共查询到20条相似文献,搜索用时 0 毫秒
1.
Brown PJ Mulvey D Potts JR Tomley FM Campbell ID 《Journal of structural and functional genomics》2003,4(4):227-234
Micronemes, specialised organelles found in all apicomplexan parasites, secrete molecules that are essential for parasite attachment and invasion of host cells. EtMIC5 is one such microneme protein that contains eleven tandemly repeating modules. These modules have homology with the PAN module superfamily. Members of this family are found in blood clotting proteins, some growth factors and some nematode proteins. This paper presents the structure of the 9th PAN module in EtMIC5, determined using high resolution NMR. The structure shows similarities to and some differences from the N-terminal module of hepatocyte growth factor (HGF), the only previous member of the PAN family with known structure. AbbreviationsNMR – nuclear magnetic resonance; NOE – nuclear Overhauser enhancement; NOESY – NOE spectroscopy; COSY – correlated spectroscopy; TOCSY – total correlated spectroscopy; HSQC – hetero nuclear single quantum coherence; HMQC-J – hetero nuclear multiple quantum coherence-J coupling; MICs – microneme proteins; EtMIC5 – a microneme protein from Eimeria tenella; Apple9 – the ninth Apple repeat of EtMIC5; FXI – blood coagulation factor XI; PK – plasma prekallikrein; HGF – hepatocyte growth factor. 相似文献
2.
Eimeria maxima is one of the seven Eimeria spp. that infect the chicken and cause the disease coccidiosis. The well characterised immunogenicity and genetic diversity associated with E. maxima promote its use in genetics-led studies on avian coccidiosis. The development of a genetic map for E. maxima, presented here based upon 647 amplified fragment length polymorphism markers typed from 22 clonal hybrid lines and assembled into 13 major linkage groups, is a major new resource for work with this parasite. Comparison with genetic maps produced for other coccidial parasites indicates relatively high levels of genetic recombination. Conversion of ∼14% of the markers representing the major linkage groups to sequence characterised amplified region markers can provide a scaffold for the assembly of future genomic sequences as well as providing a foundation for more detailed genetic maps. Comparison with the Eimeria tenella genetic map produced 10 years ago has revealed a less biased marker distribution, with no more than nine markers mapped within any unresolved heritable unit. Nonetheless, preliminary bioinformatic characterisation of the three largest publicly available genomic E. maxima sequences suggest that the feature-poor/feature-rich structure which has previously been found to define the first sequenced E. tenella chromosome also defines the E. maxima genome. The significance of such a segmented genome and the apparent potential for variation in genetic recombination will be relevant to haplotype stability and the longevity of future anticoccidial strategies based upon multiple loci targeted by novel chemotherapeutic drugs or recombinant subunit vaccines. 相似文献
3.
The apicomplexan pathogen Eimeria causes coccidiosis, an intestinal disease of chickens, which has a major welfare and economic impact on the poultry industry. There is an urgent need to identify molecules that are rational targets for drug design and novel vaccines against coccidiosis. Apicomplexan secretory organelles, including micronemes and rhoptries, are essential for invasion of the host intestinal epithelium and establishment of parasitism. However, relatively little is known about the precise molecular function of these organelles, partly because few organelle proteins have been characterized. In this study, proteomics tools have been harnessed to define the protein repertoire of micronemes. Purified microneme proteins from Eimeria tenella sporozoites were excised from two-dimensional (2-D) gels and analyzed using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and chemically assisted fragmentation (CAF)-MALDI with de novo sequencing. Peptide mass profiles were searched against the NCBI non-redundant (nr) database and against Eimeria-specific databases using the Mascot search algorithm, resulting in the identification of 37 of 96 spots excised from the 2-D gels. In addition, we have found CAF-MALDI to be a useful adjunct for identifying proteins, without the need for tandem MS. This global approach to protein characterization will be vital to gain greater understanding of the processes involved in apicomplexan host cell invasion. 相似文献
4.
J. Brian Parent Hans C. Bauer Kenneth Olden 《Biochemical and biophysical research communications》1982,108(2):552-558
We have investigated the effect of tunicamycin on the localization of lysosomal hydrolases in chicken embryo fibroblast cultures. We showed that treatment with tunicamycin (0.05 μg/ml) resulted in a 7–10 fold increase in the cathepsin B-like activity in the culture medium compared to untreated cultures. The protease activity was identified as cathepsin B-like based on 1) substrate specificity (benzoylpro-phe-arg[14C]anilide is rapidly hydrolyzed), 2) the pH optimum for activity of 5.5, 3) inhibition by thiol reactive compounds, 4) inhibition of the activity by leupeptin but not by pepstatin or phenylmethylsulfonyl fluoride, and 5) by the demonstration of a protease with similar properties in the lysosomal fraction of untreated cultures. The secretion of the cathepsin B-like protease was specific and not due to leakage from damaged cells. 相似文献
5.
