首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ectonucleotide pyrophosphatase phosphodiesterase (ENPP1) is a positional candidate gene at chromosome 6q23 where we previously detected strong linkage with fasting-specific plasma insulin and obesity in Mexican Americans from the San Antonio Family Diabetes Study (SAFDS). We genotyped 106 single-nucleotide polymorphisms (SNPs) within ENPP1 in all 439 subjects from the linkage study, and measured association with obesity and metabolic syndrome (MS)-related traits. Of 72 polymorphic SNPs, 24 were associated, using an additive model, with at least one of eight key metabolic traits. Three traits were associated with at least four SNPs. They were high-density lipoprotein cholesterol (HDL-C), leptin, and fasting plasma glucose (FPG). HDL-C was associated with seven SNPs, of which the two most significant P values were 0.0068 and 0.0096. All SNPs and SNP combinations were analyzed for functional contribution to the traits using the Bayesian quantitative-trait nucleotide (BQTN) approach. With this SNP-prioritization analysis, HDL-C was the most strongly associated trait in a four-SNP model (P=0.00008). After accounting for multiple testing, we conclude that ENPP1 is not a major contributor to our previous linkage peak with MS-related traits in Mexican Americans. However, these results indicate that ENPP1 is a genetic determinant of these traits in this population, and are consistent with multiple positive association findings in independent studies in diverse human populations.  相似文献   

2.
Although recent evidence suggests that leptin can directly regulate a wide spectrum of peripheral functions, including fat metabolism, genetic examples are still needed to illustrate the physiological significance of direct actions of leptin in a given peripheral tissue. To this end, we used a technical knock-out approach to reduce the expression of leptin receptors specifically in white adipose tissue. The evaluation of leptin receptor reduction in adipocytes was based on real time PCR analysis of the mRNA levels, Western blot analysis of the proteins, and biochemical analysis of leptin signaling capability. Despite a normal level of leptin receptors in the hypothalamus and normal food intake, mutant mice developed increased adiposity, decreased body temperature, hyperinsulinemia, hypertriglyceridemia, impaired glucose tolerance and insulin sensitivity, as well as elevated hepatic and skeletal muscle triglyceride levels. In addition, a variety of genes involved in regulating fat and glucose metabolism were dysregulated in white adipose tissue. These include tumor necrosis factor-alpha, adiponectin, leptin, fatty acid synthase, sterol regulatory element-binding protein 1, glycerol kinase, and beta3-adrenergic receptor. Furthermore, the mutant mice are significantly more sensitive to high fat feeding with regard to developing obesity and severe insulin resistance. Thus, we provide a genetic model demonstrating the physiological importance of a peripheral effect of leptin in vivo. Importantly, this suggests the possibility that leptin resistance at the adipocyte level might be a molecular link between obesity and type 2 diabetes.  相似文献   

3.
Longevity of a p66Shc knockout strain (ShcP) was previously attributed to increased stress resistance and altered mitochondria. Microarrays of ShcP tissues indicated alterations in insulin signaling. Consistent with this observation, ShcP mice were more insulin sensitive and glucose tolerant at organismal and tissue levels, as was a novel p66Shc knockout (ShcL). Increasing and decreasing Shc expression in cell lines decreased and increased insulin sensitivity, respectively - consistent with p66Shc's function as a repressor of insulin signaling. However, differences between the two p66Shc knockout strains were also observed. ShcL mice were fatter and susceptible to fatty diets, and their fat was more insulin sensitive than controls. On the other hand, ShcP mice were leaner and resisted fatty diets, and their adipose was less insulin sensitive than controls. ShcL and ShcP strains are both highly inbred on the C57Bl/6 background, so we investigated gene expression at the Shc locus, which encodes three isoforms, p66, p52, and p46. Isoform p66 is absent in both strains; thus, the remaining difference to which to attribute the 'lean' phenotype is expression of the other two isoforms. ShcL mice have a precise deletion of p66Shc and normal expression of p52 and p46Shc isoforms in all tissues; thus, a simple deletion of p66Shc results in a 'fat' phenotype. However, ShcP mice in addition to p66Shc deletion have a fourfold increase in p46Shc expression in white fat. Thus, p46Shc overexpression in fat, rather than p66Shc deletion, is the likely cause of decreased adiposity and reduced insulin sensitivity in the fat of ShcP mice, which has implications for the longevity of the strain.  相似文献   

