kahn commented.“BiDil brought to the fore the notion that you can have ethnic markets not only in things like cigarettes and food, but also in pharmaceuticals”However, despite BiDil''s failure, the search for race-based therapies and diagnostics is not over. “What I have found is an increasing, almost exponential, rise in the use of racial and ethnic categories in biotechnology-related patents,” Kahn said. “A lot of these products are still in the pipeline. They''re still patent applications, they''re not out on the market yet so it''s hard to know how they''ll play out.”The growing knowledge of the human genome is also providing new opportunities to market medical products aimed at specific ethnic groups. The first bumpy steps were taken with screening for genetic risk factors for breast cancers. Myriad Genetics (Salt Lake City, UT, USA) holds broad patents in the USA for breast-cancer screening tests that are based on mutations of the BRCA1 and BRCA2 genes, but it faced challenges in Europe, where critics raised concerns about the high costs of screening.The growing knowledge of the human genome is also providing new opportunities to market medical products aimed at specific ethnic groupsThe European Patent Office initially granted Myriad patents for the BRCA1 and BRCA2-based tests in 2001, after years of debate. But it revoked the patent on BRCA1 in 2005, which was again reversed in 2009. In 2005 Myriad decided to narrow the scope of BRCA2 testing on the basis of ethnicity. The company won a patent to predict breast-cancer risk in Ashkenazi Jewish women on the basis of BRCA2 mutations, which occur in one in 100 of these women. Physicians offering the test are supposed to ask their patients whether they are in this ethnic group, and then pay a fee to Myriad.Kahn said Myriad took this approach to package the test differently in order to protect its financial interests. However, he commented, the idea of ethnic profiling by asking women whether they identify themselves as Ashkenazi Jewish and then paying extra for an ‘ethnic'' medical test did not work in Europe. “It''s ridiculous,” Kahn commented.After the preliminary sequence of the human genome was published a decade ago, experts noted that humans were almost the same genetically, implying that race was irrelevant. In fact, the validity of race as a concept in science—let alone the use of the word—has been hotly debated. “Race, inasmuch as the concept ought to be used at all, is a social concept, not a biological one. And using it as though it were a biological one is as a much an ethical problem as a scientific problem,” commented Samia Hurst, a physician and bioethicist at Geneva University Medical School in Switzerland.Switzerland.Open in a separate window© Monalyn Gracia/CorbisCiting a popular slogan: “There is no gene for race,” she noted, “there doesn''t seem to be a single cluster of genes that fits with identification within an ethnic group, let alone with disease risks as well. We''re also in an increasingly mixed world where many people—and I count myself among them—just don''t know what to check on the box. If you start counting up your grandparents and end up with four different ethnic groups, what are you going to do? So there are an increasing number of people who just don''t fit into those categories at all.”Still, some dismiss criticism of racial profiling as political correctness that could potentially prevent patients from receiving proper care. Sally Satel, a psychiatrist in Washington, DC, USA, does not shy away from describing herself as a racially profiling physician and argues that it is good medicine. A commentator and resident scholar at the nonpartisan conservative think tank, the American Enterprise Institute (Washington, DC, USA), Satel wrote the book PC, M.D.: How Political Correctness is Corrupting Medicine. “In practicing medicine, I am not color blind. I take note of my patient''s race. So do many of my colleagues,” she wrote in a New York Times article entitled “I am a racially profiling doctor” (Satel, 2002).…some dismiss criticism of racial profiling as political correctness that could potentially prevent patients from receiving proper careSatel noted in an interview that it is an undeniable fact that black people tend to have more renal disease, Native Americans have more diabetes and white people have more cystic fibrosis. She said these differences can help doctors to decide which drugs to prescribe at which dose and could potentially lead researchers to discover new therapies on the basis of race.Satel added that the mention of race and medicine makes many people nervous. “You can dispel that worry by taking pains to specify biological lineage. Simply put, members of a group have more genes in common than members of the population at large. Some day geneticists hope to be able to conduct genomic profiles of each individual, making group identity irrelevant, but until then, race-based therapeutics has its virtues,” she said. “Denying the relationship between race and medicine flies in the face of clinical reality, and pretending that we are all at equal risk for health problems carries its own dangers.”However, Hurst contended that this approach may be good epidemiology, rather than racial profiling. Physicians therefore need to be cautious about using skin colour, genomic data and epidemiological data in decision making. “If African Americans are at a higher risk for hypertension, are you not going to check for hypertension in white people? You need to check in everyone in any case,” she commented.Hurst said European physicians, similarly to their American colleagues, deal with race and racial profiling, albeit in a different way. “The way in which we struggle with it is strongly determined by the history behind what could be called the biases that we have. If you have been a colonial power, if the past is slavery or if the past or present is immigration, it