6.
Hikosaka K Nakai Y Watanabe Y Tachibana S Arisue N Palacpac NM Toyama T Honma H Horii T Kita K Tanabe K 《Mitochondrion》2011,11(2):273-278
Apicomplexan parasites of the genus Plasmodium, pathogens causing malaria, and the genera Babesia and Theileria, aetiological agents of piroplasmosis, are closely related. However, their mitochondrial (mt) genome structures are highly divergent: Plasmodium has a concatemer of 6-kb unit and Babesia/Theileria a monomer of 6.6- to 8.2-kb with terminal inverted repeats. Fragmentation of ribosomal RNA (rRNA) genes and gene arrangements are remarkably distinctive. To elucidate the evolutionary origin of this structural divergence, we determined the mt genome of Eimeria tenella, pathogens of coccidiosis in domestic fowls. Analysis revealed that E. tenella mt genome was concatemeric with similar protein-coding genes and rRNA gene fragments to Plasmodium. Copy number was 50-fold of the nuclear genome. Evolution of structural divergence in the apicomplexan mt genomes is discussed. 相似文献
7.
8.
Background
The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host.Results
The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria.Conclusions
Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-696) contains supplementary material, which is available to authorized users. 相似文献9.
V Guyonnet J K Johnson N Bangalore J Travis P L Long 《The Journal of parasitology》1991,77(5):775-779
The role of human neutrophil cathepsin G (Cat G) on Eimeria tenella sporozoites was studied in vitro. Sporozoites were incubated for 2 hr at 37 C in PO4 buffer, 0.9% NaCl (PBS), pH 7.6 in the presence of Cat G (50 micrograms/ml), diisopropyl fluorophosphate-inhibited Cat G (DFP-Cat G) (50 micrograms/ml) or PBS alone, prior to being inoculated into embryonated eggs. As judged by oocyst production on day 7 postinoculation, embryo mortality and the hemorrhage scores, both Cat G and DFP-Cat G demonstrated anticoccidial activity; greater activity was obtained with the DFP-Cat G. Sporozoites were exposed also to increasing concentrations of native and trypsin-digested DFP-Cat G (0-100 micrograms/ml) under the same conditions. Significant protection (37% and 49% for native and digested DFP-Cat G, respectively) was obtained with a low concentration (5 mu/ml), and higher concentrations resulted in 70% and 84% protection, respectively. The primary bactericidal domain of Cat G, the HPQYNQR peptide, at 3 concentrations (25, 50, and 100 micrograms/ml), reduced the oocyst production by 46%, 16%, and 15%, respectively. The anticoccidial activity of Cat G may involve a peptide fragment different from the antimicrobial domain of the enzyme. 相似文献
10.
11.
Molecular and biochemical characterization of a cathepsin B-like protease family unique to Trypanosoma congolense
下载免费PDF全文

Mendoza-Palomares C Biteau N Giroud C Coustou V Coetzer T Authié E Boulangé A Baltz T 《Eukaryotic cell》2008,7(4):684-697
Cysteine proteases have been shown to be essential virulence factors and drug targets in trypanosomatids and an attractive antidisease vaccine candidate for Trypanosoma congolense. Here, we describe an important amplification of genes encoding cathepsin B-like proteases unique to T. congolense. More than 13 different genes were identified, whereas only one or two highly homologous genes have been identified in other trypanosomatids. These proteases grouped into three evolutionary clusters: TcoCBc1 to TcoCBc5 and TcoCBc6, which possess the classical catalytic triad (Cys, His, and Asn), and TcoCBs7 to TcoCBs13, which contains an unusual catalytic site (Ser, Xaa, and Asn). Expression profiles showed that members of the TcoCBc1 to TcoCBc5 and the TcoCBs7 to TcoCBs13 groups are expressed mainly in bloodstream forms and localize in the lysosomal compartment. The expression of recombinant representatives of each group (TcoCB1, TcoCB6, and TcoCB12) as proenzymes showed that TcoCBc1 and TcoCBc6 are able to autocatalyze their maturation 21 and 31 residues, respectively, upstream of the predicted start of the catalytic domain. Both displayed a carboxydipeptidase function, while only TcoCBc1 behaved as an endopeptidase. TcoCBc1 exhibited biochemical differences regarding inhibitor sensitivity compared to that of other cathepsin B-like proteases. Recombinant pro-TcoCBs12 did not automature in vitro, and the pepsin-matured enzyme was inactive in tests with cathepsin B fluorogenic substrates. In vivo inhibition studies using CA074Me (a cell-permeable cathepsin B-specific inhibitor) demonstrated that TcoCB are involved in lysosomal protein degradation essential for survival in bloodstream form. Furthermore, TcoCBc1 elicited an important immune response in experimentally infected cattle. We propose this family of proteins as a potential therapeutic target and as a plausible antigen for T. congolense diagnosis. 相似文献
12.
