首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M) system, controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates). Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis.  相似文献   

2.
Abstract The tetrameric repeat units 5'-CAAT-3' and 5'-GCAA-3' are associated with phase variable expression of lipopolysaccharide biosynthetic genes in Haemophilus influenzae . Four other tetrameric repeat units have also been reported from H. influenzae strain Rd, 5'-CAAC-3', 5'-GACA-3', 5'-AGCT-3', and 5'-TTTA-3', which are also associated with putative virulence factors. Using oligonucleotide probes corresponding to five tandem copies of each of these tetramers, we have screened three strains of Neisseria meningitidis and one each of Neisseria gonorrhoeae, Neisseria lactamica, Haemophilus parainfluenzae, Bordetella pertussis, Bordetella parapertussis, Bordetella bronchiceptica and Moraxella catarrhalis for the presence of these motifs. We have demonstrated the presence of multiple copies of the 5'-GCAA-3' motif in all the Neisseria strains tested, and also the repeated motif 5'-CAAC-3' in M. catarrhalis . We have further demonstrated by Southern blot analysis that the 5'-CAAC-3' repeats detected in M. catarrhalis are probably associated with the same genes as in H. influenzae , but that the 5'-GCAA-3' motifs in N. meningitidis are not. The use of characterised tetrameric DNA sequences as hybridisation probes may prove useful in the identification of novel phase variable virulence determinants in organisms other than H. influenzae .  相似文献   

3.
The genomes of pathogenic Haemophilus influenzae strains are larger than that of Rd KW20 (Rd), the nonpathogenic laboratory strain whose genome has been sequenced. To identify potential virulence genes, we examined genes possessed by Int1, an invasive nonencapsulated isolate from a meningitis patient, but absent from Rd. Int1 was found to have a novel gene termed lav, predicted to encode a member of the AIDA-I/VirG/PerT family of virulence-associated autotransporters (ATs). Associated with lav are multiple repeats of the tetranucleotide GCAA, implicated in translational phase variation of surface molecules. Laterally acquired by H. influenzae, lav is restricted in distribution to a few pathogenic strains, including H. influenzae biotype aegyptius and Brazilian purpuric fever isolates. The DNA sequence of lav is surprisingly similar to that of a gene previously described for Neisseria meningitidis. Sequence comparisons suggest that lav was transferred relatively recently from Haemophilus to Neisseria, shortly before the divergence of N. meningitidis and Neisseria gonorrhoeae. Segments of lav predicted to encode passenger and beta-domains differ sharply in G+C base content, supporting the idea that AT genes have evolved by fusing domains which originated in different genomes. Homology and base sequence comparisons suggest that a novel biotype aegyptius AT arose by swapping an unrelated sequence for the passenger domain of lav. The unusually mobile lav locus joins a growing list of genes transferred from H. influenzae to Neisseria. Frequent gene exchange suggests a common pool of hypervariable contingency genes and may help to explain the origin of invasiveness in certain respiratory pathogens.  相似文献   

4.
Abstract The distribution of distinct sequences in pathogenic and commensal Neisseria species was investigated systematically by dot blot analysis. Probes representing the genes of Rmp, pilin and IgA1 protease were found to hybridize exclusively to the chromosomal DNA of the pathogenic species, Neisseria gonorrhoeae and/or Neisseria meningitidis . In contrast, specific sequences for the genes of the porin protein Por and the opacity protein (Opa) were also detected in a panel of commensal Neisseria species such as N. lactamica, N. subflava, N, flava, N. mucosa and N. sicca . Using opa -specific oligonucleotides as probes in chromosomal blots, the genomes of the commensal Neisseria species show a totally reduced repertoire of cross-hybridizing loci compared to the complex opa gene family of N. gonorrhoeae . DNA sequence analysis of one opa -related gene derived from N. flava and N. sicca , respectively, revealed a large degree of homology with previously described gonococcal and meningococcal genes e.g., a typical repetitive sequence in the leader peptide and the distribution of the hypervariable and conserved regions. This observation, together with the finding, that the gene is constitutively transcribed, leads to the assumption that some of the commensal Neisseria species may have the potential for the expression of a protein harboring similar functions as the Opa proteins in pathogenic Neisseriae .  相似文献   

