共查询到20条相似文献,搜索用时 8 毫秒
1.
The effects of lowering the pH on Photosystem II have been studied by measuring changes in absorbance and electron spin resonance in spinach chloroplasts.At pH values around 4 a light-induced dark-reversible chlorophyll oxidation by Photosystem II was observed. This chlorophyll is presumably the primary electron donor of system II. At pH values between 5 and 4 steady state illumination induced an ESR signal, similar in shape and amplitude to signal II, which was rapidly reversed in the dark. This may reflect the accumulation of the oxidized secondary donor upon inhibition of oxygen evolution. Near pH 4 the rapidly reversible signal and the stable and slowly decaying components of signal II disappeared irreversibly concomitant with the release of bound manganese.The results are discussed in relation to the effects of low pH on prompt and delayed fluorescence reported earlier (van Gorkom, H. J., Pulles, M. P. J., Haveman, J. and den Haan, G. A. (1976) Biochim. Biophys. Acta 423, 217–226). 相似文献
2.
Photosystem II reaction center components have been studied in small system II particles prepared with digitonin. Upon illumination the reduction of the primary acceptor was indicated by absorbance changes due to the reduction of a plastoquinone to the semiquinone anion and by a small blue shift of absorption bands near 545 nm (C550) and 685 nm. The semiquinone to chlorophyll ratio was between 1/20 and 1/70 in various preparations. The terminal electron donor in this reaction did not cause large absorbance changes but its oxidized form was revealed by a hitherto unknown electron spin resonance (ESR) signal, which had some properties of the well-known signal II but a linewidth and g-value much nearer to those of signal I. Upon darkening absorbance and ESR changes decayed together in a cyclic or back reaction which was stimulated by 3-(3,4 dichlorophenyl)-1,1-dimethylurea. The donor could be oxidized by ferricyanide in the dark. Illumination in the presence of ferricyanide induced absorbance and ESR changes, rapidly reversed upon darkening, which may be ascribed to the oxidation of a chlorophyll a dimer, possibly the primary electron donor of photosystem II. In addition an ESR signal with 15 to 20 gauss linewidth and a slower dark decay was observed, which may have been caused by a secondary donor. 相似文献
4.
The restoration by silicotungstic acid of the reversible light-induced pH rise mediated by pyocyanine in EDTA-treated chloroplasts corresponds to an irreversible fixation of the acid. The proton uptake is linearly related to the amount of fixed acid (4 protons per molecule of acid) as long as the amount of silicotungstic acid does not exceed 200 nmoles/mg of chlorophyll.In the same conditions silicotungstic acid partly restores ferricyanide reduction and O 2 evolution in chloroplasts suspensions supplemented with DCMU. These photoreactions are observed only with chloroplasts and these chloroplasts must have an unimpaired water-splitting mechanism.Silicotungstic acid does not impair DCMU fixation on the specific sites. More likely in its presence the properties of the membrane change and ferricyanide can accept electrons from a part of the electron transport chain, between the Photosystem II reaction center and the block of the electron flow by DCMU. 相似文献
5.
Delayed fluorescence (luminescence) from spinach chloroplasts, induced by short saturating flashes, was studied in the temperature region between 0 and ?40 °C. At these temperatures, in contrast to what is observed at room temperature, luminescence at 40 ms after a flash was strongly dependent, with period four, on the number of preilluminating flashes (given at room temperature, before cooling). At ?35 °C luminescence of chloroplasts preilluminated with two flashes (the optimal preillumination) was about 15 times larger than that of dark-adapted chloroplasts. The intensity of luminescence obtained with preilluminated chloroplasts increased steeply below ?10 °C, presumably partly due to accumulation of reduced acceptor (Q ?), and reached a maximum at ?35 °C.In the presence of 50 mM NH 4Cl the temperature optimum was at ?15 °C; at this temperature luminescence was increased by NH 4Cl; at temperatures below ?20 °C luminescence at 40 ms was decreased by NH 4Cl. At room temperature a strongly enhanced 40-ms luminescence was observed after the third and following flashes. The results indicate that both the S 2 to S 3 and the S 3 to S 4 conversion are affected by NlH 4Cl.Inhibitors of Q ? reoxidation, like 3-(3, 4-dichlorophenyl)-1, 1- dimethylurea, did only slightly affect the preillumination dependence of luminescence at sub-zero temperatures if they were added after the preillumination. This indicates that these substances by themselves do not accelerate the deactivation of S 2 and S 3. 相似文献
6.
