首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Converging data suggest that abnormal synchronised oscillatory activity in the basal ganglia may contribute to bradykinesia in patients with Parkinson's disease. This synchrony preferentially occurs over 10-30 Hz, the so-called beta band. Correlative evidence has been supplemented by experiments in which direct stimulation of the basal ganglia in the beta band slows movement. Yet questions remain regarding the small scale of the latter effects and whether synchrony is an early or even obligatory feature of parkinsonism. Nevertheless, the principle that abnormally synchronised activity in the beta band can disrupt the function finds a precedent in the syndrome of cortical myoclonus. Here, pathologically synchronised discharges of pyramidal neurons are transmitted to the healthy spinal cord. The result is the synchronous discharge of motor units leading to rhythmic jerking.  相似文献   

2.
《Cell reports》2023,42(4):112331
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   

3.
Marshall L  Kirov R  Brade J  Mölle M  Born J 《PloS one》2011,6(2):e16905
Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (~0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8-12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25-45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies.  相似文献   

4.
5.
Fragmentation and loss of habitat are critical components of the global change currently threatening biodiversity and ecosystem functioning. We studied the effects of habitat loss through fragmentation on food web structure, by constructing and analyzing plant‐herbivore and host‐parasitoid food webs including more than 400 species and over 120 000 feeding records, in 19 Chaco Serrano remnants of differing areas. Food web structure was altered by habitat fragmentation, with different metrics being affected depending on interaction type, and with all changes being driven by the reduced size of networks in smaller fragments. Only connectance varied in both quantitative and qualitative analyses, being negatively related to area. In addition, the interactions were represented by proper successive subsets, modulated mainly by resource availability (plant–herbivore) or consumer specialization (host–parasitoid), as forest size decreased. The results suggest that habitat loss has led to food web contraction around a central core of highly‐connected species, for plant–herbivore as well as for host–parasitoid systems. The study provides new insights into the effects of human perturbations on complex biological systems.  相似文献   

6.
7.
Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes   总被引:63,自引:0,他引:63  
An early event in death of interphase lymphocytes exposed in vivo or in vitro to low doses of gamma-irradiation is the degradation of DNA into nucleosome-sized fragments. Induction of fragmentation required RNA and protein synthesis because actinomycin D and cycloheximide, respectively, are able to inhibit DNA fragmentation in irradiated lymphocytes. Studies adding cycloheximide and actinomycin D at various times postirradiation suggest that once the metabolic process is initiated within an individual cell it proceeds to completion. The reversible RNA synthesis inhibitor, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole inhibits DNA fragmentation in irradiated thymocytes. When this drug is removed after 6 hr, irradiated thymocytes proceed to fragment their DNA; this suggests that an inducing "signal" that is not simply mRNA persists within the irradiated cell for at least 6 hr after irradiation. In contrast to mitogen-activated T and B lymphoblasts, resting T and B cells show significant DNA fragmentation after exposure to 100 to 500 rad. At 2000 rad, all of the splenic subpopulations die rapidly via a different mechanism. By studying the mechanism of DNA fragmentation induced during the interphase death of lymphocytes, we hope to understand better the extreme sensitivity of resting lymphocytes to radiation and what may be the common final pathway of programmed cell death.  相似文献   

8.
9.
An experimental characterization of odor-evoked memories in humans   总被引:3,自引:3,他引:0  
  相似文献   

10.
11.
The voltage-gated potassium channels Kv3.1 and Kv3.3 are widely expressed in the brain, including areas implicated in the control of motor activity and in areas thought to regulate arousal states. Although Kv3.1 and Kv3.3-single mutants show some physiological changes, previous studies revealed relatively subtle behavioral alterations suggesting that Kv3.1 and Kv3.3 channel subunits may be encoded by a pair of redundant genes. In agreement with this hypothesis, Kv3.1/Kv3.3-deficient mice display a 'strong' mutant phenotype that includes motor dysfunction (ataxia, myoclonus, tremor) and hyperactivity when exposed to a novel environment. In this paper we report that Kv3.1/Kv3.3-deficient mice are also constitutively hyperactive. Compared to wildtype mice, double mutants display 'restlessness' that is particularly prominent during the light period, when mice are normally at rest, characterized by more than a doubling of ambulatory and stereotypic activity, and accompanied by a 40% sleep reduction. When we reinvestigated both single mutants, we observed constitutive increases of ambulatory and stereotypic activity in conjunction with sleep loss in Kv3.1-single mutants but not in Kv3.3-single mutants. These findings indicate that the absence of Kv3.1-channel subunits is primarily responsible for the increased motor drive and the reduction in sleep time.  相似文献   