Godat E Chowdhury S Lecaille F Belghazi M Purisima EO Lalmanach G 《Biochemistry》2005,44(31):10486-10493
Like other papain-related cathepsins, congopain from Trypanosoma congolense is synthesized as a zymogen. We have previously identified a proregion-derived peptide (Pcp27), acting as a weak and reversible inhibitor of congopain. Pcp27 contains a 5-mer YHNGA motif, which is essential for selectivity in the inhibition of its mature form [Lalmanach, G., Lecaille, F., Chagas, J. R., Authié, E., Scharfstein, J., Juliano, M. A., and Gauthier, F. (1998) J. Biol. Chem. 273, 25112-25116]. In the work presented here, a homology model of procongopain was generated and subsequently used to model a chimeric 50-mer peptide (called H3-Pcp27) corresponding to the covalent linkage of an unrelated peptide (H3 helix from Antennapedia) to Pcp27. Molecular simulations suggested that H3-Pcp27 (pI = 9.99) maintains an N-terminal helical conformation, and establishes more complementary electrostatic interactions (E(coul) = -25.77 kcal/mol) than 16N-Pcp27, the 34-mer Pcp27 sequence plus the 16 native residues upstream from the proregion (E(coul) = 0.20 kcal/mol), with the acid catalytic domain (pI = 5.2) of the mature enzyme. In silico results correlated with the significant improvement of congopain inhibition by H3-Pcp27 (K(i) = 24 nM), compared to 16N-Pcp27 (K(i) = 1 microM). In addition, virtual alanine scanning of H3 and 16N identified the residues contributing most to binding affinity. Both peptides did not inhibit human cathepsins B and L. In conclusion, these data support the notion that the positively charged H3 helix favors binding, without modifying the selectivity of Pcp27 for congopain. 相似文献
13.
14.
Emilio del Cacho Margarita Gallego María Francesch Joaquín Quílez Caridad Sánchez-Acedo 《Parasitology international》2010,59(4):506-511
The anticoccidial effect of a product extracted from the natural herb Artemisia annua, artemisinin, which has a potential use as a dietary supplement, has been studied. Commercial artemisinin was administered at 10 and 17 ppm in food and tested against infection with Eimeria tenella. A battery trial to quantify the effect of artemisinin on the reproductive and infective capabilities of E. tenella was carried out. For that purpose flow cytometry was combined with electron microscopy and immunofluorescence techniques in order to study the effect of artemisinin on E. tenella gametogenesis. Significantly reduced oocyst output and lesion scores were found in chickens treated with artemisinin. In addition, evidence to support a lower oocyst sporulation rate was obtained. Though the ultrastructural studies showed normal development of gametogenesis in artemisinin-treated chickens, the oocyst wall formation was significantly altered. This resulted in both death of developing oocysts and reduced sporulation rate. Immunofluorescent studies provided evidence that treatment with artemisinin inhibited sarcoplasmic–endoplasmic reticulum calcium ATPase (SERCA) expression in macrogametes. According to these findings, artemisinin has a deleterious effect on fertilized macrogametes (early zygotes) by inhibiting SERCA. The altered secretion of the wall-forming bodies may be the result of Ca2+-dependent ATPase impaired activity which, in turn, is the result of SERCA inhibition. 相似文献
15.