Delayed fluorescence, as measured with a laser phosphoroscope, is stimulated not inhibited by uncouplers during the first 100 μs after the light is turned off. This is true only wen uncouplers cause an increase in the rate of electron transport. When ADP and P i cause an increase in the electron transport rate, microsecond-delayed fluorescence is also increased. Indeed, there is a complex quantitative relationship between the rate of electron transport and the initial intensity of delayed fluorescence under a wide range of conditions. Uncouplers or ADP and Pi also increase the rate of decay of delayed fluorescence so that after about 150 μs they become inhibitory, as already reported by many authors. Microsecond-delayed fluorescence continues to rise with rising light intensities long after the rate of reduction of exogenous acceptor is light-saturated. These observations suggest a correlation of the rate of electron transport both with the intensity of the 5–100 μs-delayed fluorescence and with the rate of decay in the intensity of delayed fluorescence. The data imply that the decrease in intensity of millisecond-delayed fluorescence which has often been noted with uncouplers is probably not due to the elimination of a membrane potential. It seems more likely that the decrease in millisecond-delayed fluorescence is a reflection of the rate of disappearance of some other electron transport-generated condition, a condition which is uncoupler-insensitive. Certainly stimulations of microsecond-delayed fluorescence by electron transport which has been uncoupled by gramicidin suggest that ion gradients are not an essential component of the conditions responsible for delayed fluorescence. 相似文献
7.
Absorbance changes in the region 500–565 nm and at 702 nm, brought about by excitation of Photosystems 1 and 2, respectively, were measured in spinach chloroplasts at ?50 °C. Either dark-adapted chloroplasts were used or chloroplasts preilluminated with a number of short saturating flashes just before cooling.Both photosystems were found to cause a light-induced increase of absorbance at 518 nm (due to “P518”). The System 1-induced change was not affected by preillumination. It decayed within 1 s in the dark and showed similar kinetics as P700. Experiments in the presence of external electron acceptors (methylviologen or Fe(CN) 63?) suggested that P518 was not affected by the redox state of the primary electron acceptor of System 1. The absorbance increase at 518 nm due to System 2 decayed in the dark with a half-time of several min. The kinetics were similar to those of C-550, the presumed indicator of the primary electron acceptor of System 2. After two flashes preillumination the changes due to P518 and C-550 were reduced by about 40%, and a relatively slow, System 2-induced oxidation of cytochrome b559 occurred which proceeded at a similar rate as the increase in yield of chlorophyll a fluorescence. The results indicate that at ?50°C two different photoreactions of System 2 occur. One consists of a photoreduction of the primary electron acceptor associated with C-550, accompanied by the oxidation of an unknown electron donor; the other is less efficient and results in the photooxidation of cytochrome b559. 相似文献
9.
The kinetics of fluorescence yield in Chlorella pyrenoidosa and spinach chloroplasts were studied in the time range of 0.5 μs to several hundreds of microseconds in the presence of hydroxylamine. Fluorescence was excited with a just-saturating xenon flash with a halfwidth of 13 μs (λ = 420 nm). The fast rise of the fluorescence yield which was limited by the rate of light influx, was, in the presence of 10 −3–10 −2 M hydroxylamine, replaced by a slow component which had a half risetime of 25 μs in essence independent of light intensity. This slow fluorescence yield increase reflects a dark reaction on the watersplitting side of Photosystem II. Simultaneous oxygen evolution measurements suggested that a fast fluorescence component is only present in organisms with intact O 2-evolving system, whereas a slow rise predominantly occurs in organisms with the watersplitting system irreversibly inhibited by hydroxylamine. The results can be explained by the following hypotheses: (a) The primary donor of Photosystem II in its oxidized state, P+, is a fluorescence quencher. (b) Hydroxylamine prevents the secondary electron donor Z from reducing the oxidized reaction center pigment P+ rapidly. This inhibition is dependent on hydroxylamine concentration and is complete at a concentration of 10−2 M. (c) A second donor (not transporting electrons from water) transfers electrons to P+ with a half time of roughly 25 μs. 相似文献
10.
