首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxidase activity was assayed with different electron donors (guaiacol, ascorbate, syringaldazine) in the intercellular fluid of Sedum album L. leaves after ozone exposure. Anionic and cationic peroxidases were separated and purified by high performance ion-exchange and gel permeation chromatography. Both isoperoxidases were tested as regards their molecular weight and apparent kinetic constants with different substrates. Ascorbate peroxidase activity was rapidly stimulated after ozone exposure, whereas syringaldazine peroxidase activity reached its maximum 24 h later. Increases in ascorbate and syringaldazine peroxidase activities occurred simultaneously with increases in cationic and anionic peroxidase activities, respectively. Apparent Km values indicate a high affinity of cationic peroxidases for ascorbate and of anionic peroxidases for syringaldazine. The metabolic role of this balance between cationic and anionic peroxidases after ozone exposure is discussed.  相似文献   

2.
Ozone stimulates apoplastic antioxidant systems in pumpkin leaves   总被引:5,自引:0,他引:5  
The phytotoxiticky of ozone is due to its high oxidant capacity and to its ability to generate toxic molecular species. It is well known that intracellular peroxidases play an important role in eliminating toxic forms of oxygen but little evidence has been reported on the role of peroxidases in the apoplastic compartment. The detoxification systems located in the foliar extracellular matrix and in the intracellular fluid of sensitive pumpkin plants ( Cucurbita pepo L. cv. Ambassador) exposed to ozone (150 ppb. 5 days. 5 h day-1) in a fumigation chamber, were analyzed. The analyses were carried out on both young and mature leaves. Ascorbate peroxidase (EC 1.11.1.11) was found in the extracellular matrix of the pumpkin tissues. Its activity increased in both young and mature leaves as a consequence of the treatment, while at intraeellular levels its effect was most prominent in mature leaves. Analysis of the ascorbie-dehydroascorbic acid system revealed an enhancement of the pool content in the extracellular matrix of both kinds of leaves as a consequence of fumigation, while at the intracelluiar level small variations were found. Very little variation was observed in the glutathione pool as a consequence of fumigation. The analysis of a lipid peroxidation marker, malondi-aldehyde. showed the significant effect of ozone on membrane lipids. Following fumigation, the free phenols in the extracellular matrix decreased in both young and mature leaves, while the free and glycoside-bound phenols of the intracellular fluid showed little increase. The results support the hypothesis that ozone stimulates the an-tioxidant systems mainly in the apoplast and that ascorbic peroxidase activity, ascorbic acid levels and cell wall stiffening are the most influenced parameters.  相似文献   

3.
In previous research, an in vitro stepwise procedure permitted us to obtain Nicotiana tabacum regenerated plant lines able to grow in the presence of Mn at 2 and 5 mM (Mn-tolerant plants). These plants showed several morpho-physiological and cytological differences in comparison to the Mn-sensitive regenerated plants. In particular, the number of xylem cells and the degree of lignification appeared to be influenced differently by these Mn concentrations. In the present work these Mn-tolerant and Mn-sensitive N. tabacum plants, maintained in the presence of Mn 2 and 5 mM, have been characterized with regards to the uptake of Mn and Fe, the activity of extracellular peroxidases in the stems, and the activity of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in the leaves. The leaf response to an increasing Mn concentration in the medium, corresponded a parallel decrease of Fe content. Plants tolerant of 5 mM Mn showed almost a doubling Mn content over that of the 5 mM Mn-sensitive plants. In the stem, 2 and 5 mM Mn inhibited the extracellular free peroxidases (guaiacol peroxidases) either in the Mn-tolerant plants or in the Mn-sensitive plants. In the Mn-sensitive plants treated with 2 mM Mn the activity of the peroxidases of the ionically and covalently bound wall peroxidases was also depressed. In 5 mM Mn-tolerant plants, an enhanced activity of the covalently bound wall peroxidases was observed. The effect of Mn on the covalently bound wall syringaldazine peroxidases was identical to that observed in the guaiacol peroxidases; the activity was significantly higher in the Mn-tolerant plants grown in the presence of 5 mM Mn. In the leaf, the increase of Mn content inhibited the activity of guaiacol peroxidase, ascorbate peroxidase and superoxide dismutase in the Mn-tolerant as well as in the Mn-sensitive plants. However, the effect was greater in the Mn-sensitive plants. Only glutathione reductase did not show significant variation except for the 2 mM Mn-sensitive plants, where an increased activity was detected.  相似文献   