5.
Phosphorylcholine (ChoP) is a potential candidate for a plurispecific vaccine, because it is present on surface components of many mucosal organisms, including Haemophilus influenzae, Streptococcus pneumoniae and Pseudomonas aeruginosa. In addition, ChoP has been detected on pili of Neisseria meningitidis and Neisseria gonorrhoeae. In this study, we demonstrate the presence of the phosphorylcholine epitope on the lipopolysaccharides (LPSs) of several species of commensal Neisseriae (Cn), a property that differentiates commensal from the pathogenic strains of Neisseriae. In an extended survey of 78 strains, we confirmed the exclusive expression of the ChoP epitope on pili of pathogenic Neisseriae. Despite the presence of pili on Cn, which are homologous to Class II pili of N. meningitidis, they did not react with anti-ChoP antibody. This observation was further supported by the fact that 14C-labelled choline was incorporated only in the LPSs of Cn. Analysis of the LPS of N. lactamica strain NL4 revealed two distinct and interconvertible molecular species of LPS with high and low levels of reactivity with anti-ChoP antibody. In addition, on/off phase variation gave rise to frequent modulation in the levels of antibody reactivity. A concurrent modulation was also observed in the binding of C-reactive protein, CRP, a ChoP-binding reactant that is implicated in bacterial clearance. Genetic analysis showed the presence of a gene in several Cn spp. with significant sequence identity to H. influenzae licA. This gene encodes choline kinase and is also involved in phase variation of the LPS-associated ChoP in H. influenzae. In contrast, licA-like genes were not identified in the pathogenic Neisseria strains tested. They are absent from N. meningitidis strain Z2491 genome database. These data suggest that the genetic basis for ChoP incorporation in Cn LPS resembles that in H. influenzae spp. and may be distinct from that generating the ChoP epitope on pili of pathogenic Neisseriae. Further, the modulation of ChoP expression on Cn LPS, and corresponding modulation of CRP binding, has the potential to confer the property of immune avoidance and thus of persistence on mucosa.  相似文献   

6.
Strains of nontypeable Haemophilus influenzae show enormous genetic heterogeneity and display differential virulence potential in different clinical settings. The igaB gene, which encodes a newly identified IgA protease, is more likely to be present in the genome of COPD strains of H. influenzae than in otitis media strains. Analysis of igaB and surrounding sequences in the present study showed that H. influenzae likely acquired igaB from Neisseria meningitidis and that the acquisition was accompanied by a ~20 kb genomic inversion that is present only in strains that have igaB. As part of a long running prospective study of COPD, molecular typing of H. influenzae strains identified a clonally related group of strains, a surprising observation given the genetic heterogeneity that characterizes strains of nontypeable H. influenzae. Analysis of strains by 5 independent methods (polyacrylamide gel electrophoresis, multilocus sequence typing, igaB gene sequences, P2 gene sequences, pulsed field gel electrophoresis) established the clonal relationship among the strains. Analysis of 134 independent strains collected prospectively from a cohort of adults with COPD demonstrated that ~10% belonged to the clonal group. We conclude that a clonally related group of strains of nontypeable H. influenzae that has two IgA1 protease genes (iga and igaB) is adapted for colonization and infection in COPD. This observation has important implications in understanding population dynamics of H. influenzae in human infection and in understanding virulence mechanisms specifically in the setting of COPD.  相似文献   