The fluorescence yield has been measured on spinach chloroplasts at low temperature (−30 to −60°C) for various dark times following a short saturating flash. A decrease in the fluorescence yield linked to the reoxidation of the Photosystem II electron acceptor Q is still observed at −60°C. Two reactions participate in this reoxidation: a back reaction or charge recombination and the transfer of an electron from Q − to Pool A. The relative competition between these two reactions at low temperature depends upon the oxidation state of the donor side of the Photosystem II center: 1. (1) In dark-adapted chloroplasts (i.e. in States S0+S1 according to Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 11, 457–475), Q, reduced by a flash at low temperature, is reoxidized by a secondary acceptor and the positive charge is stabilized on the Photosystem II donor Z. Although this reaction is strongly temperature dependent, it still occurs very slowly at −60°C. 2. (2) When chloroplasts are placed in the S2+S3 states by a two-flash preillumination at room temperature, the reoxidation of Q− after a flash at low temperature is mainly due to a temperature-independent back reaction which occurs with non-exponential kinetics. 3. (3) Long continuous illumination of a frozen sample at −30°C causes 6–7 reducing equivalents to be transferred to the pool. Thus, a sufficient number of oxidizing equivalents should have been generated to produce at least one O2 molecule. 4. (4) A study of the back reaction in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) shows the superposition of two distinct non-exponential reactions one temperature dependent, the other temperature independent.
Abbreviations: DCMU; 3(3; 4-dichlorophenyl)-1; 1-dimethylurea 相似文献
11.
By density gradient centrifugation of the 80000 × g supernatant of digitonintreated spinach chloroplasts two main green bands and one minor green band were obtained. The purification and properties of the particles present in the main bands, which were shown to be derived from Photosystem I and Photosystem II, have been described previously; those of the particles in the minor fraction will be described in the present paper. After purification, these particles show Photosystem II activity but are devoid of Photosystem I activity. They have a high chlorophyll a/chlorophyll b ratio and are enriched in β-carotene and cytochrome b559. At liquid nitrogen temperature, photoreduction of C550 and photooxidation of cytochrome-b559 can be observed. At room temperature, cytochrome b559 undergoes slight photooxidation. These properties indicate that this particle may be the reaction-center complex of Photosystem II. It is suggested that, in vivo, the Photosystem II unit is made up of a reaction-center complex and an accessory complex, the latter being found in one of the main green bands of the density gradient. 相似文献
13.
The 515 nm absorbance change was studied in mesophyll and bundle sheath chloroplasts of maize, which contain different amounts of grana. The amplitude of the 515 nm signal (induced by 3 μs flashes repeated at 4 s intervals) has shown a correlation with the granum content of the samples. However, upon addition of N-methylphenazonium methosulphate the 515 nm signal became independent of the amount of grana: in agranal thylakoids a large pool of silent Photosystem I was activated and, as a result, the amplitude of the 515 nm signal of agranal chloroplasts increased to the level exhibited by granal chloroplasts.These data show that the 515 nm absorbance change is not limited to small closed vesicles like grana, but in the presence of suitable electron donors single lamellae of bundle sheath chloroplasts can also be active. 相似文献
14.
Under conditions in which the Photosystem II quencher is rapidly reduced upon illumination, either after a preillumination or following treatment with dithionite, the fluorescence-induction curve of intact spinach chloroplasts (class I type) displays a pronounced dip. This dip is probably identical with that observed after prolonged anaerobic incubation of whole algal cells (“I-D dip”). It is inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea and occurs in the presence of dithionite, sufficient to reduce the plastoquinone pool. It is influenced by far red light, methylviologen, anaerobiosis and uncouplers in a manner consistent with the interpretation that it represents a photochemical quenching of fluorescence by an electron transport component situated between the Photosystem II quencher and plastoquinone. Glutaraldehyde inhibition may indicate that protein structural changes are involved. 相似文献
15.
The treatment of spinach chloroplasts with p-nitrothiophenol in the light at acidic and neutral pH's caused specific inhibition of the Photosystem II activity, whereas the same treatment in the dark did not affect the activity at all. The photosystem I activity was not inhibited by p-nitrothiophenol both in the light and in the dark. The inhibition was accompanied by changes of fluorescence from chloroplasts. As observed at room temperature, the 685-nm band was lowered by the p-nitrothiophenol treatment in the light and, at liquid nitrogen temperature, the relative height of the 695-nm band to the 685-nm band increased and the 695-nm band shifted to longer wavelengths. The action spectra for these effects of p-nitrothiophenol on the activity and fluorescence showed a peak at 670 nm with a red drop at longer wavelengths. It was concluded that the light absorbed by Photosystem II is responsible for the chemical modification of chloroplasts with p-nitrothiophenol to causing the specific inhibition of Photosystem II. 相似文献
16.
