共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
E. Dráberová Zdenek Lukás Dagmar Ivanyi Vladimír Viklický Pavel Dráber 《Histochemistry and cell biology》1998,109(3):231-239
The class III β-tubulin isotype is widely used as a neuronal marker in normal and neoplastic tissues. This isotype was, however,
also immunodetected in certain tumours of non-neuronal origin such as squamous cell carcinoma. Using a newly described monoclonal
antibody we compared the distribution of class III β-tubulin in normal and neoplastic tissues. The TU-20 mouse monoclonal
antibody was prepared against a conserved synthetic peptide from the C-terminus of the human class III β-tubulin isotype,
and its specificity was confirmed by immunoblotting, by competitive enzyme-linked immunosorbent assay and by immunofluorescence
microscopy on cultured cells. In different cell lines of various origins the antibody reacted only with neuroblastoma Neuro-2a
cells and with embryonal carcinoma P19 cells stimulated to neuronal differentiation by retinoic acid. Immunohistochemistry
on formaldehyde-fixed paraffin-embedded normal human tissues revealed the presence of the class III β-tubulin isotype in cell
bodies and processes of neuronal cells in the peripheral and central nervous systems. In other tissues, this β-tubulin isotype
was not immunodetected. Class III β-tubulin was found in all cases of ganglioneuroblastoma, ganglioneuroma, medulloblastoma,
neuroblastoma, sympathoblastoma and in one case of teratoma. In contrast, no reactivity was detected in tumours of non-neuronal
origin, including 32 cases of squamous cell carcinoma. The results indicate a specific TU-20 epitope expression exclusively
in neuronal tissues. The antibody could thus be a useful tool for the probing of class III β-tubulin functions in neurons
as well as for immunohistochemical characterisation of tumours of neuronal origin.
Accepted: 29 July 1997 相似文献
3.
4.
5.
6.
《Epigenetics》2013,8(5):307-312
Aberrant activation of the WNT/ß-catenin signaling pathway is frequently involved in a broad spectrum of human malignancies. Alternative to genetic deletions and point mutations, epigenetic inactivation of negative WNT regulators, through DNA methylation of promoter CpG islands and/or histone modification, leads to the activation or amplification of aberrant WNT/ß-catenin signaling. In this review, we summarized the contribution of epigenetic dysregulation of WNT/ß-catenin signaling to tumorigenesis and highlighted the importance of epigenetic identification of negative regulators of this pathway as putative tumor suppressors. The reversal of these silenced regulators may be developed as potential cancer therapeutics. 相似文献
7.
8.
9.
Ming M Wang S Wu W Senyuk V Le Beau MM Nucifora G Qian Z 《The Journal of biological chemistry》2012,287(27):22683-22690
The canonical Wnt/β-catenin signaling is activated during development, tumorigenesis, and in adult homeostasis, yet its role in maintenance of hematopoietic stem/progenitor cells is not firmly established. Here, we demonstrate that conditional expression of an active form of β-catenin in vivo induces a marked increase in the frequency of apoptosis in hematopoietic stem/progenitor cells (HSCs/HPCs). Activation of Wnt/β-catenin signaling in HPCs in vitro elevates the activity of caspases 3 and 9 and leads to a loss of mitochondrial membrane potential (ΔΨ(m)), indicating that it induces the intrinsic mitochondrial apoptotic pathway. In vivo, expression of activated β-catenin in HPCs is associated with down-regulation of Bcl2 and expression of Casp3. Bone marrow transplantation assays reveal that enhanced cell survival by a Bcl2 transgene re-establishes the reconstitution capacity of HSCs/HPCs that express activated β-catenin. In addition, a Bcl2 transgene prevents exhaustion of these HSCs/HPCs in vivo. Our data suggest that activation of the Wnt/β-catenin pathway contributes to the defective function of HPCs in part by deregulating their survival. 相似文献
10.
Ailian Wang Jian Wang Huanyan Ren Fan Yang Lili Sun Kexin Diao Zhijuan Zhao Min Song Zeshi Cui Enhua Wang Minjie Wei Xiaoyi Mi 《Molecular and cellular biochemistry》2014,395(1-2):211-219
Tumor necrosis factor receptor-associated factor 4 (TRAF4) is upregulated in various subtypes of breast cancers and cell lines; however, the precise functions of TRAF4 are poorly understood. Our objective was to investigate its relationship with β-catenin. TRAF4 participates in several signaling pathways, such as NF-κB and JNK signaling pathways. In this study, we identified β-catenin as a TRAF4-binding protein, have shown that TRAF4 enhanced expression of β-catenin, and found that TRAF4 mediated the translocation of β-catenin from the cytoplasm to the nucleus, thereby facilitating activation of the Wnt signaling pathway in breast cancer. 相似文献
11.
12.
13.
14.