4.
We examined the independent relationships among various visceral and abdominal subcutaneous adipose tissue (AT) depots, glucose tolerance, and insulin sensitivity in 89 obese men. Measurements included an oral glucose tolerance test (OGTT), glucose disposal by euglycemic clamp, and abdominal and nonabdominal (e.g., peripheral) AT by magnetic resonance imaging (MRI). OGTT glucose and glucose disposal rates were related (P < 0.05) to visceral AT (r = 0.50 and -0.41, respectively). These observations remained significant (P < 0.05) after control for nonabdominal and abdominal subcutaneous AT, and maximal O(2) consumption (VO(2 max)). Abdominal subcutaneous AT was not a significant correlate (P > 0.05) of any metabolic variable after control for nonabdominal and visceral AT and VO(2 max). Division of abdominal subcutaneous AT into deep and superficial depots and visceral AT into intra- and extraperitoneal AT depots did not alter the observed relationships. Further analysis matched two groups of men for abdominal subcutaneous AT but also for low and high visceral AT. Men with high visceral AT had higher OGTT glucose values and lower glucose disposal rates compared with those with low visceral AT values (P < 0.05). A similar analysis performed on two groups of men matched for visceral AT but also for high and low abdominal subcutaneous AT revealed no statistically different values for any metabolic variable (P > 0.10). In conclusion, visceral AT alone is a strong correlate of insulin resistance independent of nonabdominal and abdominal subcutaneous AT and cardiovascular fitness. Subdivision of visceral and abdominal subcutaneous AT by MRI did not provide additional insight into the relationship between abdominal obesity and metabolic risk in obese men.  相似文献   

5.
BACKGROUND: Leptin is involved in the regulation of eating behavior. Its serum levels are determined by fat mass but a diurnal rhythm is also described. It is not clear whether leptin levels are also controlled in vivo by hormonal stimuli, like insulin or cortisol. METHODS AND RESULTS: This possible temporal relation was investigated by serial measurements during 24 h (group A) and 46 h (group B) in 15 healthy volunteers and another 10 subjects (group C) while fasting for 72 h. Maximal leptin levels were observed at 4:00 a.m. and 4:00 p.m. in subjects on a normal diet. During 24 h starvation (group B), there was a 40% decrease of mean leptin concentration when compared to baseline values. In group C, the leptin concentration under starvation dropped to 25% of basal levels after 72 h. Pooled data from group A and the nonfasting data from group B showed an insulin increase preceding leptin increase by 6 h (r = 0.405, p < 0.0001), while cortisol decreased 4 h (r = 0.361, p < 0.001) after leptin decrease. CONCLUSION: Starvation results in a fall of circulating leptin, ending leptin rhythmicity. Food intake is causally involved in the fluctuation of leptin levels in serum. Presumably this effect is mediated by insulin, while cortisol does not seem to affect leptin release directly in vivo.  相似文献   

6.
7.
Obesity represents a major risk factor for the development of insulin and leptin resistance, ultimately leading to a pleiotropic spectrum of metabolic alterations. However, resistance to both hormones does not uniformly affect all target cells and intracellular signaling pathways. In contrast, numerous clinical phenotypes arise from selective hormone resistance, leading to inhibition of defined intracellular signaling pathways in some tissues, while in other cell types hormone action is maintained or even overactivated. Here, we review the molecular mechanisms and clinical outcomes resulting from selective insulin and leptin resistance, which should ultimately guide future strategies for the treatment of obesity-associated diseases.  相似文献   