does change some things,” she said. “On the other hand, you always have the difficulty of doing fair and good medicine in a social situation that has a kind of ‘them and us'' structure. Because you''re not supposed to do medicine in a ‘them and us'' structure, you''re supposed to treat everyone according to their medical needs and not according to whether they''re part of ‘your tribe'' or ‘another tribe''.”Indeed, social factors largely determine one''s health, rather than ethnic or genetic factors. August A. White III, an African-American orthopaedic surgeon at Harvard Medical School (Boston, MA, USA) and author of the book Seeing Patients: Unconscious Bias In Health Care, noted that race is linked to disparities in health care in the USA. A similar point can be made in Europe where, for example, Romani people face discrimination in several countries.White said that although genetic research shows that race is not a scientific concept, the way people are labelled in society and how they are treated needs to be taken into account. “It''d be wonderful at some point if we can pop one''s key genetic information into a computer and get a printout of which medications are best of them and which doses are best for them,” he commented. “In the meantime though, I advocate careful operational attempts to treat everyone as human beings and to value everyone''s life, not devalue old people, or devalue women, or devalue different religious faiths, etc.”Notwithstanding the scientific denunciation, a major obstacle for the concept of racial profiling has been the fact that the word ‘race'' itself is politically loaded, as a result of, among other things, the baggage of eugenics and Nazi racism and the legacies of slavery and colonialism. Richard Tutton, a sociologist at Lancaster University in the UK, said that British scientists he interviewed for a Wellcome Trust project a few years ago prefer the term ethnicity to race. “Race is used in a legal sense in relation to inequality, but certainly otherwise, ethnicity is the preferred term, which obviously is different to the US” he said. “I remember having conversations with German academics and obviously in Germany you couldn''t use the R-word.”Jan Helge Solbakk, a physician, theologian and medical ethicist at the University of Oslo in Norway, said the use of the term race in Europe is a non-starter because it makes it impossible for the public and policy-makers to communicate. “I think in Europe it would be politically impossible to launch a project targeting racial differences on the genetic level. The challenge is to find not just a more politically correct concept, but a genetically more accurate concept and to pursue such research questions,” he said. According to Kahn, researchers therefore tend to refer to ethnicity rather than race: “They''re talking about European, Asian and African, but they''re referring to it as ethnicity instead of race because they think somehow that''s more palatable.”Regardless, race-based medicine might just be a stepping stone towards more refined and accurate methods, with the advent of personalized medicine based on genomics, according to Leroy Hood, whose work has helped to develop tools to analyse the human genome. The focus of his company—the Institute for Systems Biology (Seattle, WA, USA)—is to identify genetic variants that can inform and help patients to pioneer individualized health care.“Race as a concept is disappearing with interbreeding,” Hood said. “Race distinction is going to slowly fade away. We can use it now because we have signposts for race, which are colour, fairness, kinkiness of hair, but compared to a conglomeration of things that define a race, those are very few features. The race-defining features are going to be segregating away from one another more and more as the population becomes racially heterogeneous, so I think it''s going to become a moot point.”Hood instead advocates “4P” health care—“Predictive, Personalized, Preventive and Participatory.” “My overall feeling about the race-based correlations is that it is far more important to think about the individual and their individual unique spectra of health and wellness,” he explained. “I think we are not going to deal in the future with racial or ethnic populations, rather medicine of the future is going to be focused entirely on the individual.”Yet, Arthur Caplan, Director of the Center for Bioethics at the University of Pennsylvania (Philadelphia, PA, USA), is skeptical about the prospects for both race-based and personalized medicine. “Race-based medicine will play a minor role over the next few years in health care because race is a minor factor in health,” he said. “It''s not like we have a group of people who keel over dead at 40 who are in the same ethnic group.”Caplan also argued that establishing personalized genomic medicine in a decade is a pipe dream. “The reason I say that is it''s not just the science,” he explained. “You have to redo the whole health-care system to make that possible. You have to find manufacturers who can figure out how to profit from personalized medicine who are both in Europe and the United States. You have to have doctors that know how to prescribe them. It''s a big, big revamping. That''s not going to happen in 10 years.”Hood, however, is more optimistic and plans to advance the concept with pilot projects; he believes that Europe might be the better testing ground. “I think the European systems are much more efficient for pioneering personalized medicine than the United States because the US health-care system is utterly chaotic. We have every combination of every kind of health care and health delivery. We have no common shared vision,” he said. “In the end we may well go to Europe to persuade a country to really undertake this. The possibility of facilitating a revolution in health care is greater in Europe than in the United States.”  相似文献   

