首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catla catla, the second most important Indian major carp, is gaining its popularity among Indian fish farmers due to its high growth rate and consumer preferences. Simple sequence repeats (SSRs) are rapidly evolving, versatile, co-dominant and highly informative molecular markers used in genetic research. However, the time and cost involved in developing such resources has limited their extensive use. Advent of massive parallel sequencing technology has considerably eased these limitations. In the present investigation, we used Ion Torrent sequencing platform to identify potentially amplifiable microsatellite loci for catla. A modest sequencing volume generated approximately 5.7 MB of sequence data. Out of 29,794 sequences generated, 21,477 contained simple sequence repeats. Only 81 sequences had enough flanking sequences for primer designing. Out of 81 loci, 51 were successfully PCR amplified in a panel of five unrelated individuals. Out of 15 loci randomly checked for polymorphism, 13 loci were polymorphic with allele number ranged from 3 to 6 and two loci were found to be monomorphic. The observed and expected heterozygosities ranged from 0.565 to 0.870 and 0.483–0.804, respectively. These markers will be useful for studying genetics of wild populations, breeding programs of C. catla and closely related species.  相似文献   

2.
Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.  相似文献   

3.
Next‐generation sequencing (NGS) is emerging as an efficient and cost‐effective tool in population genomic analyses of nonmodel organisms, allowing simultaneous resequencing of many regions of multi‐genomic DNA from multiplexed samples. Here, we detail our synthesis of protocols for targeted resequencing of mitochondrial and nuclear loci by generating indexed genomic libraries for multiplexing up to 100 individuals in a single sequencing pool, and then enriching the pooled library using custom DNA capture arrays. Our use of DNA sequence from one species to capture and enrich the sequencing libraries of another species (i.e. cross‐species DNA capture) indicates that efficient enrichment occurs when sequences are up to about 12% divergent, allowing us to take advantage of genomic information in one species to sequence orthologous regions in related species. In addition to a complete mitochondrial genome on each array, we have included between 43 and 118 nuclear loci for low‐coverage sequencing of between 18 kb and 87 kb of DNA sequence per individual for single nucleotide polymorphisms discovery from 50 to 100 individuals in a single sequencing lane. Using this method, we have generated a total of over 500 whole mitochondrial genomes from seven cetacean species and green sea turtles. The greater variation detected in mitogenomes relative to short mtDNA sequences is helping to resolve genetic structure ranging from geographic to species‐level differences. These NGS and analysis techniques have allowed for simultaneous population genomic studies of mtDNA and nDNA with greater genomic coverage and phylogeographic resolution than has previously been possible in marine mammals and turtles.  相似文献   

4.
5.
To date we have little knowledge of how accurate next-generation sequencing (NGS) technologies are in sequencing repetitive sequences beyond known limitations to accurately sequence homopolymers. Only a handful of previous reports have evaluated the potential of NGS for sequencing short tandem repeats (microsatellites) and no empirical study has compared and evaluated the performance of more than one NGS platform with the same dataset. Here we examined yeast microsatellite variants from both long-read (454-sequencing) and short-read (Illumina) NGS platforms and compared these to data derived through Sanger sequencing. In addition, we investigated any locus-specific biases and differences that might have resulted from variability in microsatellite repeat number, repeat motif or type of mutation. Out of 112 insertion/deletion variants identified among 45 microsatellite amplicons in our study, we found 87.5% agreement between the 454-platform and Sanger sequencing in frequency of variant detection after Benjamini-Hochberg correction for multiple tests. For a subset of 21 microsatellite amplicons derived from Illumina sequencing, the results of short-read platform were highly consistent with the other two platforms, with 100% agreement with 454-sequencing and 93.6% agreement with the Sanger method after Benjamini-Hochberg correction. We found that the microsatellite attributes copy number, repeat motif and type of mutation did not have a significant effect on differences seen between the sequencing platforms. We show that both long-read and short-read NGS platforms can be used to sequence short tandem repeats accurately, which makes it feasible to consider the use of these platforms in high-throughput genotyping. It appears the major requirement for achieving both high accuracy and rare variant detection in microsatellite genotyping is sufficient read depth coverage. This might be a challenge because each platform generates a consistent pattern of non-uniform sequence coverage, which, as our study suggests, may affect some types of tandem repeats more than others.  相似文献   

6.
7.
One population distributed in Yunnan of China was regarded as a new species based on mitochondrial cytochrome b sequences. However, the usefulness of mitochondrial sequence data in determining species boundaries is not universally agreed upon, the frequency data from multiple nuclear gene loci is necessary in determining species boundaries. So, we describe in this paper the isolation and characterization of eleven microsatellite loci in the South China field mouse from genomic DNA-enriched libraries. The eleven loci were tested in 24 individuals from two populations in Southwest China. These loci were highly polymorphic with numbers of alleles per locus ranging from 9 to 24 and expected heterozygosities from 0.898 to 0.967. Eight loci followed Hardy–Weinberg expectations after Bonferroni correction for multiple comparisons. No significant linkage association was found among all these loci. The eleven polymorphic microsatellite loci will be useful in determining species boundaries of the South China field mouse.  相似文献   