4.
Iron deficiency differently affects peroxidase isoforms in sunflower   总被引:9,自引:0,他引:9  
The response of both specific (ascorbate peroxidase, APX) and unspecific (POD) peroxidases and H(2)O(2) content of sunflower plants (Helianthus annuus L. cv. Hor) grown hydroponically with (C) or without (-Fe) iron in the nutrient solution were analysed to verify whether iron deficiency led to cell oxidative status. In -Fe leaves a significant increase of H(2)O(2) content was detected, a result confirmed by electron microscopy analysis. As regards extracellular peroxidases, while APX activity significantly decreased, no change was observed in either soluble guaiacol or syringaldazine-dependent POD activity following iron starvation. Moreover, guaiacol-dependent POD activity was found to decrease in both ionically and covalently-cell-wall bound fractions, while syringaldazine-POD activity decreased only in the covalently-bound fraction. At the intracellular level both guaiacol-POD and APX activities underwent a significant decrease. The overall reduction of peroxidase activity was confirmed by the electrophoretic separation of POD isoforms and, at the extracellular level, by cytochemical localization of peroxidases by diaminobenzidine staining. The electrophoretic separation, besides quantitative differences, also revealed quantitative changes, particularly evident for ionically and covalently-bound fractions. Therefore, in sunflower plants, iron deficiency seems to affect the different peroxidase isoenzymes to different extents and to induce a secondary oxidative stress, as indicated by the increased levels of H(2)O(2). However, owing to the almost completely lack of catalytic iron capable of triggering the Fenton reaction, iron-deficient sunflower plants are probably still sufficiently protected against oxidative stress.  相似文献   

5.
Versatile peroxidase (VP) from Bjerkandera adusta, as other class II peroxidases, is inactivated by Ca(2+) depletion. In this work, the spectroscopic characterizations of Ca(2+)-depleted VP at pH 4.5 (optimum for activity) and pH 7.5 are presented. Previous works on other ligninolytic peroxidases, such as lignin peroxidase and manganese peroxidase, have been performed at pH 7.5; nevertheless, at this pH these enzymes are inactive independently of their Ca(2+) content. At pH 7.5, UV-Vis spectra indicate a heme-Fe(3+) transition from 5-coordinated high-spin configuration in native peroxidase to 6-coordinated low-spin state in the inactive Ca(2+)-depleted form. This Fe(3+) hexa-coordination has been proposed as the origin of inactivation. However, our results at pH 4.5 show that Ca(2+)-depleted enzyme has a high spin Fe(3+). EPR measurements on VP confirm the differences in the Fe(3+) spin states at pH 4.5 and at 7.5 for both, native and Ca(2+)-depleted enzymes. In addition, EPR spectra recorded after the addition of H(2)O(2) to Ca(2+)-depleted VP show the formation of compound I with the radical species delocalized on the porphyrin ring. The lack of radical delocalization on an amino acid residue exposed to solvent, W170, as determined in native enzyme at pH 4.5, explains the inability of Ca(2+)-depleted VP to oxidize veratryl alcohol. These observations, in addition to a notorious redox potential decrease, suggest that Ca(2+)-depleted versatile peroxidase is able to form the active intermediate compound I but its long range electron transfer has been disrupted.  相似文献   

6.
Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter x hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.  相似文献   

7.
Sang J  Zhang A  Lin F  Tan M  Jiang M 《Cell research》2008,18(5):577-588
Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H2O2), calcium (Ca^2+)-calmodulin (CAM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H2O2, and CaCl2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca^2+-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca^2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Our results suggest that Ca^2+-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.  相似文献   

8.
M V Rao  G Paliyath    D P Ormrod 《Plant physiology》1996,110(1):125-136
Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity.  相似文献   

9.
Fatty acids (FA) with at least 12 carbon atoms increase intracellular Ca(2+) ([Ca(2+)](i)) to stimulate cholecystokinin release from enteroendocrine cells. Using the murine enteroendocrine cell line STC-1, we investigated whether candidate intracellular pathways transduce the FA signal, or whether FA themselves act within the cell to release Ca(2+) directly from the intracellular store. STC-1 cells loaded with fura-2 were briefly (3 min) exposed to saturated FA above and below the threshold length (C(8), C(10), and C(12)). C(12), but not C(8) or C(10), induced a dose-dependent increase in [Ca(2+)](i), in the presence or absence of extracellular Ca(2+). Various signaling inhibitors, including d-myo-inositol 1,4,5-triphosphate receptor antagonists, all failed to block FA-induced Ca(2+) responses. To identify direct effects of cytosolic FA on the intracellular Ca(2+) store, [Ca(2+)](i) was measured in STC-1 cells loaded with the lower affinity Ca(2+) dye magfura-2, permeabilized by streptolysin O. In permeabilized cells, again C(12) but not C(8) or C(10), induced release of stored Ca(2+). Although C(12) released Ca(2+) in other permeabilized cell lines, only intact STC-1 cells responded to C(12) in the presence of extracellular Ca(2+). In addition, 30 min exposure to C(12) induced a sustained elevation of [Ca(2+)](i) in the presence of extracellular Ca(2+), but only a transient response in the absence of extracellular Ca(2+). These results suggest that at least two FA sensing mechanisms operate in enteroendocrine cells: intracellularly, FA (>/=C(12)) transiently induce Ca(2+) release from intracellular Ca(2+) stores. However, they also induce sustained Ca(2+) entry from the extracellular medium to maintain an elevated [Ca(2+)](i).  相似文献   