12.
Basic science research observations often lead to unexpected surprises. It is likely that in 1965 when Dr. Michel Jouvet placed bilateral peri-locus coeruleus lesions in cats and observed REM sleep without atonia (RWA) and "oneiric" behavior that could only be explained by "acting out dreams" (or "dreaming out acts"), he recognized that it was an important observation, but had little inkling of its true significance. Nor could he even imagine that it would lead to such greater understanding of wake/sleep phenomena in humans. Likely also, the first observation of REM sleep behavior disorder (RBD) in humans was felt to be interesting and novel - again with no true appreciation of what this seemingly simple observation would lead to important clinical relationships with numerous neurodegenerative disorders. The identification of RBD in humans also buttressed the concept of state dissociation, which has served to explain many previously unexplainable human behavioral phenomena.  相似文献   

13.
Cardiovascular autonomic modulation during 36 h of total sleep deprivation (SD) was assessed in 18 normal subjects (16 men, 2 women, 26.0 +/- 4.6 yr old). ECG and continuous blood pressure (BP) from radial artery tonometry were obtained at 2100 on the first study night (baseline) and every subsequent 12 h of SD. Each measurement period included resting supine, seated, and seated performing computerized tasks and measured vigilance and executive function. Subjects were not supine in the periods between measurements. Spectral analysis of heart rate variability (HRV) and BP variability (BPV) was computed for cardiac parasympathetic modulation [high-frequency power (HF)], sympathetic modulation [low-frequency power (LF)], sympathovagal balance (LF/HF power of R-R variability), and BPV sympathetic modulation (at LF). All spectral data were expressed in normalized units [(total power of the components/total power-very LF) x 100]. Spontaneous baroreflex sensitivity (BRS), based on systolic BP and pulse interval powers, was also measured. Supine and sitting, BPV LF was significantly increased from baseline at 12, 24, and 36 h of SD. Sitting, HRV LF was increased at 12 and 24 h of SD, HRV HF was decreased at 12 h SD, and HRV LF/HF power of R-R variability was increased at 12 h of SD. BRS was decreased at 24 h of SD supine and seated. During the simple reaction time task (vigilance testing), the significantly increased sympathetic and decreased parasympathetic cardiac modulation and BRS extended through 36 h of SD. In summary, acute SD was associated with increased sympathetic and decreased parasympathetic cardiovascular modulation and decreased BRS, most consistently in the seated position and during simple reaction-time testing.  相似文献   

14.
The geographical origin of Plasmodium vivax, the most widespread human malaria parasite, is controversial. Although genetic closeness to Asian primate malarias has been confirmed by phylogenetic analyses, genetic similarities between P. vivax and Plasmodium simium, a New World primate malaria, suggest that humans may have acquired P. vivax from New World monkeys or vice versa. Additionally, the near fixation of the Duffy-negative blood type (FY x B(null)/FY x B(null)) in West and Central Africa, consistent with directional selection, and the association of Duffy negativity with complete resistance to vivax malaria suggest a prolonged period of host-parasite coevolution in Africa. Here we use Bayesian and likelihood methods in conjunction with cophylogeny mapping to reconstruct the genetic and coevolutionary history of P. vivax from the complete mitochondrial genome of 176 isolates as well as several closely related Plasmodium species. Taken together, a haplotype network, parasite migration patterns, demographic history, and cophylogeny mapping support an Asian origin via a host switch from macaque monkeys.  相似文献   