8.
We collected ~29 kb of sequence data using Roche 454 pyrosequencing in order to estimate the timing and pattern of diversification in the carnivorous pitcher plant Sarracenia alata. Utilizing modified protocols for reduced representation library construction, we generated sequence data from 86 individuals across 10 populations from throughout the range of the species. We identified 76 high-quality and high-coverage loci (containing over 500 SNPs) using the bioinformatics pipeline PRGmatic. Results from a Bayesian clustering analysis indicate that populations are highly structured, and are similar in pattern to the topology of a population tree estimated using *BEAST. The pattern of diversification within Sarracenia alata implies that riverine barriers are the primary factor promoting population diversification, with divergence across the Mississippi River occurring more than 60,000 generations before present. Further, significant patterns of niche divergence and the identification of several outlier loci suggest that selection may contribute to population divergence. Our results demonstrate the feasibility of using next-generation sequencing to investigate intraspecific genetic variation in nonmodel species.  相似文献   

9.
10.
11.
12.
The diverse sequences of viral populations within individual hosts are the starting material for selection and subsequent evolution of RNA viruses such as foot-and-mouth disease virus (FMDV). Using next-generation sequencing (NGS) performed on a Genome Analyzer platform (Illumina), this study compared the viral populations within two bovine epithelial samples (foot lesions) from a single animal with the inoculum used to initiate experimental infection. Genomic sequences were determined in duplicate sequencing runs, and the consensus sequence of the inoculum determined by NGS was identical to that previously determined using the Sanger method. However, NGS revealed the fine polymorphic substructure of the viral population, from nucleotide variants present at just below 50% frequency to those present at fractions of 1%. Some of the higher-frequency polymorphisms identified encoded changes within codons associated with heparan sulfate binding and were present in both foot lesions, revealing intermediate stages in the evolution of a tissue culture-adapted virus replicating within a mammalian host. We identified 2,622, 1,434, and 1,703 polymorphisms in the inoculum and in the two foot lesions, respectively: most of the substitutions occurred in only a small fraction of the population and represented the progeny from recent cellular replication prior to onset of any selective pressures. We estimated the upper limit for the genome-wide mutation rate of the virus within a cell to be 7.8 × 10(-4) per nucleotide. The greater depth of detection achieved by NGS demonstrates that this method is a powerful and valuable tool for the dissection of FMDV populations within hosts.  相似文献   

13.
S. A. Karl  B. W. Bowen    J. C. Avise 《Genetics》1992,131(1):163-173
We introduce an approach for the analysis of Mendelian polymorphisms in nuclear DNA (nDNA), using restriction fragment patterns from anonymous single-copy regions amplified by the polymerase chain reaction, and apply this method to the elucidation of population structure and gene flow in the endangered green turtle, Chelonia mydas. Seven anonymous clones isolated from a total cell DNA library were sequenced to generate primers for the amplification of nDNA fragments. Nine individuals were screened for restriction site polymorphisms at these seven loci, using 40 endonucleases. Two loci were monomorphic, while the remainder exhibited a total of nine polymorphic restriction sites and three size variants (reflecting 600-base pair (bp) and 20-bp deletions and a 20-bp insertion). A total of 256 turtle specimens from 15 nesting populations worldwide were then scored for these polymorphisms. Genotypic proportions within populations were in accord with Hardy-Weinberg expectations. Strong linkage disequilibrium observed among polymorphic sites within loci enabled multisite haplotype assignments. Estimates of the standardized variance in haplotype frequency among global collections (FST = 0.17), within the Atlantic-Mediterranean (FST = 0.13), and within the Indian-Pacific (FST = 0.13), revealed a moderate degree of population substructure. Although a previous study concluded that nesting populations appear to be highly structured with respect to female (mitochondrial DNA) lineages, estimates of Nm based on nDNA data from this study indicate moderate rates of male-mediated gene flow. A positive relationship between genetic similarity and geographic proximity suggests historical connections and/or contemporary gene flow between particular rookery populations, likely via matings on overlapping feeding grounds, migration corridors or nonnatal rookeries.  相似文献   

14.
Optimal integration of next-generation sequencing into mainstream research requires re-evaluation of how problems can be reasonably overcome and what questions can be asked. One potential application is the rapid acquisition of genomic information to identify microsatellite loci for evolutionary, population genetic and chromosome linkage mapping research on non-model and not previously sequenced organisms. Here, we report on results using high-throughput sequencing to obtain a large number of microsatellite loci from the venomous snake Agkistrodon contortrix, the copperhead. We used the 454 Genome Sequencer FLX next-generation sequencing platform to sample randomly ∼27 Mbp (128 773 reads) of the copperhead genome, thus sampling about 2% of the genome of this species. We identified microsatellite loci in 11.3% of all reads obtained, with 14 612 microsatellite loci identified in total, 4564 of which had flanking sequences suitable for polymerase chain reaction primer design. The random sequencing-based approach to identify microsatellites was rapid, cost-effective and identified thousands of useful microsatellite loci in a previously unstudied species.  相似文献   