10.
Apoplast/cytoplasm partitioning of ascorbic acid (AA) was examined in four genotypes of snap bean ( Phaseolus vulgaris L.) known to differ in ozone sensitivity. Plants were grown in pots under field conditions using open-top chambers to establish charcoal-filtered (CF) air (36 nmol mol−1 ozone) or elevated ozone (77 nmol mol−1 ozone) treatments. AA in fully expanded leaves of 36-day-old plants was separated into apoplast and cytoplasm fractions by vacuum infiltration methods using glucose 6-phosphate as a marker for cytoplasm contamination. Apoplast ascorbate levels ranged from 30 to 150 nmol g−1 fresh weight. Ozone-sensitive genotypes partitioned 1–2% of total AA into the apoplast under CF conditions and up to 7% following a 7-day ozone exposure. In contrast, an ozone-tolerant genotype partitioned 3–4% of total leaf AA into the leaf apoplast in both CF and ozone-treated plants. The results suggest that genetic background and ozone stress are factors that affect AA levels in the extracellular space. For all genotypes, the fraction of AA in the oxidized form was higher in the apoplast compared to the cytoplasm, indicative of a more oxidizing environment within the cell wall.  相似文献   

11.
Vascular permeability is regulated by endothelial cytosolic Ca(2+) concentration ([Ca(2+)](i)). To determine whether vascular permeability is dependent on extracellular Ca(2+) influx or release of Ca(2+) from stores, hydraulic conductivity (L(p)) was measured in single perfused frog mesenteric microvessels in the presence and absence of Ca(2+) influx and store depletion. Prevention of Ca(2+) reuptake into stores by sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) inhibition increased L(p) in the absence of extracellular Ca(2+) influx. L(p) was further increased when Ca(2+) influx was restored. Depletion of the Ca(2+) stores with ionomycin and SERCA inhibition increased L(p) in the presence and the absence of extracellular Ca(2+) influx. However, store depletion in itself did not significantly increase L(p) in the absence of active Ca(2+) release from stores into the cytoplasm. There was a significant positive correlation between baseline permeability and the magnitude of the responses to both Ca(2+) store release and Ca(2+) influx, indicating that the Ca(2+) regulating properties of the endothelial cells may regulate the baseline L(p). To investigate the role of Ca(2+) stores in regulation of L(p), the relationship between SERCA inhibition and store release was studied. The magnitude of the L(p) increase during SERCA inhibition significantly and inversely correlated with that during store release by Ca(2+) ionophore, implying that the degree of store depletion regulates the size of the increase on L(p). These data show that microvascular permeability in vivo can be increased by agents that release Ca(2+) from stores in the absence of Ca(2+) influx. They also show that capacitative Ca(2+) entry results in increased L(p) and that the size of the permeability increase can be regulated by the degree of Ca(2+) release.  相似文献   

12.
This study was made to explain the mechanisms for the effects of exposure to a time varying 1.51 T magnetic field on the intracellular Ca(2+) signaling pathway. The exposure inhibited an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in bovine chromaffin cells induced by addition of bradykinin (BK) to a Ca(2+) free medium. The exposure did not change BK induced production of inositol 1,4,5-trisphosphate (IP(3)). [Ca(2+)](i) was markedly increased in IP(3) loaded cells, and this increase was inhibited by the magnetic field exposure. A similar increase in [Ca(2+)](i) by other drugs, which stimulated Ca(2+) release from intracellular Ca(2+) stores, was again inhibited by the same exposure. However, transmembrane Ca(2+) fluxes caused in the presence of thapsigargin were not inhibited by the magnetic field exposure in a Ca(2+) containing medium. Inhibition of the BK induced increase in [Ca(2+)](i) by the exposure for 30 min was mostly recovered 1 h after exposure ended. Our results reveal that the magnetic field exposure inhibits Ca(2+) release from intracellular Ca(2+) stores, but that BK bindings to BK receptors of the cell membrane and intracellular inositol IP(3) production are not influenced.  相似文献   