8.
Leptin is thought to be a lipostatic signal that contributes to body weight regulation. Zinc might play an important role in appetite regulation and its administration stimulates leptin production. However, there are few reports in the literature on its role on leptin levels in the obese population. The present work assesses the effect of zinc supplementation on serum leptin levels in insulin resistance (IR). A prospective double-blind, randomized, clinical, placebo-controlled study was conducted. Fifty-six normal glucose-tolerant obese women (age: 25-45 yr, body mass index [BMI] = 36.2 +/- 2.3 kg/m2) were randomized for treatment with 30 mg zinc daily for 4 wk. Baseline values of both groups were similar for age, BMI, caloric intake, insulin concentration, insulin resistance, and zinc concentration in diet, plasma, urine, and erythrocytes. Insulin and leptin were measured by radioimmunoassay and IR was estimated by the homeostasis model assessment (HOMA). The determinations of zinc in plasma, erythrocytes, and 24- h urine were performed by using atomic absorption spectrophotometry. After 4 wk, BMI, fasting glucose, and zinc concentration in plasma and erythrocyte did not change in either group, although zinc concentration in the urine increased from 385.9 +/- 259.3 to 470.2 +/- 241.2 +/- microg/24 h in the group with zinc supplementation (p < 0.05). Insulin did not change in the placebo group, whereas there was a significant decrease of this hormone in the supplemented group. HOMA also decreased from 5.8 +/- 2.6 to 4.3 +/- 1.7 (p < 0.05) in the zinc-supplemented group but did not change in the placebo group. Leptin did not change in the placebo group. In the zinc group, leptin was 23.6 +/- 12.3 microg/L and did not change. More human data from a unique population of obese individuals with documented insulin resistance would be useful in guiding future studies on zinc supplementation (with higher doses or longer intervals) or different measures.  相似文献   

9.
Neuronal PTP1B regulates body weight, adiposity and leptin action   总被引:10,自引:0,他引:10  
Obesity is a major health problem and a risk factor for type 2 diabetes. Leptin, an adipocyte-secreted hormone, acts on the hypothalamus to inhibit food intake and increase energy expenditure. Most obese individuals develop hyperleptinemia and leptin resistance, limiting the therapeutic efficacy of exogenously administered leptin. Mice lacking the tyrosine phosphatase PTP1B are protected from diet-induced obesity and are hypersensitive to leptin, but the site and mechanism for these effects remain controversial. We generated tissue-specific PTP1B knockout (Ptpn1(-/-)) mice. Neuronal Ptpn1(-/-) mice have reduced weight and adiposity, and increased activity and energy expenditure. In contrast, adipose PTP1B deficiency increases body weight, whereas PTP1B deletion in muscle or liver does not affect weight. Neuronal Ptpn1(-/-) mice are hypersensitive to leptin, despite paradoxically elevated leptin levels, and show improved glucose homeostasis. Thus, PTP1B regulates body mass and adiposity primarily through actions in the brain. Furthermore, neuronal PTP1B regulates adipocyte leptin production and probably is essential for the development of leptin resistance.  相似文献   

10.
Insulin resistance and hyperinsulinemia are strong correlates of obesity and type 2 diabetes, but little is known about their genetic determinants. Using data on nondiabetics from Mexican American families and a multipoint linkage approach, we scanned the genome and identified a major locus near marker D6S403 for fasting "true" insulin levels (LOD score 4.1, empirical P<.0001), which do not crossreact with insulin precursors. Insulin resistance, as assessed by the homeostasis model using fasting glucose and specific insulin (FSI) values, was also strongly linked (LOD score 3.5, empirical P<.0001) with this region. Two other regions across the genome were found to be suggestively linked to FSI: a location on chromosome 2q, near marker D2S141, and another location on chromosome 6q, near marker D6S264. Since several insulin-resistance syndrome (IRS)-related phenotypes were mapped independently to the regions on chromosome 6q, we conducted bivariate multipoint linkage analyses to map the correlated IRS phenotypes. These analyses implicated the same chromosomal region near marker D6S403 (6q22-q23) as harboring a major gene with strong pleiotropic effects on obesity and on lipid measures, including leptin concentrations (e.g., LOD(eq) for traits-specific insulin and leptin was 4.7). A positional candidate gene for insulin resistance in this chromosomal region is the plasma cell-membrane glycoprotein PC-1 (6q22-q23). The genetic location on chromosome 6q, near marker D6S264 (6q25.2-q26), was also identified by the bivariate analysis as exerting significant pleiotropic influences on IRS-related phenotypes (e.g., LOD(eq) for traits-specific insulin and leptin was 4.1). This chromosomal region harbors positional candidate genes, such as the insulin-like growth factor 2 receptor (IGF2R, 6q26) and acetyl-CoA acetyltransferase 2 (ACAT2, 6q25.3-q26). In sum, we found substantial evidence for susceptibility loci on chromosome 6q that influence insulin concentrations and other IRS-related phenotypes in Mexican Americans.  相似文献   