15.
AimsAlzheimer's disease (AD) is the leading cause of dementia. The increased cdk5 expression and enhanced phosphorylation of tau and NFs have been seen in AD patients. Our study aimed at investigating the effects of increased cdk5 activity on axonal transport of neurofilaments (NFs).Main methodsIn this study, we used a molecular engineering approach to overexpress cdk5/p25 in neuroblastoma N2a cells and investigated the effects on axonal transport with live cell imaging techniques.Key findingsIn stably transfected cells, there was a 2.5-fold increase in cdk5 activity compared to non-transfected cells, which in turn led to a dramatic increase in phosphorylation of NFs and tau at several phosphorylation sites. Using time-lapse imaging technology, the transport of NFs was captured in the cells overexpressing cdk5/p25, which were also transiently transfected with fluorescence protein linked to the N-terminus of NF-M (EGFP-NFM). The cdk5/p25 cells displayed significantly slower rates of axonal transport of NFs, with accumulation of immobile NF clusters observed in the cell body. Roscovitine, an inhibitor of cdk5, significantly reversed this defect in axonal transport.SignificanceThese results suggest that increased cdk5 activity found in AD subjects may be crucially related to the pathogenesis of AD via an underlying mechanism by which it promotes accumulation of excessively phosphorylated cytoskeletal NF proteins, leading to the enduring impairment of axonal transport of NFs.  相似文献   

16.
17.
《Current biology : CB》2023,33(2):309-320.e5
  1. Download : Download high-res image (158KB)
  2. Download : Download full-size image
  相似文献   

18.
Are children superior to adults in consolidating procedural memory? This notion has been tied to "critical," early life periods of increased brain plasticity. Here, using a motor sequence learning task, we show, in experiment 1, that a) the rate of learning during a training session, b) the gains accrued, without additional practice, within a 24 hours post-training interval (delayed consolidation gains), and c) the long-term retention of these gains, were as effective in 9, 12 and 17-year-olds and comparable to those reported for adults. However, a follow-up experiment showed that the establishment of a memory trace for the trained sequence of movements was significantly more susceptible to interference by a subsequent motor learning experience (practicing a reversed movement sequence) in the 17-year-olds compared to the 9 and 12-year-olds. Unlike the 17-year-olds, the younger age-groups showed significant delayed gains even after interference training. Altogether, our results indicate the existence of an effective consolidation phase in motor learning both before and after adolescence, with no childhood advantage in the learning or retention of a motor skill. However, the ability to co-consolidate different, successive motor experiences, demonstrated in both the 9 and 12-year-olds, diminishes after puberty, suggesting that a more selective memory consolidation process takes over from the childhood one. Only the adult consolidation process is gated by a recency effect, and in situations of multiple, clashing, experiences occurring within a short time-interval, adults may less effectively establish in memory experiences superseded by newer ones.  相似文献   

19.
Cerebellar function in consolidation of a motor memory   总被引:9,自引:0,他引:9  
Attwell PJ  Cooke SF  Yeo CH 《Neuron》2002,34(6):1011-1020
Several forms of motor learning, including classical conditioning of the eyeblink and nictitating membrane response (NMR), are dependent upon the cerebellum, but it is not known how motor memories are stored within the cerebellar circuitry. Localized infusions of the GABA(A) agonist muscimol were used to target putative consolidation processes by producing reversible inactivations after NMR conditioning sessions. Posttraining inactivations of eyeblink control regions in cerebellar cortical lobule HVI completely prevented conditioning from developing over four sessions. In contrast, similar inactivations of eyeblink control regions in the cerebellar nuclei allowed conditioning to develop normally. These findings provide evidence that there are critical posttraining memory consolidation processes for eyeblink conditioning mediated by the cerebellar cortex.  相似文献   

20.
Memory consolidation in sleep; dream or reality   总被引:9,自引:0,他引:9  
Vertes RP 《Neuron》2004,44(1):135-148
We discuss several lines of evidence refuting the hypothesis that procedural or declarative memories are processed/consolidated in sleep. One of the strongest arguments against a role for sleep in declarative memory involves the demonstration that the marked suppression or elimination of REM sleep in subjects on antidepressant drugs or with brainstem lesions produces no detrimental effects on cognition. Procedural memory, like declarative memory, undergoes a slow, time-dependent period of consolidation. A process has recently been described wherein performance on some procedural tasks improves with the mere passage of time and has been termed "enhancement." Some studies, but not others, have reported that the consolidation/enhancement of perceptual and motor skills is dependent on sleep. We suggest that consolidation or enhancement, initiated in waking with task acquisition, could in some instances extend to sleep, but sleep would serve no unique role in these processes. In sum, there is no compelling evidence to support a relationship between sleep and memory consolidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号