14.
Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging.  相似文献   

15.
Many plants release airborne volatile compounds in response to wounding due to pathogenic assault. These compounds serve as plant defenses and are involved in plant signaling. Here, we study the effects of pectin methylesterase (PME)-generated methanol release from wounded plants (“emitters”) on the defensive reactions of neighboring “receiver” plants. Plant leaf wounding resulted in the synthesis of PME and a spike in methanol released into the air. Gaseous methanol or vapors from wounded PME-transgenic plants induced resistance to the bacterial pathogen Ralstonia solanacearum in the leaves of non-wounded neighboring “receiver” plants. In experiments with different volatile organic compounds, gaseous methanol was the only airborne factor that could induce antibacterial resistance in neighboring plants. In an effort to understand the mechanisms by which methanol stimulates the antibacterial resistance of “receiver” plants, we constructed forward and reverse suppression subtractive hybridization cDNA libraries from Nicotiana benthamiana plants exposed to methanol. We identified multiple methanol-inducible genes (MIGs), most of which are involved in defense or cell-to-cell trafficking. We then isolated the most affected genes for further analysis: β-1,3-glucanase (BG), a previously unidentified gene (MIG-21), and non-cell-autonomous pathway protein (NCAPP). Experiments with Tobacco mosaic virus (TMV) and a vector encoding two tandem copies of green fluorescent protein as a tracer of cell-to-cell movement showed the increased gating capacity of plasmodesmata in the presence of BG, MIG-21, and NCAPP. The increased gating capacity is accompanied by enhanced TMV reproduction in the “receivers”. Overall, our data indicate that methanol emitted by a wounded plant acts as a signal that enhances antibacterial resistance and facilitates viral spread in neighboring plants.  相似文献   

16.
Nodal Morphogens     
Nodal signals belong to the TGF-β superfamily and are essential for the induction of mesoderm and endoderm and the determination of the left–right axis. Nodal signals can act as morphogens—they have concentration-dependent effects and can act at a distance from their source of production. Nodal and its feedback inhibitor Lefty form an activator/inhibitor pair that behaves similarly to postulated reaction–diffusion models of tissue patterning. Nodal morphogen activity is also regulated by microRNAs, convertases, TGF-β signals, coreceptors, and trafficking factors. This article describes how Nodal morphogens pattern embryonic fields and discusses how Nodal morphogen signaling is modulated.In his 1901 book “Regeneration,” Thomas Hunt Morgan speculated that “if we suppose the materials or structures that are characteristic of the vegetative half are gradually distributed from the vegetative to the animal half in decreasing amounts, then any piece of the egg will contain more of these things at one pole than the other” and “gastrulation depends on the relative amounts of the materials in the different parts of the blastula” (Morgan 1901). Although Morgan’s speculations referred to the sea urchin embryo, they foretold our current understanding of morphogen gradients in frog and fish development. Morgan’s “materials,” “structures,” and “things” are the Nodal signals that create a vegetal-to-animal activity gradient to regulate germ layer formation and patterning. This article discusses how Nodal signaling provides positional information to fields of cells. I first portray the components of the signaling pathway and describe the role of Nodal signals in mesendoderm induction and left–right axis specification. I then discuss how Nodal morphogen gradients are thought to be generated, modulated, and interpreted.  相似文献   