11.
12.
Aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) encompass a subfamily of aquaporins that allow the movement of water and other small solutes, especially glycerol, through cell membranes. Adipose tissue constitutes a major source of glycerol via AQP7. We have recently reported that, in addition to the well-known expression of AQP7 in adipose tissue, AQP3 and AQP9 are also expressed in omental and subcutaneous fat depots. Moreover, insulin and leptin act as regulators of aquaglyceroporins through the PI3K/Akt/mTOR pathway. AQP3 and AQP7 appear to facilitate glycerol efflux from adipose tissue while reducing the glycerol influx into hepatocytes via AQP9 to prevent the excessive lipid accumulation and the subsequent aggravation of hyperglycemia in human obesity. This Extra View focuses on the control of glycerol release by aquaglyceroporins in the adipose tissue and briefly discusses the importance of glycerol as a substrate for hepatic gluconeogenesis, pancreatic insulin secretion and cardiac ATP production.  相似文献   

13.
Aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) encompass a subfamily of aquaporins that allow the movement of water and other small solutes, especially glycerol, through cell membranes. Adipose tissue constitutes a major source of glycerol via AQP7. We have recently reported that, in addition to the well-known expression of AQP7 in adipose tissue, AQP3 and AQP9 are also expressed in omental and subcutaneous fat depots. Moreover, insulin and leptin act as regulators of aquaglyceroporins through the PI3K/Akt/mTOR pathway. AQP3 and AQP7 appear to facilitate glycerol efflux from adipose tissue while reducing the glycerol influx into hepatocytes via AQP9 to prevent the excessive lipid accumulation and the subsequent aggravation of hyperglycemia in human obesity. This Extra View focuses on the control of glycerol release by aquaglyceroporins in the adipose tissue and briefly discusses the importance of glycerol as a substrate for hepatic gluconeogenesis, pancreatic insulin secretion and cardiac ATP production.Key words: glycerol, aquaporin, fat accumulation, glucose homeostasis, insulin secretion, ATP production  相似文献   

14.
OBJECTIVES: Leptin, an important hormonal regulator of body weight, has been shown to stimulate the sympathetic nervous system (SNS) in vitro although the physiological relevance remains unclear. Increased SNS activity has been implicated in the pathogenesis of insulin resistance and an increased cardiovascular risk. We have therefore investigated the relationship between leptin, insulin resistance and cardiac autonomic activity in healthy young adults. 130 healthy men and women age 20.9 years were studied. Insulin sensitivity was assessed using the IVGTT and minimal model with simultaneous measures of leptin. Cardiac autonomic activity was assessed using spectral analysis of heart rate variability. RESULTS: Women showed significantly higher fasting leptin, heart rate and cardiac sympathetic activity, and lower insulin sensitivity. Men showed inverse correlations between insulin resistance and heart rate, and between insulin resistance and cardiac sympatho-vagal ratio. Women, in contrast, showed no SNS relationship with insulin resistance, but rather an inverse correlation between leptin and the sympatho-vagal ratio, suggesting that leptin in women is associated with SNS activity. The correlation remained significant after adjustment for BMI and waist-to-hip ratio (beta=-0.33 and p=0.008). CONCLUSION: Insulin resistance and SNS activity appear to be linked, although the relationship showed marked gender differences, and the direction of causality was unclear from this cross-sectional study. Leptin appears to exert a greater effect on the SNS in women, possibly because of their greater fat mass.  相似文献   