Absorption changes ( ΔA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures.In the microsecond time range the difference spectrum of ΔA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+?700; it decays in a polyphasic manner with half-times of 17 μs, 210 μs and over 1 ms. The oxidized primary donor of Photosystem II (P +II) is not detected with a time resolution of 3 μs. After treatment with 3–10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P +II is observed and decays biphasically (a major phase with , and a minor phase with ), probably by reduction by an accessory electron donor.In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P +II is reduced with a half-time of 25–45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction. 相似文献
17.
The kinetics of chlorophyll fluorescence at 77 K were studied in Chlorella cells and spinach chloroplasts.During a first illumination, the rise is polyphasic with at least three phases. The slowest one is irreversible and corresponds to the cytochrome oxidation.The dark regeneration of half the variable fluorescence is biphasic, the fast phase being inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) both in Chlorella and chloroplasts.The fluorescence rise during a second illumination is still biphasic.Carbonyl cyanide m-chlorophenylhydrazone (CCCP) slows down the fluorescence rise in Chlorella but has no effect on the dark regeneration. It does not affect the fluorescence of chloroplasts.Ferricyanide which oxidizes cytochrome b-559 at room temperature produces a quenching of the variable fluorescence and an acceleration of the fluorescence rise during the first illumination.Our results fit the idea of the heterogeneity of the Photosystem II centers at low temperature. 相似文献
18.
Induction curves of the delayed light emission in spinach chloroplasts were studied by measuring the decay kinetics after each flash of light. This study differs from previous measurements of the induction curves where only the intensities at one set time after each flash of light were recorded. From the decay kinetics after each flash of light, the induction curves of the delayed light emission measured 2 ms after a flash of light were separated into two components: one component due to the last flash only and one component due to all previous flashes before the last one. On comparing the delayed light induction curves of the two components with the fluorescence induction curves in chloroplasts treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and in chloroplasts treated with hydroxylamine and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the component due to the last flash only is found to be dependent on the concentration of open reaction centers and the component due to all previous flashes except the last is dependent on the concentration of closed reaction centers. This implies that the yield of the fast decaying component of the delayed light emission is dependent on the concentration of open reaction centers and the yield of the slow decaying component is dependent on the concentration of closed reaction centers. 相似文献
19.
In Tris-washed chloroplasts the kinetics of the primary electron acceptor X 320 of reaction center II has been investigated by fast repetitive flash spectroscopy with a time resolution of . It has been found that X 320 is reduced by a flash in . The subsequent reoxidation in the dark occurs mainly by a reaction with a 100–200 μs kinetics. The light-induced difference spectrum confirms X 320 to be the reactive species. From these results it is concluded that in Tris-washed chloroplasts the reaction centers of System II are characterized by a high photochemical turnover rate mediated either via rapid direct charge recombination or via fast cyclic electron flow. 相似文献
20.
Data presented here indicate that the slow fluorescence decline in osmotically disrupted chloroplasts is not associated with the well known divalent cation effect on fluorescence yield. Thus the two phenomena have markedly different magnesium concentration requirements, magnesium addition after the fluorescence decline did not stimulate the dark reversal, and the characteristics of the fluorescence induction kinetics of the two processes are not similar.At pH 7.6 the slow fluorescence decline was stimulated by several uncouplers demonstrated to greatly reduce proton pumping, and at pH 9.2 it was stimulated by all uncouplers tested. Acid-base transition was strongly inhibitory, and this inhibition was relieved by uncoupler. Thus the pH gradient seems to inhibit the process. The involvement of coupling factor is suggested by experiments in which phosphorylation substrates were inhibitory, and this inhibition was prevented by uncoupler. These data are explained in terms of coupling factor structural changes which in an unknown manner influence Photosystem II fluorescence emission.Fluorescence induction curves indicate that the slow quenching decreased only the variable fluorescence. The half rise time was decreased along with the sig-moidicity of the rise curve. These data can be accomodated in terms of a model recently proposed by Butler and Kitajima (Biochim. Biophys Acta (1975) 376, 116–125), involving the transfer of energy from the excited, but closed, reaction centres II to the light harvesting chlorophyll system. The slow fluorescence decline is suggested to represent a decrease of this process. 相似文献
|