Sol-Church K Frenck J Mason RW 《Biochemical and biophysical research communications》2000,267(3):791-795
The complete nucleotide sequence of a novel cathepsin cDNA derived from rat placenta was determined and is termed cathepsin Q. The predicted protein of 343 amino acid is a member of the family C1A protease related to cathepsin L. Rat cathepsin Q and its mouse counterpart were found highly expressed in placenta, whereas no detectable levels were found in lung, spleen, heart, brain, kidney, thymus, testicle, liver, or embryonic tissues. It is predicted that cathepsin Q will differ in catalytic specificity to another placental-specific protease, cathepsin P, indicating that these enzymes will have unique proteolytic functions in extra-embryonic tissues. 相似文献
16.
17.
18.
Baig S Damian RT Morales-Montor J Ghaleb A Baghdadi A White AC 《Microbes and infection / Institut Pasteur》2006,8(12-13):2733-2735
Central nervous system infection by Taenia solium cysts causes neurocysticercosis, a common neurological infection in the Third World. We have previously isolated cysteine proteases from Taenia crassiceps and T. solium. In this study, we immunized BALB/c mice with the purified T. solium cysteine protease and challenged them with Taenia crassiceps. Immunized mice had a 72% reduction in parasite burden compared to mice that received no immunization. Immunized mice developed antigen specific lymphocyte proliferation. These data support further studies of the T. solium cysteine protease as a vaccine candidate. 相似文献
19.
Ljunggren A Redzynia I Alvarez-Fernandez M Abrahamson M Mort JS Krupa JC Jaskolski M Bujacz G 《Journal of molecular biology》2007,371(1):137-153
Chagasin is a protein produced by Trypanosoma cruzi, the parasite that causes Chagas' disease. This small protein belongs to a recently defined family of cysteine protease inhibitors. Although resembling well-known inhibitors like the cystatins in size (110 amino acid residues) and function (they all inhibit papain-like (C1 family) proteases), it has a unique amino acid sequence and structure. We have crystallized and solved the structure of chagasin in complex with the host cysteine protease, cathepsin L, at 1.75 A resolution. An inhibitory wedge composed of three loops (L2, L4, and L6) forms a number of contacts responsible for high-affinity binding (K(i), 39 pM) to the enzyme. All three loops interact with the catalytic groove, with the central loop L2 inserted directly into the catalytic center. Loops L4 and L6 embrace the enzyme molecule from both sides and exhibit distinctly different patterns of protein-protein recognition. Comparison with a 1.7 A structure of uncomplexed chagasin, also determined in this study, demonstrates that a conformational change of the first binding loop (L4) allows extended binding to the non-primed substrate pockets of the enzyme active site cleft, thereby providing a substantial part of the inhibitory surface. The mode of chagasin binding is generally similar, albeit distinctly different in detail, when compared to those displayed by cystatins and the cysteine protease inhibitory p41 fragment of the invariant chain. The chagasin-cathepsin L complex structure provides details of how the parasite protein inhibits a host enzyme of possible importance in host defense. The high level of structural and functional similarity between cathepsin L and the T. cruzi enzyme cruzipain gives clues to how the cysteine protease activity of the parasite can be targeted. This information will aid in the development of synthetic inhibitors for use as potential drugs for the treatment of Chagas disease. 相似文献
20.
Biosynthesis and catabolism of mannitol is developmentally regulated in the protozoan parasite Eimeria tenella 总被引:3,自引:0,他引:3
Allocco JJ Profous-Juchelka H Myers RW Nare B Schmatz DM 《The Journal of parasitology》1999,85(2):167-173
The mannitol cycle is a metabolic branch of the glycolytic pathway found in Eimeria tenella. In this paper, we describe the biosynthesis and consumption of mannitol during parasite development. Low micromolar levels of mannitol were detected in all of the asexual stages and mannitol production increased sharply during the sexual phase of the life cycle. Unsporulated oocysts had high mannitol content (300 mM or 25% of the oocyst mass). Mannitol-1-phosphate dehydrogenase (M1PDH), the first committed step of the mannitol cycle, was also elevated in sexual stages and this coincides with mannitol levels. Approximately 90% of the mannitol present in unsporulated oocysts was consumed in the first 15 hr of sporulation, and levels continued to drop until the sporulation process was complete at approximately 35 hr. Thus, mannitol appears to be the "fuel" for sporulation during the vegetative stage of the parasite life cycle. Evaluation of oocyst extracts from 6 additional Eimeria species for mannitol content and the presence of M1PDH indicated that the mannitol cycle was broadly present in this genus. This finding combined with the lack of mannitol metabolism in higher eukaryotes makes this pathway an attractive chemotherapeutic target. 相似文献