7.
We previously described a gene, lpt3, required for the addition of phosphoethanolamine (PEtn) at the 3 position on the beta-chain heptose (HepII) of the inner-core Neisseria meningitidis lipopolysaccharide (LPS), but it has long been recognized that the inner-core LPS of some strains possesses PEtn at the 6 position (PEtn-6) on HepII. We have now identified a gene, lpt6 (NMA0408), that is required for the addition of PEtn-6 on HepII. The lpt6 gene is located in a region previously identified as Lgt-3 and is associated with other LPS biosynthetic genes. We screened 113 strains, representing all serogroups and including disease and carriage strains, for the lpt3 and lpt6 genes and showed that 36% contained both genes, while 50% possessed lpt3 only and 12% possessed lpt6 only. The translated amino acid sequence of lpt6 has a homologue (72.5% similarity) in a product of the Haemophilus influenzae Rd genome sequence. Previous structural studies have shown that all H. influenzae strains investigated have PEtn-6 on HepII. Consistent with this, we found that, among 70 strains representing all capsular serotypes and nonencapsulated H. influenzae strains, the lpt6 homologue was invariably present. Structural analysis of LPS from H. influenzae and N. meningitidis strains where lpt6 had been insertionally inactivated revealed that PEtn-6 on HepII could not be detected. The translated amino acid sequences from the N. meningitidis and H. influenzae lpt6 genes have conserved residues across their lengths and are part of a family of proven or putative PEtn transferases present in a wide range of gram-negative bacteria.  相似文献   

8.
Haemophilus influenzae is an obligate commensal of the upper respiratory tract of humans that uses simple repeats (microsatellites) to alter gene expression. The mod gene of H. influenzae strain Rd has homology to DNA methyltransferases of type III restriction/modification systems and has 40 tetranucleotide (5'-AGTC) repeats within its open reading frame. This gene was found in 21 out of 23 genetically distinct H. influenzae strains, and in 13 of these strains the locus contained repeats. H. influenzae strains were constructed in which a lacZ reporter was fused to a chromosomal copy of mod downstream of the repeats. Phase variation occurred at a high frequency in strains with the wild-type number of repeats. Mutation rates were derived for similarly engineered strains, containing different numbers of repeats. Rates increased linearly with tract length over the range 17-38 repeat units. The majority of tract alterations were insertions or deletions of one repeat unit with a 2:1 bias towards contractions of the tract. These results demonstrate the number of repeats to be an important determinant of phase variation rate in H. influenzae for a gene containing a microsatellite.  相似文献   

9.
Phosphorylcholine (ChoP) is a common surface feature of many mucosal organisms, including Neisseria spp., in which it is present exclusively on pili of pathogenic Neisseria and on the lipopolysaccharide (LPS) of commensal Neisseria (Cn). Its presence in Cn has been confirmed by nuclear magnetic resonance. It appears that choline is the main source for the production of ChoP by Cn. We have sequenced a locus, containing four genes (licA-D) with 47-73% identity to the lic1 locus of Haemophilus influenzae (Hi) and 21-40% identity to lic genes in Streptococcus pneumoniae, involved in the production and incorporation of ChoP. The arrangement of the Cn genes and the presence of CAAT repeats, responsible for phase variation of ChoP expression, resemble Hi and differ from S. pneumoniae. Cn DNA flanking the lic locus contains genes ilvE and NMA2149 with >85% identity to the pathogenic Neisseria genes. However, there are no lic genes in the corresponding location or elsewhere in pathogenic Neisseria. This suggests either the loss of the locus from pathogenic Neisseria or a horizontal transfer of genes to Cn, perhaps from H. influenzae spp. As in Hi, ChoP enhances adherence to and invasion of human epithelial cells via the receptor for platelet-activating factor. However, ChoP expression also increases susceptibility to serum killing mediated by complement and C-reactive protein. Taken together, these observations support the hypothesis that the ability of many organisms to switch off ChoP expression rapidly represents an important adaptation to different environments encountered during the colonization/infection process and that the ChoP moiety apparently synthesized by distinct means in pathogenic and commensal Neisseria represents an advantage in the colonization properties of these bacteria.  相似文献   

