首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-throughput, automated or semiautomated methodologies implemented by companies and structural genomics initiatives have accelerated the process of acquiring structural information for proteins via x-ray crystallography. This has enabled the application of structure-based drug design technologies to a variety of new structures that have potential pharmacologic relevance. Although there remain major challenges to applying these approaches more broadly to all classes of drug discovery targets, clearly the continued development and implementation of these structure-based drug design methodologies by the scientific community at large will help to address and provide solutions to these hurdles. The result will be a growing number of protein structures of important pharmacologic targets that will help to streamline the process of identification and optimization of lead compounds for drug development. These lead agonist and antagonist pharmacophores should, in turn, help to alleviate one of the current critical bottlenecks in the drug discovery process; that is, defining the functional relevance of potential novel targets to disease modification. The prospect of generating an increasing number of potential drug candidates will serve to highlight perhaps the most significant future bottleneck for drug development, the cost and complexity of the drug approval process.  相似文献   

2.
Structural genomics efforts at the Chinese Academy of Sciences and Peking University are reported in this article. The major targets for the structural genomics project are targeted proteins expressed in human hematopoietic stem/progenitor cells, proteins related to blood diseases and other human proteins. Up to now 328 target genes have been constructed in expression vectors. Among them, more than 50% genes have been expressed in Escherichia coli, approximately 25% of the resulting proteins are soluble, and 35 proteins have been purified. Crystallization, data collection and structure determination are continuing. Experiences accumulated during this initial stage are useful for designing and applying high-throughput approaches in structural genomics.Abbreviations: NSFC, National Natural Science foundation of China; MOST, Ministry of Science and Technology of China; CAS, Chinese Academy of Sciences; NSRL, National Synchrotron Radiation Laboratory in Hefei; BSRF, Beijing Synchrotron Radiation Facilities; HSPC, Hematopoietic stem/progenitor cells; APL, acute promyelocytic leukemia; ATRA, all-trans retinoic acid; COG, Cluster of Orthologous Groups of proteins.  相似文献   

3.
The process of experimental determination of protein structure is marred with a high ratio of failures at many stages. With availability of large quantities of data from high-throughput structure determination in structural genomics centers, we can now learn to recognize protein features correlated with failures; thus, we can recognize proteins more likely to succeed and eventually learn how to modify those that are less likely to succeed. Here, we identify several protein features that correlate strongly with successful protein production and crystallization and combine them into a single score that assesses "crystallization feasibility." The formula derived here was tested with a jackknife procedure and validated on independent benchmark sets. The "crystallization feasibility" score described here is being applied to target selection in the Joint Center for Structural Genomics, and is now contributing to increasing the success rate, lowering the costs, and shortening the time for protein structure determination. Analyses of PDB depositions suggest that very similar features also play a role in non-high-throughput structure determination, suggesting that this crystallization feasibility score would also be of significant interest to structural biology, as well as to molecular and biochemistry laboratories.  相似文献   

4.
结构基因组学研究与核磁共振   总被引:4,自引:0,他引:4  
各种生物的基因组DNA测序计划的完成,将结构生物学带入了结构基因组学时代.结构基因组学是对所有基因组产物结构的系统性测定,它运用高通量的选择、表达、纯化以及结构测定和计算分析手段,为基因组的每个蛋白质产物提供实验测定的结构或较好的理论模型,这将加速生命科学各个领域的研究.生物信息学、基因工程、结构测定技术等的发展为结构基因组学研究提供了保证.近年来核磁共振在技术方法上的进展,使其成为结构基因组学高通量结构分析中的一个关键方法.  相似文献   

5.
Computational biology methods are now firmly entrenched in the drug discovery process. These methods focus on modeling and simulations of biological systems to complement and direct conventional experimental approaches. Two important branches of computational biology include protein homology modeling and the computational biophysics method of molecular dynamics. Protein modeling methods attempt to accurately predict three-dimensional (3D) structures of uncrystallized proteins for subsequent structure-based drug design applications. Molecular dynamics methods aim to elucidate the molecular motions of the static representations of crystallized protein structures. In this review we highlight recent novel methodologies in the field of homology modeling and molecular dynamics. Selected drug discovery applications using these methods conclude the review.  相似文献   

6.
Human carboxylesterase 1 (hCE1) exhibits broad substrate specificity and is involved in xenobiotic processing and endobiotic metabolism. We present and analyze crystal structures of hCE1 in complexes with the cholesterol-lowering drug mevastatin, the breast cancer drug tamoxifen, the fatty acyl ethyl ester (FAEE) analogue ethyl acetate, and the novel hCE1 inhibitor benzil. We find that mevastatin does not appear to be a substrate for hCE1, and instead acts as a partially non-competitive inhibitor of the enzyme. Similarly, we show that tamoxifen is a low micromolar, partially non-competitive inhibitor of hCE1. Further, we describe the structural basis for the inhibition of hCE1 by the nanomolar-affinity dione benzil, which acts by forming both covalent and non-covalent complexes with the enzyme. Our results provide detailed insights into the catalytic and non-catalytic processing of small molecules by hCE1, and suggest that the efficacy of clinical drugs may be modulated by targeted hCE1 inhibitors.  相似文献   