15.
16.
Recently, 454 sequencing has emerged as a popular method for isolating microsatellites owing to cost-effectiveness and time saving. In this study, repeat-enriched libraries from two southern African endemic sparids (Pachymetopon blochii and Lithognathus lithognathus) were 454 GS-FLX sequenced. From these, 7370 sequences containing repeats (SCRs) were identified. A brief survey of 23 studies showed a significant difference between the number of SCRs when enrichment was performed first before 454 sequencing. We designed primers for 302 unique fragments containing more than five repeat units and suitable flanking regions. A fraction (<11%) of these loci were characterized with 18 polymorphic microsatellite loci (nine in each of the focal species) being described. Sanger sequencing of alleles confirmed that size variation was because of differences in the number of tandem repeats. However, a case of homoplasy and sequencing errors in the 454 sequencing were identified. These newly developed and four previously isolated loci were successfully used to identify polymorphic markers in nine other economically important species, representative of sparid diversity. The combination of newly developed markers with data from previous sparid cross-species studies showed a significant negative correlation between genetic divergence to focal species and microsatellite transferability. The high level of transferability we described (48% amplification success and 32% polymorphism) suggests that the 302 microsatellite loci identified represent an excellent resource for future studies on sparids. Microsatellite marker development should commonly include tests of transferability to reduce costs and increase feasibility of population genetics studies in nonmodel organisms.  相似文献   

17.
Application of single nucleotide polymorphisms (SNPs) is revolutionizing human bio-medical research. However, discovery of polymorphisms in low polymorphic species is still a challenging and costly endeavor, despite widespread availability of Sanger sequencing technology. We present CRoPS as a novel approach for polymorphism discovery by combining the power of reproducible genome complexity reduction of AFLP with Genome Sequencer (GS) 20/GS FLX next-generation sequencing technology. With CRoPS, hundreds-of-thousands of sequence reads derived from complexity-reduced genome sequences of two or more samples are processed and mined for SNPs using a fully-automated bioinformatics pipeline. We show that over 75% of putative maize SNPs discovered using CRoPS are successfully converted to SNPWave assays, confirming them to be true SNPs derived from unique (single-copy) genome sequences. By using CRoPS, polymorphism discovery will become affordable in organisms with high levels of repetitive DNA in the genome and/or low levels of polymorphism in the (breeding) germplasm without the need for prior sequence information.  相似文献   

18.
Next generation sequencing (NGS) platforms are replacing traditional molecular biology protocols like cloning and Sanger sequencing. However, accuracy of NGS platforms has rarely been measured when quantifying relative frequencies of genotypes or taxa within populations. Here we developed a new bioinformatic pipeline (QRS) that pools similar sequence variants and estimates their frequencies in NGS data sets from populations or communities. We tested whether the estimated frequency of representative sequences, generated by 454 amplicon sequencing, differs significantly from that obtained by Sanger sequencing of cloned PCR products. This was performed by analysing sequence variation of the highly variable first internal transcribed spacer (ITS1) of the ichthyosporean Caullerya mesnili, a microparasite of cladocerans of the genus Daphnia. This analysis also serves as a case example of the usage of this pipeline to study within‐population variation. Additionally, a public Illumina data set was used to validate the pipeline on community‐level data. Overall, there was a good correspondence in absolute frequencies of C. mesnili ITS1 sequences obtained from Sanger and 454 platforms. Furthermore, analyses of molecular variance (amova ) revealed that population structure of Cmesnili differs across lakes and years independently of the sequencing platform. Our results support not only the usefulness of amplicon sequencing data for studies of within‐population structure but also the successful application of the QRS pipeline on Illumina‐generated data. The QRS pipeline is freely available together with its documentation under GNU Public Licence version 3 at http://code.google.com/p/quantification-representative-sequences .  相似文献   

19.
While standard DNA‐sequencing approaches readily yield genotypic sequence data, haplotype information is often of greater utility for population genetic analyses. However, obtaining individual haplotype sequences can be costly and time‐consuming and sometimes requires statistical reconstruction approaches that are subject to bias and error. Advancements have recently been made in determining individual chromosomal sequences in large‐scale genomic studies, yet few options exist for obtaining this information from large numbers of highly polymorphic individuals in a cost‐effective manner. As a solution, we developed a simple PCR‐based method for obtaining sequence information from individual DNA strands using standard laboratory equipment. The method employs a water‐in‐oil emulsion to separate the PCR mixture into thousands of individual microreactors. PCR within these small vesicles results in amplification from only a single starting DNA template molecule and thus a single haplotype. We improved upon previous approaches by including SYBR Green I and a melted agarose solution in the PCR, allowing easy identification and separation of individually amplified DNA molecules. We demonstrate the use of this method on a highly polymorphic estuarine population of the copepod Eurytemora affinis for which current molecular and computational methods for haplotype determination have been inadequate.  相似文献   

20.

Background

DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data.

Methodology/Principal Findings

The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n.

Conclusion/Significance

In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号