17.
The Gene Encoding the Phosphatidylinositol Transfer Protein Is Essential for Cell Growth (Aitken, J. F., van Heusden, G. P., Temkin, M., and Dowhan, W. (1990) J. Biol. Chem. 265, 4711–4717)A Phospholipid Acts as a Chaperone in Assembly of a Membrane Transport Protein (Bogdanov, M., Sun, J., Kaback, H. R., and Dowhan, W. (1996) J. Biol. Chem. 271, 11615–11618)William Dowhan''s curiosity about the connections between phospholipids and proteins associated with them goes back as far as his days as a graduate student with Esmond Snell at the University of California, Berkeley. In these two JBC Classics, his group''s ability to manipulate biochemical and molecular genetics tools to answer fundamental questions about lipid biology shines through. “William Dowhan and his research group have made many contributions to the biochemistry of phospholipid metabolism and membrane biogenesis,” says Robert Simoni at Stanford University.Open in a separate windowBill Dowhan (right) is shown here with the late Chris Raetz (left), who was a longtime collaborator and friend, and his former postdoctoral advisor, the late Gene Kennedy, on the occasion of Kennedy''s 90th birthday in 2009 (photo courtesy of William Dowhan).The first paper, published in 1990, documented the importance of phosphatidylinositol/phosphatidylcholine transfer proteins in vivo. Dowhan''s group, which has been based at the University of Texas Medical School since 1972, used a combination of biochemistry and genetics to clone the protein''s gene. Dowhan had first heard of phospholipid transfer proteins in 1969, when he began his postdoctoral training with Eugene (Gene) Kennedy at Harvard Medical School. At his very first Kennedy lab meeting, the discussion centered around a publication that had just come out (1). The paper described “one of the first observations of proteins in the soluble phase that transferred lipids between bilayers,” recalls Dowhan. “No one could figure out what these proteins really did in vivo, but they knew the proteins had this function” of transferring lipids between membranes.As he moved through his career, Dowhan focused on cloning and characterizing genes and purifying enzymes responsible for phospholipid metabolism in Escherichia coli. Then came a sabbatical in 1983 with Gottfried (Jeff) Schatz at the Biozentrum of the University of Basel in Switzerland, that expanded Dowhan''s research directions into yeast genetics. He says the opportunity to work with Schatz “got me into the possibility of looking for this phosphatidylinositol/phosphatidylcholine transfer protein (PI-TP) in yeast, which I probably would have never done if I hadn''t taken this sabbatical.”Fresh from his sabbatical, Dowhan started tracking down the protein and its gene in vivo. “I submitted a grant at that time with some preliminary data that we had begun to purify to homogeneity the PI-TP from yeast, which had never been done before. Fortunately, we got the grant,” he says.The Dowhan group managed to purify PI-TP from yeast. “The most important part was using basic biochemistry and understanding how to purify proteins before the advent of genetically tagging proteins for affinity chromatography,” explains Dowhan.For the next step in the process of finding the gene for the protein, Dowhan and colleagues had to apply reverse genetics because the yeast genome was not available in the late 1980s. They sequenced the amino terminus of the protein, made the corresponding oligonucleotide probes, tested yeast cDNA libraries with those probes, and pulled out the gene. “We still didn''t know the role PI-TP played in cell function. But now we had the sequence of the gene and the knock-out mutant was not viable,” notes Dowhan. “So we published” the findings.At the same time, Vytas Bankaitis, now at the University of North Carolina, had been working on cloning the SEC14 gene in yeast, which is necessary for vesicular transport. “It turns out we had missed the DNA sequence,” Dowhan says. From Bankaitis'' work, it was obvious that “PI-TP was the product of the SEC14 gene. It all came together in a joint report in Nature. Now we had a function associated with the SEC14 gene, which we didn''t have before,” Dowhan explains (2). “We had a phenotype of a mutant lacking this phospholipid transfer protein, which then stopped vesicular transport.”This initial link between phospholipid metabolism and vesicular transport opened up the field to characterization of the Sec14 protein superfamily in a broad range of biological systems. These proteins contain lipid-binding domains, which sense membrane lipid composition and integrate lipid metabolism and lipid-mediated signaling with an array of cellular processes.The second JBC Classic focused on a different feature of phospholipids: their role in protein folding. Dowhan was fascinated by membrane proteins ever since he was a graduate student and had gone to the Kennedy laboratory as a postdoctoral fellow, intending to purify the membrane component expressed by the lac operon for lactose transport in E. coli. He was unsuccessful because, at that time, the necessary detergents were not available. Once the lactose permease was purified (3), Dowhan noticed in the literature that other researchers mentioned that when the protein was reconstituted in liposomes missing phosphatidylethanolamine, the protein was defective in energy-dependent uphill transport. Dowhan recalls that he wondered, “Was that an artifact of the liposome system or was that also true in vivo?”To get to the bottom of this observation, Dowhan''s group used E. coli to generate null mutants of what were considered to be absolutely essential genes for phospholipid synthesis and cell viability. They created a null mutant of the pssA gene, which encodes the committed step to the synthesis of the major phospholipid, phosphatidylethanolamine. By establishing conditions in which bacterial cells lacking phosphatidylethanolamine remained viable, the investigators were able to identify and characterize different cell phenotypes caused by the missing phospholipid both in vivo and in vitro. In collaboration with Ronald Kaback at UCLA, Dowhan''s group showed that phosphatidylethanolamine was essential for the proper folding of an epitope of lactose permease that was also necessary to support the energy-dependent uphill transport of lactose. “Studies by others have since shown a similar chaperone role for lipids in other bacteria, plants and mammalian cells,” notes Simoni.To obtain their data, the investigators developed a new technique, the Eastern-Western blot. In this method, membrane proteins were delipidated and partially denatured by SDS. The proteins underwent gel electrophoresis and then were transferred to a solid support by Western blotting. A series of individual lipids were then laid over the proteins at a 90° angle so that the investigators could see, after incubating with conformation-specific antibodies, which lipids helped which membrane proteins regain proper conformation.This technique was used to establish that phosphatidylethanolamine was necessary in a late step of folding of lactose permease, but was not necessary to maintain the final folded state. This observation suggested that lipids act as molecular chaperones in helping protein maturation. “This paper set the stage for understanding how lipids affect the topological organization of wild-type proteins in the membrane,” notes Dowhan.Dowhan and his collaborator Mikhail Bogdanov have continued using bacterial mutants in phospholipid metabolism to systematically manipulate the native membrane lipid compositions during the cell cycle. They have analyzed the transmembrane domain orientation of membrane proteins to establish the molecular basis for lipid-dependent organization of lactose permease and other secondary transporters (4).Dowhan says his work has two take-home messages. One is that “Lipids aren''t just glorified biological detergents,” he says. “They have specific roles” in the cell. The other message is in the power of numbers. Dowhan says the more techniques applied to solve a biological mystery, the more likely the mystery will be successfully solved.  相似文献   