13.
Kuo SY  Jiann BP  Lu YC  Chang HT  Chen WC  Huang JK  Jan CR 《Life sciences》2003,72(15):1733-1743
2,2'-dithiodipyridine (2,2'-DTDP), a reactive disulphide that mobilizes Ca(2+) in muscle, induced an increase in cytoplasmic free Ca(2+)concentrations ([Ca(2+)](i)) in MG63 human osteosarcoma cells loaded with the Ca(2+)-sensitive dye fura-2. 2,2'-DTDP acted in a concentration-independent manner with an EC(50) of 50 microM. The Ca(2+) signal comprised an initial spike and a prolonged increase. Removing extracellular Ca(2+) did not alter the Ca(2+) signal, suggesting that the Ca(2+) signal was due to store Ca(2+) release. In Ca(2+)-free medium, the 2,2'-DTDP-induced [Ca(2+)](i) increase was not changed by depleting store Ca(2+) with 50 microM bredfeldin A (a Golgi apparatus permeabilizer), 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP, a mitochondrial uncoupler), 1 microM thapsigargin (an endoplasmic reticulum Ca(2+)pump inhibitor) or 5 microM ryanodine. Conversely, 2,2'-DTDP pretreatment abolished CCCP and thapsigargin-induced [Ca(2+)](i) increases. 2,2'-DTDP-induced Ca(2+) signals in Ca(2+)-containing medium were not affected by modulation of protein kinase C activity or suppression of phospholipase C activity. However, 2,2'-DTDP-induced Ca(2+) release was inhibited by a thiol-selective reducing reagent, dithiothreitol (5-25 microM) in a concentration-dependent manner. Collectively, this study shows that 2,2'-DTDP induced [Ca(2+)](i) increases in human osteosarcoma cells via releasing store Ca(2+)from multiple stores in a manner independent of protein kinase C or phospholipase C activity. The 2,2'-DTDP-induced store Ca(2+) release appeared to be dependent on oxidation of membranes.  相似文献   

14.
Exposure to ozone at 1 µl l–1 for 6 h induced ethylene production in rice (Oryza sativa L. cv. Hitomebore) leaves. The stimulation of ethylene production was detectable 2 h after the start of the exposure to ozone, and lasted for 6 h after the exposure. A 429-bp cDNA fragment encoding ACC oxidase was obtained by RT-PCR from ozone-treated rice leaves. Its nucleotide sequence and deduced amino-acid sequence had 97.2% and 94.4% identity, respectively, to those of OS1A1COX, which was previously obtained from deepwater rice. The abundance of the cDNA increased in accordance with the induction of ethylene production by the exposure to ozone.  相似文献   

15.
16.
Recently, synthetic HTH-I and HTH-II have been shown to increase the formation of free fatty acids in cockroach (Periplaneta americana) fat body. In this study we show that HTH-II increases PLA(2) activity in dispersed trophocytes, thus implying that phospholipid is a potential source of the fatty acids. The increase in HTH-induced PLA(2) activity is triggered by an increase in [Ca(2+)](i) but extracellular Ca(2+) is also required for a maximal Ca(2+) signal: an effect that can be blocked by the introduction of BAPTA into the trophocytes. Treating trophocytes with ryanodine blocks the increase in PLA(2) activity that follows treatment of the cells with HTH-II. This indicates that the Ca(2+) release channels are distinct from those that respond to inositol trisphosphate. Thapsigargin, which releases Ca(2+) to the cytosol from an intracellular store, increases PLA(2) activity. The data show that the enzyme is translocated from the cytosol to the plasma membrane.  相似文献   

17.
Developmental changes in capacitative Ca(2+) entry and Ca(2+) release from intracellular stores were measured using fura-2 fluorescence method during the pregnancy period (day 3-;18) in mouse mammary epithelial cells. Ca(2+) release was identified with the transient intracellular Ca(2+) ([Ca(2+)](i)) increase induced by thapsigargin addition in a Ca(2+)-free solution. Capacitative Ca(2+) entry was measured by the transient [Ca(2+)](i) increase induced by re-addition of extracellular Ca(2+) after depletion of Ca(2+) stores by thapsigargin. The capacitative Ca(2+) entry was greatest at the early stage of pregnancy (i.e. day 3 of pregnancy) and decreased as pregnancy progressed, while Ca(2+) release remained unchanged throughout the developmental stages. These findings indicate that in contrast to Ca(2+) release, a close correlation exists between capacitative Ca(2+) entry and pregnancy-induced development in mammary epithelial cells.  相似文献   