15.
16.
Aphids cause serious physical and economic damage to most major crops throughout the world through feeding damage, with consequent symptom development and virus transmission. The rosy leaf-curling aphid ( Dysaphis devecta Wlk.) is a pest of apple ( Malus spp.) which displays an exceptionally clear phenotype with respect to susceptible and resistant symptoms. The Sd-1 locus for resistance to D. devecta biotypes 1 and 2 is present in Cox's Orange Pippin and its progeny and had previously been mapped to the top of linkage group 7. Detailed fine mapping of the locus was initiated with AFLP bulked segregant analysis of both pedigree and segregating bulks, which identified three new marker loci. Preliminary marker order in the Sd-1 region was established through mapping in a family derived from Prima x Fiesta, with additional segregation analysis on a Fiesta x Golden Delicious family. Previous recombinant data was re-evaluated and corrected. Two co-segregating AFLP fragments were found to contain a common (GA)(23) repeat, from which a PCR-based simple sequence repeat (SSR) assay was developed. A high-resolution map around the Sd-1 region was established by analysing a large meta-population of Sd-1 recombinants using 759 additional individuals from different families. The Sd-1 gene has been located within a 1.3-cM interval flanked by the molecular markers SdSSRa and 2B12a and co-locates with the RFLP marker MC064. Allelism between Sd-1 and Sd-2 resistant sources was tested. Molecular markers tightly linked to Sd-1 were shown to be co-segregating with the Sd-2 locus, which indicated that Sd-1 and Sd-2 loci are at least tightly linked and, probably, allelic.  相似文献   

17.
The Insulin Receptor Substrate (IRS) proteins are key players in insulin signal transduction and are the best studied targets of the insulin receptor. Ser/Thr phosphorylation of IRS proteins negatively modulates insulin signaling; therefore, the identification of IRS kinases and their target Ser phosphorylation sites is of physiological importance. Here we show that in Fao rat hepatoma cells, the IkappaB kinase beta (IKKbeta) is an IRS-1 kinase activated by selected inducers of insulin resistance, including sphingomyelinase, ceramide, and free fatty acids. Moreover, IKKbeta shares a repertoire of seven potential target sites on IRS-1 with protein kinase C zeta (PKCzeta), an IRS-1 kinase activated both by insulin and by inducers of insulin resistance. We further show that mutation of these seven sites (Ser-265, Ser-302, Ser-325, Ser-336, Ser-358, Ser-407, and Ser-408) confers protection from the action of IKKbeta and PKCzeta when they are overexpressed in Fao cells or primary hepatocytes. This enables the mutated IRS proteins to better propagate insulin signaling. These findings suggest that insulin-stimulated IRS kinases such as PKCzeta overlap with IRS kinases triggered by inducers of insulin resistance, such as IKKbeta, to phosphorylate IRS-1 on common Ser sites.  相似文献   

18.
To determine the influence of dietary fructose and glucose on circulating leptin levels in lean and obese rats, plasma leptin concentrations were measured in ventromedial hypothalamic (VMH)-lesioned obese and sham-operated lean rats fed either normal chow or fructose- or glucose-enriched diets (60% by calories) for 2 wk. Insulin resistance was evaluated by the steady-state plasma glucose method and intravenous glucose tolerance test. In lean rats, glucose-enriched diet significantly increased plasma leptin with enlarged parametrial fat pad, whereas neither leptin nor fat-pad weight was altered by fructose. Two weeks after the lesions, the rats fed normal chow had marked greater body weight gain, enlarged fat pads, and higher insulin and leptin compared with sham-operated rats. Despite a marked adiposity and hyperinsulinemia, insulin resistance was not increased in VMH-lesioned rats. Fructose brought about substantial insulin resistance and hyperinsulinemia in both lean and obese rats, whereas glucose led to rather enhanced insulin sensitivity. Leptin, body weight, and fat pad were not significantly altered by either fructose or glucose in the obese rats. These results suggest that dietary glucose stimulates leptin production by increasing adipose tissue or stimulating glucose metabolism in lean rats. Hyperleptinemia in VMH-lesioned rats is associated with both increased adiposity and hyperinsulinemia but not with insulin resistance. Dietary fructose does not alter leptin levels, although this sugar brings about hyperinsulinemia and insulin resistance, suggesting that hyperinsulinemia compensated for insulin resistance does not stimulate leptin production.  相似文献   