7.
Only about half of non-membrane-bound proteins encoded by either bacterial or archaeal genomes are soluble when expressed in Escherichia coli (Yee et al., Proc Natl Acad Sci USA 2002;99:1825-1830; Christendat et al., Prog Biophys Mol Biol 200;73:339-345). This property limits genome-scale functional and structural proteomics studies, which depend on having a recombinant, soluble version of each protein. An emerging strategy to increase the probability of deriving a soluble derivative of a protein is to study different sequence homologues of the same protein, including representatives from thermophilic organisms, based on the assumption that the stability of these proteins will facilitate structural analysis. To estimate the relative merits of this strategy, we compared the recombinant expression, solubility, and suitability for structural analysis by NMR and/or X-ray crystallography for 68 pairs of homologous proteins from E. coli and Thermotoga maritima. A sample suitable for structural studies was obtained for 62 of the 68 pairs of homologs under standardized growth and purification procedures. Fourteen (eight E. coli and six T. maritima proteins) samples generated NMR spectra of a quality suitable for structure determination and 30 (14 E. coli and 16 T. maritima proteins) samples formed crystals. Only three (one E. coli and two T. maritima proteins) samples both crystallized and had excellent NMR properties. The conclusions from this work are: (1) The inclusion of even a single ortholog of a target protein increases the number of samples for structural studies almost twofold; (2) there was no clear advantage to the use of thermophilic proteins to generate samples for structural studies; and (3) for the small proteins analyzed here, the use of both NMR and crystallography approaches almost doubled the number of samples for structural studies.  相似文献   

8.
The consequences of site-directed mutagenesis experiments are often anticipated by empirical rules regarding the expected effects of a given amino acid substitution. Here, we examine the effects of "conservative" and "nonconservative" substitutions on the X-ray crystal structures of human recombinant FKBP12 mutants in complex with the immunosuppressant drug FK506 (tacrolimus). R42K and R42I mutant complexes show 110-fold and 180-fold decreased calcineurin (CN) inhibition, respectively, versus the native complex, yet retain full peptidyl prolyl isomerase (PPIase) activity, FK506 binding, and FK506-mediated PPIase inhibition. Interestingly, the structure of the R42I mutant complex is better conserved than that of the R42K mutant complex when compared to the native complex structure, within both the FKBP12 protein and FK506 ligand regions of the complexes, and with respect to temperature factors and RMS coordinate differences. This is due to compensatory interactions mediated by two newly ordered water molecules in the R42I complex structure, molecules that act as surrogates for the missing arginine guanidino nitrogens of R42. The absence of such surrogate solvent interactions in the R42K complex leads to some disorder in the so-called "40s loop" that encompasses the substituent. One rationalization proposed for the observed loss in CN inhibition in these R42 mutant complexes invokes indirect effects leading to a misorientation of FKBP12 and FK506 structural elements that normally interact with calcineurin. Our results with the structure of the R42I complex in particular suggest that the observed loss of CN inhibition might also be explained by the loss of a specific R42-mediated interaction with CN that cannot be mimicked effectively by the solvent molecules that otherwise stabilize the conformation of the 40s loop in that structure.  相似文献   

9.
Incyte Genomics' GEM™ Gene Expression Microarray is a proven genomics tool used by a large number of pharmaceutical companies to speed up the drug discovery and development process. The development and integration of this technology, together with Incyte's sequence databases and clone resources, have resulted in GEM microarrays that span approximately 60,000 human genes as well as approximately 60,000 plant, rat, mouse, yeast, and bacterial genes. The technology underlying the use of these arrays and their application to the drug discovery process is highlighted. Journal of Industrial Microbiology & Biotechnology (2002) 28, 180–185 DOI: 10.1038/sj/jim/7000136 Received 16 November 2000/ Accepted in revised form 01 March 2001  相似文献   

10.
Small peptide tags are often fused to proteins to allow their affinity purification in high-throughput structure analysis schemes. To assess the compatibility of small peptide tags with protein crystallization and to examine if the tags alter the three-dimensional structure, the N-terminus of the chicken alpha-spectrin SH3 domain was labeled with a His6 tag and the C-terminus with a StrepII tag. The resulting protein, His6-SH3-StrepII, consists of 83 amino-acid residues, 23 of which originate from the tags. His6-SH3-StrepII is readily purified by dual affinity chromatography, has very similar biophysical characteristics as the untagged protein domain and crystallizes readily from a number of sparse-matrix screen conditions. The crystal structure analysis at 2.3 A resolution proves native-like structure of His6-SH3-StrepII and shows the entire His6 tag and part of the StrepII tag to be disordered in the crystal. Obviously, the fused affinity tags did not interfere with crystallization and structure analysis and did not change the protein structure. From the extreme case of His6-SH3-StrepII, where affinity tags represent 27% of the total fusion protein mass, we extrapolate that protein constructs with N- and C-terminal peptide tags may lend themselves to biophysical and structural investigations in high-throughput regimes.  相似文献   