10.
Expression of the modABCD operon in Escherichia coli, which codes for a molybdate-specific transporter, is repressed by ModE in vivo in a molybdate-dependent fashion. In vitro DNase I-footprinting experiments identified three distinct regions of protection by ModE-molybdate on the modA operator/promoter DNA, GTTATATT (-15 to -8; region 1), GCCTACAT (-4 to +4; region 2), and GTTACAT (+8 to +14; region 3). Within the three regions of the protected DNA, a pentamer sequence, TAYAT (Y = C or T), can be identified. DNA-electrophoretic mobility experiments showed that the protected regions 1 and 2 are essential for binding of ModE-molybdate to DNA, whereas the protected region 3 increases the affinity of the DNA to the repressor. The stoichiometry of this interaction was found to be two ModE-molybdate per modA operator DNA. ModE-molybdate at 5 nM completely protected the modABCD operator/promoter DNA from DNase I-catalyzed hydrolysis, whereas ModE alone failed to protect the DNA even at 100 nM. The apparent K(d) for the interaction between the modA operator DNA and ModE-molybdate was 0.3 nM, and the K(d) increased to 8 nM in the absence of molybdate. Among the various oxyanions tested, only tungstate replaced molybdate in the repression of modA by ModE, but the affinity of ModE-tungstate for modABCD operator DNA was 6 times lower than with ModE-molybdate. A mutant ModE(T125I) protein, which repressed modA-lac even in the absence of molybdate, protected the same region of modA operator DNA in the absence of molybdate. The apparent K(d) for the interaction between modA operator DNA and ModE(T125I) was 3 nM in the presence of molybdate and 4 nM without molybdate. The binding of molybdate to ModE resulted in a decrease in fluorescence emission, indicating a conformational change of the protein upon molybdate binding. The fluorescence emission spectra of mutant ModE proteins, ModE(T125I) and ModE(Q216*), were unaffected by molybdate. The molybdate-independent mutant ModE proteins apparently mimic in its conformation the native ModE-molybdate complex, which binds to a DNA sequence motif of TATAT-7bp-TAYAT.  相似文献   

11.
Boucherie H  Bernet J 《Genetics》1980,96(2):399-411
The suppression of protoplasmic incompatibility resulting from nonallelic gene interactions has been obtained by the coupled effect of mutations in the modA and modB genes (Bernet 1971). Due to their female sterility, modA modB strains provide an experimental tool to determine whether or not the mod and incompatibility loci are involved in a function other than protoplasmic incompatibility. Present results show that modA modB female sterility is a nonautonomous trait since heterokaryotic mycelia that include a modA modB nucleus and a female fertile nucleus (wild-type, modA or modB) produce modA modB protoperithecia, which are also formed by culture on medium supplemented with specific amino acids. Using modA modB strains, which are sterile at 32 degrees and fertile at 26 degrees , we have shown that the mod genes have no specific sequential timing. Indeed, the mod mutations may prevent the achievement of the female sexual cycle at any developmental stage from before early differentiation of protoperithecia until ascospore maturation. Employing different modA and modB mutations, we have shown that protoperithecia in modA modB cultures are generally distributed in female fertile rings; this result indicates that protoperithecia occur only in mycelial areas that have a restricted range of age at the time that modA modB thalli complete growth. Furthermore, nonsense mutations of incompatibility genes suppress the modA modB female fertile rings or restrict their width, suggesting that incompatibility loci, like the mod loci, are involved in protoperithecium formation. Taken together, these results lead to the postulate that mod and incompatibility genes do not determine, sensu stricto, protoperithecial function, as previously supposed (Boucherie and Bernet 1974), but may be involved in the homeostatic control of stationary cell functions essential for the complete development of the female sexual cycle.  相似文献   