19.

Objective:

It remains uncertain whether leptin and adiponectin levels are correlated in maternal vs. fetal circulations. Little is known about whether leptin and adiponectin affect insulin sensitivity during fetal life.

Design and Methods:

In a prospective singleton pregnancy cohort (n = 248), we investigated leptin and adiponectin concentrations in maternal (at 24‐28 and 32‐35 weeks of gestation) and fetal circulations, and their associations with fetal insulin sensitivity (glucose/insulin ratio, proinsulin level).

Results:

Comparing concentrations in cord vs. maternal blood, leptin levels were 50% lower, but adiponectin levels more than doubled. Adjusting for gestational age at blood sampling, consistent and similar positive correlations (correlation coefficients: 0.31‐0.34, all P < 0.0001) were observed in leptin or adiponectin levels in maternal (at 24‐28 or 32‐25 weeks of gestation) vs. fetal circulations. For each SD increase in maternal plasma concentration at 24‐28 weeks, cord plasma concentration increased by 12.7 (95% confidence interval 6.8‐18.5) ng/ml for leptin, and 2.9 (1.8‐4.0) µg/ml for adiponectin, respectively (adjusted P < 0.0001). Fetal insulin sensitivity was negatively associated with cord blood leptin (each SD increase was associated with a 5.4 (2.1‐8.7) mg/dl/µU/ml reduction in cord plasma glucose/insulin ratio, and a 5.6 (3.9, 7.4) pmol/l increase in proinsulin level, all adjusted P < 0.01) but not adiponectin (P > 0.4) levels). Similar associations were observed in nondiabetic full‐term pregnancies (n = 211).

Conclusions:

The results consistently suggest a maternal impact on fetal leptin and adiponectin levels, which may be an early life pathway in maternal‐fetal transmission of the propensity to obesity and insulin resistance.  相似文献   

20.
Leptin is thought to be a lipostatic signal that contributes to body weight regulation. Zinc plays an important role in appetite regulation also. Our aim is to evaluate the relationship between leptin and zinc in obese and nonobese type 2 diabetic patients and its relationship with oxidative stress and insulin. We studied 25 nonobese nondiabetic women (controls); 35 nonobese diabetic women; and 45 obese diabetic women. Plasma leptin concentration was determined by immunoradiometric assay. Thiobarbituric acid reactive substances (TBARS), markers of oxidative stress, were assayed by the spectrofotometric method. Plasma levels of zinc and insulin were measured by atomic absorption spectrophotometer and electrochemiluminescence methods, respectively. We found that nonobese diabetic patients had significantly lower zinc and higher TBARS levels than control subjects (P<0.01). There was no difference in plasma leptin levels between nonobese diabetic subjects and controls. Obese diabetic subjects had significantly higher plasma leptin, TBARS, and insulin levels and significantly lower plasma zinc levels than nonobese diabetic subjects (for each comparison; P<0.01). The univariate and multivariate analyses demonstrated a significant positive correlation between leptin and body mass index (P<0.01) and insulin (P<0.01), and a significant negative correlation between leptin and zinc in obese subjects. Additionally, TBARS levels was positive correlated with insulin and negative correlated with zinc in obese diabetic subjects. We conclude that zinc may be a mediator of the effects of leptin, although the detailed mechanism is still unknown and requires further investigation. Free radical induced mechanism(s) may be involved in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号