11.
12.
Heparanase is an endo‐β‐D‐glucosidase capable of specifically degrading heparan sulphate, one of the main components of the extracellular matrix. This 65 kDa polypeptide is implicated in cancer processes such as tumour formation, angiogenesis and metastasis, making it a very attractive target in antitumour treatments. Structure‐based approaches to find inhibitors of heparanase have been historically hampered by the lack of success in crystallizing the protein. With the aim to undertake the NMR structural characterisation of heparanase, we have designed and produced, using recombinant methods, smaller constructs of heparanase containing the catalytically active glutamic acids and the two binding sites for heparan sulphate. An extensive range of expression and purification conditions were evaluated to alleviate the intrinsic low solubility and aggregation propensity of heparanase, allowing the obtention of the enzyme in milligram quantities, both unlabelled and 15N‐labelled for NMR studies. Using the smallest of the designed constructs and applying NMR and SPR methodologies, we have demonstrated that known inhibitors of heparanase bind to this construct specifically and selectively with KD values in the range of those reported for human heparanase, validating it for future drug discovery projects focused on the identification of novel inhibitors of this enzyme. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 151–160, 2011.  相似文献   

13.
The structure of the BA42 protein belonging to the Antarctic flavobacterium Bizionia argentinensis was determined by nuclear magnetic resonance and X‐ray crystallography. This is the first structure of a member of the PF04536 family comprised of a stand‐alone TPM domain. The structure reveals a new topological variant of the four β‐strands constituting the central β‐sheet of the αβα architecture and a double metal binding site stabilizing a pair of crossing loops, not observed in previous structures of proteins belonging to this family. BA42 shows differences in structure and dynamics in the presence or absence of bound metals. The affinity for divalent metal ions is close to that observed in proteins that modulate their activity as a function of metal concentration, anticipating a possible role for BA42. Proteins 2014; 82:3062–3078. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
15.
16.
17.
Knowledge of the three-dimensional structures of proteins is the key to unlocking the full potential of genomic information. There are two distinct directions along which cutting-edge research in structural biology is currently moving towards this goal. On the one hand, tightly focused long-term research in individual laboratories is leading to the determination of the structures of macromolecular assemblies of ever-increasing size and complexity. On the other hand, large consortia of structural biologists, inspired by the pace of genome sequencing, are developing strategies to determine new protein structures rapidly, so that it will soon be possible to predict reasonably accurate structures for most protein domains. We anticipate that a small number of complex systems, studied in depth, will provide insights across the field of biology with the aid of genome-based comparative structural analysis.  相似文献   

18.
Challenges at the frontiers of structural biology   总被引:2,自引:0,他引:2  
Knowledge of the three-dimensional structures of proteins is the key to unlocking the full potential of genomic information. There are two distinct directions along which cutting-edge research in structural biology is currently moving towards this goal. On the one hand, tightly focused long-term research in individual laboratories is leading to the determination of the structures of macromolecular assemblies of ever-increasing size and complexity. On the other hand, large consortia of structural biologists, inspired by the pace of genome sequencing, are developing strategies to determine new protein structures rapidly, so that it will soon be possible to predict reasonably accurate structures for most protein domains. We anticipate that a small number of complex systems, studied in depth, will provide insights across the field of biology with the aid of genome-based comparative structural analysis.  相似文献   

19.
The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by the KaiA, KaiB and KaiC proteins in the presence of ATP. The principal clock component, KaiC, undergoes regular cycles between hyper- and hypo-phosphorylated states with a period of ca. 24 h that is temperature compensated. KaiA enhances KaiC phosphorylation and this enhancement is antagonized by KaiB. Throughout the cycle Kai proteins interact in a dynamic manner to form complexes of different composition. We present a three-dimensional model of the S. elongatus KaiB-KaiC complex based on X-ray crystallography, negative-stain and cryo-electron microscopy, native gel electrophoresis and modelling techniques. We provide experimental evidence that KaiB dimers interact with KaiC from the same side as KaiA and for a conformational rearrangement of the C-terminal regions of KaiC subunits. The enlarged central channel and thus KaiC subunit separation in the C-terminal ring of the hexamer is consistent with KaiC subunit exchange during the dephosphorylation phase. The proposed binding mode of KaiB explains the observation of simultaneous binding of KaiA and KaiB to KaiC, and provides insight into the mechanism of KaiB's antagonism of KaiA.  相似文献   

20.
Knowledge of the three-dimensional structures of proteins is the key to unlocking the full potential of genomic information. There are two distinct directions along which cutting-edge research in structural biology is currently moving towards this goal. On the one hand, tightly focused long-term research in individual laboratories is leading to the determination of the structures of macromolecular assemblies of ever-increasing size and complexity. On the other hand, large consortia of structural biologists, inspired by the pace of genome sequencing, are developing strategies to determine new protein structures rapidly, so that it will soon be possible to predict reasonably accurate structures for most protein domains. We anticipate that a small number of complex systems, studied in depth, will provide insights across the field of biology with the aid of genome-based comparative structural analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号