12.
Phase variable restriction-modification (R-M) systems are widespread in Eubacteria. Haemophilus influenzae encodes a phase variable homolog of Type III R-M systems. Sequence analysis of this system in 22 non-typeable H.influenzae isolates revealed a hypervariable region in the central portion of the mod gene whereas the res gene was conserved. Maximum likelihood (ML) analysis indicated that most sites outside this hypervariable region experienced strong negative selection but evidence of positive selection for a few sites in adjacent regions. A phylogenetic analysis of 61 Type III mod genes revealed clustering of these H.influenzae mod alleles with mod genes from pathogenic Neisseriae and, based on sequence analysis, horizontal transfer of the mod–res complex between these species. Neisserial mod alleles also contained a hypervariable region and all mod alleles exhibited variability in the repeat tract. We propose that this hypervariable region encodes the target recognition domain (TRD) of the Mod protein and that variability results in alterations to the recognition sequence of this R-M system. We argue that the high allelic diversity and phase variable nature of this R-M system have arisen due to selective pressures exerted by diversity in bacteriophage populations but also have implications for other fitness attributes of these bacterial species.  相似文献   

13.
The ampicillin-resistant Haemophilus influenzae strain Ve445 which caused purulent meningitis and septicaemia in a newborn child in Germany contained a 4.4 megadalton (Mdal) plasmid (pVe445) and produced a TEM type beta-lactamase. The transformation to ampicillin resistance of a sensitive Escherichia coli strain with isolated pVe445 DNA proved that the structural gene for the beta-lactamase resided on this plasmid genome. Molecular DNA-DNA hybridization studies and electron microscope DNA heteroduplex analysis indicated that pVe445 probably contained 38 to 41% of the ampicillin translocation DNA segment (TnA) found on R factors of enteric origin. The TnA fragment present in pVe445 most likely does not contain both of the inverted repeat sequences of TnA. DNA-DNA polynucleotide sequence studies indicated that the 4.4 Mdal plasmid pVe445 was unrelated to the 30 to 38 Mdal H. influenzae R plasmids but was closely related to the 4.1 Mdal ampicillin resistance specifying H. influenzae plasmid RSF0885 isolated in the U.S.A. The H. influenzae plasmid pVe445 shared 91% of its base sequences with the beta-lactamase specifying Neisseria gonorrhoeae plasmid pMR0360 (4.4 Mdal) and had 85% of its base sequences in common with the beta-lactamase specifying N. gonorrhoeae plasmid pMR0200 (3.2 Mdal). All of the four 3.2 to 4.4 Mdal beta-lactamase specifying R plasmids of H. influenzae and N. gonorrhoeae investigated probably have a common evolutionary origin.  相似文献   

14.
We previously reported that the dog dopamine receptor D4 (DRD4) gene is polymorphic as observed in humans, and four alleles were identified based on the number and/or order of the 12 and 39 bp sequences located in the homologous region of human DRD4. To assess the diversity of the DRD4 gene in dogs we examined the allelic variations in four breeds (beagle, golden retriever, Shetland sheepdog, and shiba) employing the polymerase chain reaction (PCR). As a result, we found three novel alleles and determined the DNA sequences of these alleles. The beagle shared four alleles, including 396, 435, 447a, and 447b, with the 435 (52.6%) and 447a (39.5%) alleles being common. The golden retriever had the 435 and 447a alleles, and the 435 allele was frequent (73.3%). In the Shetland sheepdog, the 435, 447a, and 498 alleles were observed, of which the 447a allele was most frequent (82.5%). The shiba had five alleles-447a, 447b, 486, 498, and 549-and the 447b allele was most common (55.4%). These findings suggest that the allele frequency varied among the four dog breeds, and analysis of the DRD4 polymorphism may therefore be useful for elucidating the relationships among dog breeds.  相似文献   