18.

Background

Previous studies indicate that in published reports, trial results can be distorted by the use of “spin” (specific reporting strategies, intentional or unintentional, emphasizing the beneficial effect of the experimental treatment). We aimed to (1) evaluate the presence of “spin” in press releases and associated media coverage; and (2) evaluate whether findings of randomized controlled trials (RCTs) based on press releases and media coverage are misinterpreted.

Methods and Findings

We systematically searched for all press releases indexed in the EurekAlert! database between December 2009 and March 2010. Of the 498 press releases retrieved and screened, we included press releases for all two-arm, parallel-group RCTs (n = 70). We obtained a copy of the scientific article to which the press release related and we systematically searched for related news items using Lexis Nexis.“Spin,” defined as specific reporting strategies (intentional or unintentional) emphasizing the beneficial effect of the experimental treatment, was identified in 28 (40%) scientific article abstract conclusions and in 33 (47%) press releases. From bivariate and multivariable analysis assessing the journal type, funding source, sample size, type of treatment (drug or other), results of the primary outcomes (all nonstatistically significant versus other), author of the press release, and the presence of “spin” in the abstract conclusion, the only factor associated, with “spin” in the press release was “spin” in the article abstract conclusions (relative risk [RR] 5.6, [95% CI 2.8–11.1], p<0.001). Findings of RCTs based on press releases were overestimated for 19 (27%) reports. News items were identified for 41 RCTs; 21 (51%) were reported with “spin,” mainly the same type of “spin” as those identified in the press release and article abstract conclusion. Findings of RCTs based on the news item was overestimated for ten (24%) reports.