Embryonic development is controlled by a small set of signal transduction pathways, with vastly different phenotypic outcomes depending on the time and place of their recruitment. How the same molecular machinery can elicit such specific and distinct responses, remains one of the outstanding questions in developmental biology. Part of the answer may lie in the high inherent genetic complexity of these signaling cascades, as observed for the Wnt-pathway. The mammalian genome encodes multiple Wnt proteins and receptors, each of which show dynamic and tightly controlled expression patterns in the embryo. Yet how these components interact in the context of the whole organism remains unknown. Here we report the generation of a novel, inducible transgenic mouse model that allows spatiotemporal control over the expression of Wnt5a, a protein implicated in many developmental processes and multiple Wnt-signaling responses. We show that ectopic Wnt5a expression from E10.5 onwards results in a variety of developmental defects, including loss of hair follicles and reduced bone formation in the skull. Moreover, we find that Wnt5a can have dual signaling activities during mouse embryonic development. Specifically, Wnt5a is capable of both inducing and repressing β-catenin/TCF signaling in vivo, depending on the time and site of expression and the receptors expressed by receiving cells. These experiments show for the first time that a single mammalian Wnt protein can have multiple signaling activities in vivo, thereby furthering our understanding of how signaling specificity is achieved in a complex developmental context. 相似文献
15.
Jon P. Lyons Rachel K. Miller Xiaolan Zhou Gilbert Weidinger Tom Deroo Tinneke Denayer Jae-Il Park Hong Ji Ji Yeon Hong Annette Li Randall T. Moon Elizabeth A. Jones Kris Vleminckx Peter D. Vize Pierre D. McCrea 《Mechanisms of development》2009,126(3-4):142-159
The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in kidney organogenesis, little is known of the definitive downstream signaling pathway(s) that mediate their effects. Here we report that inhibition of Wnt/β-catenin signaling within the pronephric field of Xenopus results in significant losses to kidney epithelial tubulogenesis with little or no effect on adjoining axis or somite development. We find that the requirement for Wnt/β-catenin signaling extends throughout the pronephric primordium and is essential for the development of proximal and distal tubules of the pronephros as well as for the development of the duct and glomus. Although less pronounced than effects upon later pronephric tubule differentiation, inhibition of the Wnt/β-catenin pathway decreased expression of early pronephric mesenchymal markers indicating it is also needed in early pronephric patterning. We find that upstream inhibition of Wnt/β-catenin signals in zebrafish likewise reduces pronephric epithelial tubulogenesis. We also find that exogenous activation of Wnt/β-catenin signaling within the Xenopus pronephric field results in significant tubulogenic losses. Together, we propose Wnt/β-catenin signaling is required for pronephric tubule, duct and glomus formation in Xenopus laevis, and this requirement is conserved in zebrafish pronephric tubule formation. 相似文献
16.
17.
18.
19.
LGR5, a seven-transmembrane domain receptor of the rhodopsin family, is a Wnt target gene and a bona fide marker of adult stem cells in the gastrointestinal tract and hair follicle bulge. Recently, we and others demonstrated that LGR5 and its homologues function as receptors of the R-spondin family of stem cell factors to potentiate Wnt/β-catenin signaling. However, the mechanism of how LGR5 enhances the signaling output remains unclear. Here we report that following costimulation with the ligands R-spondin1 and Wnt3a, LGR5 interacts and forms a supercomplex with the Wnt coreceptors LRP6 and Fzd5 which is rapidly internalized and then degraded. Internalization of LGR5 is mediated through a dynamin- and clathrin-dependent pathway. Inhibition of this endocytic process has no effect on LGR5 signaling. Deletion of the C-terminal tail of LGR5 maintains its ability to interact with LRP6, yet this LGR5 mutant exhibits increased signaling activity and a decreased rate of endocytosis in response to R-spondin1 compared to the wild-type receptor. This study provides direct evidence that LGR5 becomes part of the Wnt signaling complex at the membrane level to enhance Wnt/β-catenin signaling. However, internalization of LGR5 does not appear to be essential for potentiating the canonical Wnt signaling pathway. 相似文献
20.
Loss of midbrain dopaminergic (mDA) neurons underlies the motor symptoms of Parkinson's disease. Towards cell replacement, studies have focused on mechanisms underlying embryonic mDA production, as a rational basis for deriving mDA neurons from stem cells. We will review studies of [3-catenin, an obligate component of the Wnt cascade that is critical to mDA specification and neuro- genesis, mDA neurons have a unique origin--the midbrain fLoor plate (FP). Unlike the hindbrain and spinal cord FP, the midbrain FP is highly neurogenic and Wnt/β-catenin signaling is critical to this difference in neurogenic potential. In β-catenin loss-of-function experiments, the midbrain FP resembles the hindbrain FP, and key mDA progenitor genes such as Otx2, Lmxlo, MsxJ, and Ngn2 are downregulated whereas Shh is maintained. Accordingly, the neurogenic capacity of the midbrain FP is diminished, resulting in fewer mDA neurons. Conversely, in β-catenin gain-of.function experiments, the hindbrain FP expresses key mDA progenitor genes, and is highly neurogenic. Interestingly, when excessive β-catenin is supplied to the midbrain FP, less mDA neurons are produced sug- gesting that the dosage ofWntJ β-catenin signaling is critical. These studies of β-catenin have facilitated new protocols to derive mDA neurons from stem cells. 相似文献