18.
Qiu J  Wang CG  Huang XY  Chen YZ 《Life sciences》2003,72(22):2533-2542
Many stimulants, including bradykinin (BK), can induce increase in [Ca(2+)](i) in PC12 cells. Bradykinin induces an increase in [Ca(2+)](i) via intracellular Ca(2+) release and extracellular Ca(2+) influx through the transduction of G protein, but not through voltage-sensitive calcium channels. In this experiment, We analyzed how corticosterone (Cort) influences BK-induced intracellular Ca(2+) release and extracellular Ca(2+) influx, and further studied the mechanism of glucocorticoid's action. To dissociate the intracellular Ca(2+) release and extracellular Ca(2+) influx induced by BK, the Ca(2+)-free/Ca(2+)- reintroduction protocol was used. The results were as follows: (1) The Ca(2+) influx induced by BK could be rapidly inhibited by Cort, but intracellular Ca(2+) release could not be affected significantly. (2) The inhibitory effect of Cort-BSA (BSA -conjugated Cort) on Ca(2+) influx induced by BK was the same as the effect of free Cort. (3) Protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) could mimic and PKC inhibitor G?6976 could reverse the inhibitory effect of Cort. (4) There was no inhibitory effect of Cort on Ca(2+) influx induced by BK when pretreated with pertussis toxin. The results suggested, for the first time, that Cort might act via a putative membrane receptor and inhibit the Ca(2+) influx induced by BK through the pertussis toxin -sensitive G protein-PKC pathway.  相似文献   

19.
Shah K  Penel C  Gagnon J  Dunand C 《Phytochemistry》2004,65(3):307-312
A protein fraction was obtained from Arabidopsis (Arabidopsis thaliana, L.) leaf extract by affinity chromatography through a Ca(2+)-pectate/polyacrylamide gel. Further purification by preparative isoelectric focusing and SDS PAGE allowed the separation of a peroxidase that was identified as being peroxidase AtPrx34 (AtprxCb, accession number X71794) by N-terminal amino acid microsequencing. AtPrx34 belongs to a group of five Arabidopsis sequences encoding putative pectin-binding peroxidases. An expression study showed that it is expressed in root, stem, flower and leaf. It was produced by Escherichia coli and tested for its ability to bind to Ca(2+)-pectate. The identity of the amino acids involved in the interaction between the peroxidase and the Ca(2+)-pectate structure is discussed.  相似文献   

20.
To determine the effect of voltage-independent alterations of L-type Ca(2+) current (I(Ca)) on the sarcoplasmic reticular (SR) Ca(2+) release in cardiac myocytes, we measured I(Ca) and cytosolic Ca(2+) transients (Ca(i)(2+); intracellular Ca(2+) concentration) in voltage-clamped rat ventricular myocytes during 1) an abrupt increase of extracellular [Ca(2+)] (Ca(o)(2+)) or 2) application of 1 microM FPL-64176, a Ca(2+) channel agonist, to selectively alter I(Ca) in the absence of changes in SR Ca(2+) loading. On the first depolarization in higher Ca(o)(2+), peak I(Ca) was increased by 46 +/- 6% (P < 0.001), but the increases in the maximal rate of rise of Ca(i)(2+) (dCa(i)(2+)/dt(max), where t is time; an index of SR Ca(2+) release flux) and the Ca(i)(2+) transient amplitude were not significant. Rapid exposure to FPL-64176 greatly slowed inactivation of I(Ca), increasing its time integral by 117 +/- 8% (P < 0.001) without significantly increasing peak I(Ca), dCa(i)(2+)/dt(max), or amplitude of the corresponding Ca(i)(2+) transient. Prolongation of exposure to higher Ca(o)(2+) or FPL-64176 did not further increase peak I(Ca) but greatly increased dCa(i)(2+)/dt(max), Ca(i)(2+) transient amplitude, and the gain of Ca(2+) release (dCa(i)(2+)/dt(max)/I(Ca)), evidently due to augmentation of the SR Ca(2+) loading. Also, the time to peak dCa(i)(2+)/dt(max) was significantly increased in the continuous presence of higher Ca(o)(2+) (by 37 +/- 5%, P < 0.001) or FPL-64176 (by 63 +/- 5%, P < 0.002). Our experiments provide the first evidence of a marked disparity between an increased peak I(Ca) and the corresponding SR Ca(2+) release. We attribute this to saturation of the SR Ca(2+) release flux as predicted by local control theory. Prolongation of the SR Ca(2+) release flux, caused by combined actions of a larger I(Ca) and maximally augmented SR Ca(2+) loading, might reflect additional Ca(2+) release from corbular SR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号