Conclusion

“Spin” was identified in about half of press releases and media coverage. In multivariable analysis, the main factor associated with “spin” in press releases was the presence of “spin” in the article abstract conclusion.  相似文献   

19.

Background

Fluctuating asymmetry is a contentious indicator of stress in populations of animals and plants. Nevertheless, it is a measure of developmental noise, typically obtained by measuring asymmetry across an individual organism''s left-right axis of symmetry. These individual, signed asymmetries are symmetrically distributed around a mean of zero. Fluctuating asymmetry, however, has rarely been studied in microorganisms, and never in fungi.

Objective and Methods

We examined colony growth and random phenotypic variation of five soil microfungal species isolated from the opposing slopes of “Evolution Canyon,” Mount Carmel, Israel. This canyon provides an opportunity to study diverse taxa inhabiting a single microsite, under different kinds and intensities of abiotic and biotic stress. The south-facing “African” slope of “Evolution Canyon” is xeric, warm, and tropical. It is only 200 m, on average, from the north-facing “European” slope, which is mesic, cool, and temperate. Five fungal species inhabiting both the south-facing “African” slope, and the north-facing “European” slope of the canyon were grown under controlled laboratory conditions, where we measured the fluctuating radial asymmetry and sizes of their colonies.

Results

Different species displayed different amounts of radial asymmetry (and colony size). Moreover, there were highly significant slope by species interactions for size, and marginally significant ones for fluctuating asymmetry. There were no universal differences (i.e., across all species) in radial asymmetry and colony size between strains from “African” and “European” slopes, but colonies of Clonostachys rosea from the “African” slope were more asymmetric than those from the “European” slope.

Conclusions and Significance

Our study suggests that fluctuating radial asymmetry has potential as an indicator of random phenotypic variation and stress in soil microfungi. Interaction of slope and species for both growth rate and asymmetry of microfungi in a common environment is evidence of genetic differences between the “African” and “European” slopes of “Evolution Canyon.”  相似文献   

20.
Chew C  Eysenbach G 《PloS one》2010,5(11):e14118

Background

Surveys are popular methods to measure public perceptions in emergencies but can be costly and time consuming. We suggest and evaluate a complementary “infoveillance” approach using Twitter during the 2009 H1N1 pandemic. Our study aimed to: 1) monitor the use of the terms “H1N1” versus “swine flu” over time; 2) conduct a content analysis of “tweets”; and 3) validate Twitter as a real-time content, sentiment, and public attention trend-tracking tool.

Methodology/Principal Findings

Between May 1 and December 31, 2009, we archived over 2 million Twitter posts containing keywords “swine flu,” “swineflu,” and/or “H1N1.” using Infovigil, an infoveillance system. Tweets using “H1N1” increased from 8.8% to 40.5% (R 2 = .788; p<.001), indicating a gradual adoption of World Health Organization-recommended terminology. 5,395 tweets were randomly selected from 9 days, 4 weeks apart and coded using a tri-axial coding scheme. To track tweet content and to test the feasibility of automated coding, we created database queries for keywords and correlated these results with manual coding. Content analysis indicated resource-related posts were most commonly shared (52.6%). 4.5% of cases were identified as misinformation. News websites were the most popular sources (23.2%), while government and health agencies were linked only 1.5% of the time. 7/10 automated queries correlated with manual coding. Several Twitter activity peaks coincided with major news stories. Our results correlated well with H1N1 incidence data.

Conclusions

This study illustrates the potential of using social media to conduct “infodemiology” studies for public health. 2009 H1N1-related tweets were primarily used to disseminate information from credible sources, but were also a source of opinions and experiences. Tweets can be used for real-time content analysis and knowledge translation research, allowing health authorities to respond to public concerns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号