15.
This paper presents the nucleotide sequence of the mod-res operon of phage P1, which encodes the two structural genes for the EcoP1 type III restriction and modification system. We have also sequenced the mod gene of the allelic EcoP15 system. The mod gene product is responsible for binding the system-specific DNA recognition sequences in both restriction and modification; it also catalyses the modification reaction. A comparison of the two mod gene product sequences shows that they have conserved amino and carboxyl ends but have completely different sequences in the middle of the molecules. Two alleles of the EcoP1 mod gene that are defective in modification but not in restriction were also sequenced. The mutations in both alleles lie within the non-conserved regions.  相似文献   

16.
The genomic region encoding the type IIS restriction-modification (R-M) system HphI (enzymes recognizing the asymmetric sequence 5'-GGTGA-3'/5'-TCACC-3') from Haemophilus parahaemolyticus were cloned into Escherichia coli and sequenced. Sequence analysis of the R-M HphI system revealed three adjacent genes aligned in the same orientation: a cytosine 5 methyltransferase (gene hphIMC), an adenine N6 methyltransferase (hphIMA) and the HphI restriction endonuclease (gene hphIR). Either methyltransferase is capable of protecting plasmid DNA in vivo against the action of the cognate restriction endonuclease. hphIMA methylation renders plasmid DNA resistant to R.Hindill at overlapping sites, suggesting that the adenine methyltransferase modifies the 3'-terminal A residue on the GGTGA strand. Strong homology was found between the N-terminal part of the m6A methyltransferasease and an unidentified reading frame interrupted by an incomplete gaIE gene of Neisseria meningitidis. The HphI R-M genes are flanked by a copy of a 56 bp direct nucleotide repeat on each side. Similar sequences have also been identified in the non-coding regions of H.influenzae Rd DNA. Possible involvement of the repeat sequences in the mobility of the HphI R-M system is discussed.  相似文献   

17.
Phase variably expressed (randomly switching) methyltransferases associated with type III restriction-modification (R-M) systems have been identified in a variety of pathogenic bacteria. We have previously shown that a phase variable methyltransferase (Mod) associated with a type III R-M system in Haemophilus influenzae strain Rd coordinates the random switching of expression of multiple genes, and constitutes a phase variable regulon—‘phasevarion’. We have now identified the recognition site for the Mod methyltransferase in H. influenzae strain Rd as 5′-CGAAT-3′. This is the same recognition site as the previously described HinfIII system. A survey of 59 H. influenzae strains indicated significant sequence heterogeneity in the central, variable region of the mod gene associated with target site recognition. Intra- and inter-strain transformation experiments using Mod methylated or non-methylated plasmids, and a methylation site assay demonstrated that the sequence heterogeneity seen in the region encoding target site specificity does correlate to distinct target sites. Mutations were identified within the res gene in several strains surveyed indicating that Res is not functional. These data suggest that evolution of this type III R-M system into an epigenetic mechanism for controlling gene expression has, in some strains, resulted in loss of the DNA restriction function.  相似文献   

18.
Bacterial evolution: bacteria play pass the gene   总被引:1,自引:0,他引:1  
DNA transfer between related bacterial species is enhanced by species-specific uptake sequences. These sequences have been used to identify genes that have been transferred from Haemophilus to Neisseria, providing a clear example of interspecific transfer of DNA in the evolution of the pathogenic Neisseria.  相似文献   

19.
20.
Phase variation, the high-frequency on/off switching of gene expression, is a common feature of host-adapted bacterial pathogens. Restriction-modification (R-M) systems, which are ubiquitous among bacteria, are classically assigned the role of cellular defence against invasion of foreign DNA. These enzymes are not obvious candidates for phase variable expression, a characteristic usually associated with surface-expressed molecules subject to host immune selection. Despite this, numerous type III R-M systems in bacterial pathogens contain repetitive DNA motifs that suggest the potential for phase variation. Several roles have been proposed for phase variable R-M systems based on DNA restriction function. However, there is now evidence in several important human pathogens, including Haemophilus influenzae, Neisseria meningitidis and Neisseria gonorrhoeae, that these systems are 'phasevarions' (phase variable regulons) controlling expression of multiple genes via a novel epigenetic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号